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Right, so the last time we talked about the properties of particle defusing while in the presence of

a magnetic field and we saw that the different components of the velocity of this particle were



correlated to each other and we also saw that the diffusion coefficient in the direction of in the

direction transverse to the magnetic field was reduced from the normal free diffusion coefficient

okay. Now let us turn to the problem of the analysis of noise in general and I would like to

introduce various kinds of noise.

But we need some tools to understand this so for a while let us look at some general formalism I

would like to introduce concepts like the power spectral density and then the Wiener Khinchin

theorem and so on which help us analyze noise in general without any specific reference to

whether the process is Markovian or anything like that okay. Now one of the key tools in this

kind of analysis is the exploitation of the fact that noise in general under suitable conditions is

stationary that you have a stationary random process.

And then a great deal of simplification occurs if the process is not stationary it is generally non

stationary then what one does is to look at it in windows of time where it is essentially stationary

and then approximately you can assume the process to be stationary and go through with the

formalism I am going to develop now so let us first look at what this entails what is meant by the

power spectrum of a noise.
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Now we have in mind in the simplest instance some random process as a function of time which

is noisy random so it is got, a very, very irregular time dependence and for to be specific let us



call this noise X of t or I of t for instance it is easier to write X of t a random process and we will

assume it to be stationary then one could ask if you plot this X of t in a typical realization as a

function of time you plot X of t you are going to get some highly irregular curve we saw in the

case of Brownian motion it was so irregular it was not differentiable anywhere.

But  in  other  cases  the  process  could  be  differentiable  for  instance  but  in  any  case  it  is

unpredictable in some specific sense because it is noisy okay. Now, one would like to first of all

to understand any regular curve like this based on our experience with very complicated curves

in which I could not sound for example is to further analyze the whole thing and ask what do the 

Fourier components look like what is the frequency content of this noise.

But this is not always trivial because this function needs to be absolutely integrable before you

can have a Fourier transform. So, it is possible that the Fourier transform of X of t does not really

exist  in  that  sense  on  the  other  hand  we  have  a  much  more  powerful  tool  which  is  the

autocorrelation of this function of this random process and that is a much smoother function as

we have seen function of t.

So, what you do is to take X of t naught X of t naught + t the product and take its average over

all realizations and then this if it is stationary is a function of t in general expected to die down as

t becomes very large. Now we will assume that all this process has 0 average so it simplifies the

writing of the formulas otherwise I would have to subtract out the mean each time and write

correlation functions.

So, we would like to look at a correlation function like X of t naught X of t naught + t and if it is

stationary this is of course = X of 0 X of t and we could ask what is the Fourier transform of this

tell us now turns out that there is a very deep connection between what the process itself does

and what the Fourier transform of the correlation function does base to this is the content of the

so  called  Wiener  Khinchin  theorem which  I  will  write  down we  are  not  going to  prove  it

rigorously.



But I will motivate it and we will go through some of the steps to see what is entailed so what

one does is to take this thing and look at it over a long period of time okay. 
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So, if you took at various instants so 0 to t some long instant of time you look at it at various

instants of time so this is t1 this is t2 and so on. And compute e to the power I Omega ti at those

instants of time multiplied by X of ti you have sampled it at those instants of time, times some

infinitesimal interval of time around it in this fashion I do sum over this i = 0 to n and let n

become very large and take the average the mod square of this quantity.

So, that it becomes real and take its average 1 over t1 over let us put a 2 Pi also limit as t tends to

infinity so consider this. So, I am trying to do a kind of Fourier transform what I am doing is

waiting this with e to the I Omega ti multiplying by the time interval and summing all these

pieces together okay. Of course this thing here is also = limit in the limit in which these intervals

become infinitesimal becomes 0 tends to 0.

You know this is 1 over 2Pi t integral 0 to t dt e to the i Omega t X of t mod square. So, there is a

function of Omega. Now let us try and see what this function gives us and what it is going to

become = it will turn out and this is the Wiener Khinchin theorem that this quantity is = the

Fourier transform with respect to time of this correlation function, so that is our target we would



like to establish this  that that limit  will  turn out to be this one the Fourier transform of this

quantity here.

But this thing here is defined as the power spectrum so this limit whatever it is, is = by definition

the power spectrum of this random variable SX and it is a function of Omega and we will see

what information it contains, pardon me I am sorry yeah e tends to infinity sorry. Of course so let

us see how this arises, now the proof is subtle it is not a trivial theorem it is subtle but we are

going to slur over the important part of it the part that is really requires a little bit of justification.

