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Right, so we I promised last time that we would talk about multidimensional Langevin equation

for a particle in a magnetic field and then I will talk about the properties of the Wiener process

itself namely Brownian motion itself. But before that just to complete what I was saying in the

last  time,  if  you  looked  at  a  Brownian  oscillator,  a  particle  moving  on  the  x  axis,  bound

harmonically to the origin by this potential  the spring force minus half whatever omega not

square minus omega not square x then we wrote down the phase space distribution.

We wrote down a differential equation for the phase space distribution joint distribution in both x

and v the conditional density in both these variables and then I said you can solve this, you get a

bivariate Gaussian in x and v and if integrate over x you would end up with a distribution in v. If

you integrate over v you would end up with a distributions in x.

Uh we also saw that if you have the overdamped oscillator, can be the one for which the gamma

is  much bigger  than  omega not  the  free  frequency, then  it  turns  out  that  the  position  itself

satisfies  a Langevin type equation and you get  a solution similar  to the Ornstein-Uhlenbeck

solution except that the relaxation time is not gamma inverse but omega not square over gamma

the whole inverse right.
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So it  turns out that v relaxes on a time scale 1 over gamma but x for the oscillator, for the

Brownian for the Brownian oscillator, x relaxes on a time scale which is gamma over omega not

square okay. We saw this from the overdamped oscillator thing. The fact that this is a Ornstein-

Uhlenbeck process and so is this an Ornstein-Uhlenbeck process is responsible for the statement

in many books that the Ornstein-Uhlenbeck process itself is called the oscillator process.

What  they  mean  is  that  it  is  the  position  of  the  harmonic  oscillator  when  you  have  the

overdamped  case  okay. Now it  is  immediately  clear  from this  that  in  the  overdamped  case

gamma  over  omega  not  square  is  much  bigger  than  1  over  gamma  which  is  exactly  what

overdamping means. Gamma is much bigger than omega not okay. So the velocity thermalizes if

you like much more rapidly than the position does, it is much more sluggish.

But there is no long range diffusion in this problem. Both x and v go to equilibrium distributions

which are given by the equipartion theorem if you like in statistical mechanics okay. So much for

this. Now for a multidimensional  motion, three-dimensional motion for example of a Langevin

particle, if the particle is free then you would end up with an equation which says
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V dot, now it is a vector. So let me put a wiggle underneath to show that it is a vector. This is

equal to - gamma times v + square root of gamma over m,  a vector valued force eta noise eta

here and this is the free particle Langevin equation where each of these is a three-dimensional

vector so v for example has components v j, j equal to 1, 2, 3 and this guy also has components

eta j running over 1, 2, 3.

And it  is  a  three-dimensional  delta  correlated  stationary  white  noise  which  means  that  this

satisfies an equation of the form eta j of t = 0 for every j and moreover eta j i of t eta j of t prime

equal to a delta function i j delta of t - t prime. So the different Cartesian components of this

noise are uncorrelated to each other immediately.

Now once you have that information by the way we can solve once again, you can solve for the

Langevin solve for the velocity and find all its properties from those of eta or you could write

down an equivalent three-dimensional Fokker-Planck equation for v and solve this equation to

get a generalized Gaussian solution.  It will  be the three-dimensional  analog of the Ornstein-

Uhlenbeck process okay. Now we know that that process is exponentially correlated.

We know the velocity  correlation time is gamma inverse okay. So we could ask what is the

correlation between different components of the velocity  okay. And we can do that in many

ways. We can solve this for v and then compute the velocity autocorrelation function.
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But  we already know from the  one-dimensional  example  we saw that  in  that  case v was a

stationary process and v of 0 v of t was equal to k Boltzmann T over m e to the - gamma mod t.

This is what we had for a single component here. Now it is possible to get this equation directly,

get this solution directly if you know that v is a stationary process. We can do this by a very

cheap trick and that is to simply write the Langevin equation down. So let us do that.

(Refer Slide Time: 06:19)

So I have v dot equal to - gamma v + root gamma over m eta of t in the one-dimensional case

and this is the function of t. So this is v dot of t equal to v of t + eta of t and I want to find out

what is v of 0, v of t in this case. So what I do is to multiply both sides by v of 0 on the left hand



side and then average. So v of 0 v of t v dot of t average equal to - gamma v of 0 v of t + root

gamma over m the average value of v of 0 with eta of t okay.

And what do you think this average is? What is the correlation between the velocity at time 0 and

the force at t greater than equal to 0. By causality you would expect that the force at a later time

does not affect the velocity, the output variable at an earlier time. That is causality right. So this

is actually 0. This quantity is 0. Now you might say ha what about equal times what about at t =

0. So at equal times what do you think this correlation would be? V of t eta of t.

What do you think this is going to be? That is a more delicate question. But again I argue the

same way. Eta  of  t  from this  equation  here controls  the  acceleration.  So the acceleration  is

determined by the force. Not the value of the velocity. This is like an initial condition for this

force at equal times right. So again it is completely uncorrelated to each other. So that is 0 as

well.
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So causality says this quantity is 0. That is a principle we have not yet invoked okay. It says that

the cause cannot precede, the effect cannot precede the cause. It is not anticipatory right. Because

of that you can set this equal to 0 and this is some function of t, but then d over dt v of 0 v of t is

precisely this quantity. There is no time argument here at all.



Or if you like put a t 0 here and a t 0 + t here and it is independent of t 0 and the time derivative

with respect to t acts only on this thing here and it is therefore equal to the time derivative of the

correlation function and this is equal to minus gamma the same thing okay which immediately

says that this should be equal to.

Therefore v of 0 v of t should be equal to v of 0 if you like square sorry square inside v square of

0, that is the initial value, e to the - gamma modulus t because you have written this equation for

t greater than 0 okay and this now this quantity is now determined from equilibrium the fact that

in stationary in equilibrium in the Maxwellian distribution this quantity is just kt over m right. So

this immediately tells you. So even without explicitly solving the Langevin equation you can

actually find what the correlation function is okay.

What do you think is going to happen there if I did the same thing? Well I