We go through just the algebraic manipulation but it will motivate how this result arises to start

with so we look at that integral.
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But before that a couple of properties of this thing here of this correlation function. So, let me

call this Phi of t, Phi X of t to show that it is for the variable X in fact they are soon going to have

different random processes here and here okay different components say of a vector random

process for instance. So, I need a little better notation but now when I come to it we will be

careful. 

So, this is = X of 0 X of t but notice also that because of stationarity I can add a t0 to the

argument  say  without  changing  anything  but  I  can  subtract  any  amount  without  changing



anything, so this is also = X of -t X of 0 if I just subtract t from the argument of each of the time

each of the time arguments right but this is X of 0, X of -t if these are classical variables if their

quantum variables there are operators then we have to be very careful there is a formalism which

will tell you what this the correct answer is?

You cannot commute these things randomly but the fact is there is a classical variables in this

level and therefore this is = Phi X -t so the first piece of information we have is that in the

simplest  instance of a scalar  process single component  stationary process the autocorrelation

function is a symmetric function of the time. This is why when we computed it for the velocity in

a length of one component when the one component of the velocity for a line Langevin particle

we found e to the -gamma modulus t for the correlation there is a symmetric function we are

going to exploit this as we go along.

If you have more than one component of course then the symmetry property becomes a little

more complicated and we will come to that in its time okay.

(Refer Slide Time: 10:54)

So, let us look at what this SX of Omega becomes the limit part I will omit and let us just look at

the integral let us look at that thing alone so you have 0 to t be t1 e to the i Omega  t1 integral 0

to t dt2 e to the i Omega t2 with a - sign because I want the complex conjugate of that X of t1 X



of t2  that  is  what  this  quantity  is  this  modular  squared  is  = that  now a whole  sequence  of

manipulations.

First of all I can also write this as integral 0 to t d t1 0 to t d t2 and then X of t1 X of t2 no

averaging or anything like that is being done I am just sampling the time series as we go along

yeah times e to the I Omega t1 - t2 but this is a symmetric function of t1 and t2 right and this

quantity  is real.  So,  the imaginary part  must vanish identically  and indeed it  does because I

imaginary part is sine t1 -Omega times t1 - t2 that will be odd under the interchange of t1 and t2

and it will vanish okay.

So, that is a trivial statement this is cos Omega t1 - t2 right, it is a real quantity so the imaginary

part must vanish identically okay. But you can also write this because it is symmetric under t1

and t2 and the range of integration is symmetric 0 to t in each of them you can write this as twice

the integral from 0 to t1 and then the next step is obvious change variables from t2 to t1 -t2. So,

let us put set t1 - t2 before the time so, dt2.

So, this guy is twice integral 0 to t dt1 integral and when  t2 is  t1 at 0 and when it is 0 its t1 so it

is again 0 to t1 dt prime X of  t1 X of  t2 but  t2 is  t1 - t prime correct me if I am making a

mistake we have to be careful miss t1- t prime cos omega let us set that = t that is easier because

it is going to come out on the left so the  t1 - t cos Omega t simplifies the notation okay. Now let

us interchange the order of integration.
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And what is this going to be by interchange the order of integration. This is = twice integral well

t1 runs from 0 to t and t prime runs from 0 to t1 so if I interchange t prime will run from 0 to t

and t1 will run from sorry t to capital T, so this is going to be 0 to t dt integral t to capital T dt1 X

of t1, X of t1 - t cos omega t okay. You know the obvious thing to do is to change because of this

thing here change variables to t1 - t right.

So, let us put  t1 - t = t prime, so dt1 = dt prime that is = twice integral 0 to t dt integral where

does this go  t1 is t so this is 0 and capital T - t dt prime X of  t1 - t is t prime and then X of  t1 is

t prime + t oh we forgot the cos, cos omega t. So, which is twice integral 0 to t dt, let us pull out

this cos Omega t because it does not involve t Prime and then an integral 0 to t - t dt prime X of t

prime X of t prime +, now look at what is emerging you got precisely the structure that you need

for the correlation function.

If it is stationary because it is saying take any instant of time t prime and take X at that time and

X at time t prime + t staggered multiply that to and keep doing this summing over all t prime's

okay. And this is the step which requires rigorous justification but if this random process has this

property of Ergodicity  namely  it  takes  on all  the values  in its  available  sample  space given

enough time an infinite number of times over and over again.



Then  the  time  average  of  that  integral  is  =  the  ensemble  average  over  some  prescribed

distribution over a distribution for the stationary variable which we have not specified. So, this

property is known as Ergodicity.
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Let us write it down I am average over a very long time in the limit t tending to infinity tends t

tends to infinity to ensemble average. This is at the root of equilibrium statistical mechanics  if

you think about it because it says that long time averages of the system given enough time all the

accessible  microstates  are  accessed  by the system and the average over all  of them is  = an

ensemble average over some prescribed distribution which you have to find.

So, what is actually being done what you actually measure in experiments are averages time

averages what you compute using the rules of statistics or statistical mechanics are ensemble

averages and the article of faith is that one is = the other this requires proof rigorous proof and it

is the property of Ergodicity in the context of random processes you have to specifically check

that this is true in a given instance let the property that this is that the random process is indeed

Ergodic.

This is possible to do once you know a little bit about the statistics of the process you can do it

we are not going to prove it we are going to assume that this is true and then this quantity limit t

tends to infinity 1 over t integral 0 to t dt prime X of t prime X of t prime + t is indeed = this



quantity is = the ensemble average of this quantity X of t prime X of t prime + t that is the

property of Ergodicity way that we are using okay.

Then of course the power spectrum reduces it becomes we have done a little bit of sleight of

hand here I mean to change limits I have shuffled limits here I have taken the limit the inside

here and then said argued that this guy is in fact the  ensemble average but this can be made

rigorous this is the part that I am slurring over but it can be made rigorous the fact is that it is

physically clear that it is if you got a city is valid it is this quantity this integral integration which

is a time average because of this is = this correlation function here okay.

And of course this thing here by stationarity = X of 0 X of t = Phi X of t is how we defined this

correlation.

(Refer Slide Time: 21:17)

So, finally it tells us that SX of Omega that we have is twice the integral from 0 to infinity

because remember there is a t gone to infinity limit of dt said property it out explicitly X of 0 X

of t cos Omega t,  but we already saw that this  is a symmetric  function this Phi X of t is a

symmetric function. So, you could also write this as = integral -infinity to infinity dt there is a 1

over 2 Pi right so this is 2 over 2 Pi 1 over Pi and it is = 1 over 2 Pi dt X of 0 which of course is

= 1over 2 Pi this is the Wiener Khinchin Theorem okay.



Sometimes the there is a wrong impression that the Wiener Khinchin theorem simply says that

the power spectrum is defined as the Fourier transform of the correlation function no not true

there is a non-trivial theorem here it requires proof which again I emphasize we have not given

you have only done what some of the manipulations. But it is possible to show that if the process

is Ergodic and stationary.

Then the power spectrum defined as that sampling integral squared is = the Fourier transform of

the correlation function autocorrelation function. Now of course we have assumed stationarity

here  we  have  assumed  all  the  properties  of  Ergodicity  a  stationarity  etcetera  but  it  is  an

exceedingly useful theorem in this form it is very useful either in this form or in this form okay

you can write it either way you like. Let us see what it tells us what it specifically does let us

look at some specific instances.
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So, let  us look at  the line Langevin particles  the particle  that  we talked about including the

Gaussian white noise. So, if you recall  our equation was mV dot + m gamma V in the one

component case was = square root of gamma over square root of gamma times Eta of t where

this was a delta correlated Gaussian white noise okay. Let us let us call this whole thing let us

call  this  0 then we know what the correlation of Zeta of t  is  Zeta  of t  is a 0 mean process

satisfying rate of 0 Zeta of t = capital gamma delta t.



It is Delta correlated and it took this strength in here inside here. So, what is the power spectrum

of this S Zi Omega = what is this = all we have to do is to use the way in a Khinchin theorem

namely substitute it in there and that is it that is the end of the story right. So, if I put in here a

gamma times Delta function at t = 0 it just brings out the gamma nothing else right. So, this is =

gamma over 2 Pi and remember this gamma was 2m little gamma kt with two cancels.

So, it is gamma m in gamma k Boltzmann T over Pi and that was it and we could ask what is the

power spectrum of the output variable of the velocity itself what does that look like etc.
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What is that going to be so the output variable has got Sv of Omega = once again this is =

integral from 0 to infinity or 1 over 2 Pi -infinity to infinity dt e to the i Omega t times V of 0 V

of t but we know what we have 0 V of t is in equilibrium we computed it its kt over m times e to

the -gamma mod t we computed it. So, let us write that down this is = by the way you could

write this out as twice 1 over pi this guy here so it is = k Boltzmann T over m Pi times dt e to the

i Omega t e to the -gamma whatever sorry cosine.

Once you have written the symmetric part then it is just cosine Omega t once you have written it

as 0 to infinity it is a cosine, so this is = e to the -gamma t so it is = gamma kt over 1 over gamma

squared + that is not white noise white noise is something whose power spectrum is constant



because it is Delta correlated and you immediately get a constant this is independent of Omega

but this has got a Lorentzian shape you know maybe it drops down.

Essentially what the power spectrum does is to measure the intensity of this noise in a given

window about any frequency Omega in a small window Delta Omega about Omega tells you

how much of the noise if you like? How much of the amplitude this intensity is sitting there?

Right and this says that it drops as a function of Omega variable this is unrealistic because it says

it is got, the same power everywhere for all frequencies from 0 to infinity which is obviously

unphysical. The moment you put a finite correlation time it will drop to something like that. 

(Refer Slide Time: 28:40)

Is  there  a  connection  between  this  and  that  there  should  be  because  there  is  a  connection

heuristically and take Fourier transforms on both sides look at what is going to happen by the

way our Fourier transform convention was to say that if you give me a function of t then 1 over 2

Pi -infinity to infinity dt e to the i Omega t f of t = f tilde of Omega that is our Fourier transform

convention. 

So, it also implies that f of t = integral -infinity to infinity the Omega e to the -i Omega t f tilde

for me so we stick to this convention so that these factors remain kept track of carefully. Now let

us look at this equation and kind of take Fourier transforms on both sides to see what happens.
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Then m times V dot well if I write V of t in this form and do V dot I pull down a -i Omega so the

effect of Fourier transform is to take the derivative with respect to t and replace it by -i Omega so

m times -i Omega + gamma on V tilde of Omega is = Zeta tilde of Omega or V tilde of Omega =

1 over m -i Omega + gamma Zeta tilde. The moment you have a relation of this kind in general

you have one function related the Fourier transform of one the output variable related to that of

the input variable through a susceptibility of this kind this is the called the dynamic mobility in

this particular case.

Then the power spectra are related by taking simply the modulus squared of this susceptibility

okay that is a relation which can be proved in some generality. So, let me state here without

going through the details that this automatically implies that SV of Omega must be = 1 over m

into -i Omega + gamma mod squared S Zeta of omega it implies that. Now all we have to do

now is to put work backwards and check if this is true or not.

So, is that true we have already got we already had this guy here yes for the velocity was = this

and now if I take this quantity here this is = 1 over m squared gamma squared +  Omega squared

SJ omega, so is this true I take a Zeta of Omega which is this and divide by m squared times

gamma squared + Omega squared and I get this precisely so it checks out in this case we knew

already the velocity correlation but if I did not know it I can now find it by using this relation.



We did this by a long procedure of actually writing down the distribution function for this V the

solution  that  separates  a  traveler  this  autocorrelation  actually  what  we  did  was  to  solve  a

Langevin equation and  from the autocorrelation etcetera but you do not need to do that all you

need to know is this relation in relation. So, in more complicated instances where you may not be

able to write the explicit solution down so easily you can still write down what is the power so

how are the power spectra related to each other okay.

 So, this is a useful trick to write down the power spectrum of the output variable given that of

the  input  variable.  There  is  a  name for  this  thing  here  what  is  this  guy called  engineering

parlance the transfer function it is a transfer function it is exactly what it is it is the mod squared

of what physicists would call the generalized susceptibility in this case the mobility okay. 

So, what it is telling you is if you give me a unit applied force of frequency Omega the steady

state response will also be of frequency Omega and it will be attenuated by a complex number

called the generalized mobility generalized susceptibility which is this quantity. What happens if

you have more than one component now things get a little more, tricky we have to be a little

careful here.
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Let us look at a physical example we actually went through one where we had more than one

component so there what I do is if you have got a whole lot of components of some vector



process  I  would  define  Sij  of  Omega  Oh  incidentally  one  small  property  which  is  easy  to

understand we found that SX of Omega was = twice integral let us let us get all the  Phi factors

right was = 1 over Pi integral 0 to infinity dt X of 0 X of t cos Omega t and this is = SX of –

Omega.

So, it is a symmetric function of the frequency formally that is a useful piece of information that

is one of the symmetries in the problem right. Now let us look at it in the more complicated case

when you have more than one component right. So, if you have a thing like Sij of Omega = 1

over 2Pi which is the -infinity to infinity dt e to the i Omega t Xi of 0 X j of t the power spectrum

now becomes a matrix if i and j run from 1 to n for example it is an n by n matrix with these

elements.

And there are all these cross correlations sitting here we still assume the process is stationary so

that all this every one of these averages function of the time difference alone then the question is

what is the corresponding property out there. But you can see by stationarity the following is true

you can see that Xi of 0 Xj of t let us call this Phi ij of t defined by Phi ij of t but that must be =

Xi of - t Xj of 0 by stationarity.

Because I stagger the time argument by - t on either either side but this is = Xj of 0 Xi of - t

which is = Phi ji of t pardon me of Phi ji yeah mistake yeah thank you. So, we have this property

here and therefore the symmetric and anti-symmetric parts of ii ij of t would be respectively even

an ardent time right. So, this implies that Phi ij of t + Phi ji of t this is the symmetric part of the

tensor Phi ij of t and that quantity is even in time and the odd part is odd in time okay.

There the anti symmetric part of the tensor is odd in time that follows in a straightforward way

yeah what we need here is the in this place is the following so let us look at Sji of Omega = 1

over 2 Pi integral -infinity to infinity dt e to the i Omega t, so let us call this  Phi ij of t can be

done with it Phi ji of t but we just saw that Phi ji of t is Phi ij of - t okay and let us take the

complex conjugate on both sides.



So, it is me - this guy here and a - this guy here this is real because my X is a real-valued random

variable but now I change t two - t in this integration and this gives me Sij, so what is the higher

dimensional counterpart of this symmetry property of s this says the power spectrum is an  even

function of the frequency for a single random variable for a random process a scalar random

process.

In the moment  you have  a  multi  component  process  it  says  the  ij  component  Omega sorry

function of Omega it says the ijth component of that tensor is = Sji Omega star, so what does it

say about this tensor or Sji of Omega this matrix it is a Hermitian matrix right. 
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So, this matrix S whose elements are Sij of Omega is a Hermitian matrix and we can write a

generalization now of the Wiener Khinchin theorem in this case. So, if you have a month we

have done this already in one example let us let us take a look at that instance right.
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So, again going to the example of particle in a magnetic field remember that we computed for a

particle in a magnetic field B = B times some unit vector in n direction we found the following

we found that Vi of 0 Vj of t this correlation function by ij of t we had an explicit expression for

this quantity here right this was = what it was k Boltzmann T over m that is always sitting there e

to the -gamma modulus t sitting there to multiplied by;

If you recall there was a portion that depended on ni nj and a portion which depended on delta

from the Kronecker delta and then there was an anti-symmetric portion. So, this was ni nj +

Delta ij - ni nj cos omega the Cyclotron frequency times t - epsilon ijk nk times sine, so this is

the symmetric part in i and j  symmetric under ij interchange and this is the anti symmetric part. 

Now what about the time reversal properties of these quantities we already saw what is going to

happen we saw that Phi IJ the portion the symmetric part of this tensor must be an even function

of time and the anti symmetric part must be an odd function of time right. But that is exactly

what is happening so this is symmetric or even function of time and that is an even function of t

and this guy is an odd function.

In the diffusion tensor this portion I stated did not make it the odd portion did not appear at all

we did not actually derive that formula for the diffusion tensor but I made it as a statement I said

that this portion does not contribute to the diffusion tensor at all it is only Phi ij + Phi ij of t + Phi



ij of - t integrated from 0 to infinity which was = proportional to the diffusion coefficient. But the

odd part remains I mean it is sitting there and so on and it will contribute to the power spectrum

and to the mobility and so on.

I have not talked about this maybe I will this will contribute to the so called Hall mobility so

there is the contribution which is not the usual current but the Hall current and that portion will

make a contribution to it we have not looked at this in great detail we have not done we have not

talked about the general and the linear response aspect of this particle in a magnetic field but this

also has a physical significance it is not it is not useless okay.

So, if you give me a general process I can write down using the Wiener Khinchin theorem I can

write down the power spectrum of this process and then it gives me a great deal of physical

information. In particular what it does is this relation that it is = the Fourier transform of the

correlation function this quantity here is in fact the response function in linear response theory.

So, when you apply an external stimulus and you ask what the response of the system is like it

gets proportional to this thing here.

Now what linear response theory does is essentially is in the context of statistical mechanics it is

first  order  time  dependent  perturbation  theory  together  with  the  statistics  that  the  statistical

mechanics  classical  or  quantum  that  you  need  and  that  is  essentially  what  it  is  so  this

autocorrelation  this  is  a  cross  correlation  function  here  is  in  the  absence  of  the  external

perturbation and that measures the response under the external perturbation to leading order in

the perturbation in external force okay.

So, that is the sort of gist of linear response theory in some sense and this is something they have

not specifically talked about if time permits we will come back and make a few comments about

linear response theory. But I thought that one should know this because the reason is that what

we are going to do is to go on to use this power spectrum the concept of the power spectrum to

look at what kind of power spectra are generated by different kinds of noise.



We already have one statement that white noise will correspond to a flat power spectrum and the

kind of  response  we had the  Langevin  of  our  particle  for  example  has  a  Lorentzian  power

spectrum goes with high frequencies like 1 over Omega squared by the way you have used to

this in another language.
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So, let me write that down point out that is exactly the same thing that we are talking about if

you look at resistor R at account at some finite temperature then of course there is Brownian

motion of the electrons and that leads to a instantaneous voltage across the ends of this resistor

and then there is a fluctuating current. So, one could ask what is the power spectrum of the noise

like what is the power spectrum of the current like and so on.

This is called Johnson noise if you measure the power spectrum of this voltage and there is a

relation  called  the  Nyquist  relation  which  tells  you  what  it  is  it  tells  you  it  is  essentially

proportional to the resistance and it is proportional to the absolute temperature which is why I

would like to lower the temperature to reduce this noise here and that comes about very easily

because this resistor is always got a self inductance.

So, it is like effectively an inductance and a resistance in parallel in which case this L so you

have L di over dt + R of t = the voltage we applied or spontaneous we do not care what right in

this fashion. Then this is the same as our problem was m dv over dt + m gamma V of t was =



Zeta of t and then we found that in this problem S Zeta of S Zeta of Omega was = what was it

you have to tell me the factors now.

This is some gamma kt m gamma k Boltzmann T over Pi or something like that yeah with the

2Pi  over  Pi  yeah.  So,  the  correspondence  between  these  two  guys  is  that  in  this

electromechanical analogy is m is this and m gamma is the equivalent of the resistance R that is

the correspondence between the two. So, this immediately tells us that the this thing will also

imply that s the voltage of Omega = m gamma which is R k Boltzmann T oh that is the form in

which you are familiar with it in terms of Johnson noise right.

No almost what form are you familiar with pardon me same from 4Rkt  for the factor 4 actually

yeah.
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What happens is the following our Fourier transform convention was to say that f tilde of Omega

was 1 over 2 pi integral -infinity to infinity dt e to the i Omega t f of t and correspondingly f of t

was = integral -infinity to infinity d Omega e to the -i Omega t but the electrical engineers use a

convention in which the 2Pi factor sits here 1 over 2 Pi and not there so an extra 2 Pi factor they

also define the power spectrum as twice the Fourier transform.



So, there is a 4Pi factor which t multiplies this whole thing so for them this is not true it is the

multiplied by 4 Pi this is = 4R this is surely familiar right that is the form in which it is written in

textbooks, so this factor 4Pi is there I mean it is it is really there it has to do with the convention

teachers + the fact that you defined it as 4 times the for return right twice the Fourier transform

but I just chose the simplest convention.

And I chose this purely as a matter of convention there is no because this is the one that is most

convenient in the usual formalism of linear response theory where you have a one sided Fourier

transform with a + sign here for the generalized mobility okay the susceptibility and if you use

that convention then this generalized susceptibility has no singularities in the upper half plane in

omega and has singularities only in the lower half plane.

So, it was to ensure that that I needed a + sign here and the 2Pi was a matter of convention

because it corresponds with what is used when you go from spatial Fourier transforms from the

X to k, so I just wanted to keep that whatever it is you do you have to stick to one convention.

So, this is the usual Johnson noise or whatever there is also other kinds of noise like short noise,

semiconductor noise of various kinds so we will talk a little bit about that subsequently okay. So,

let me stop here today.


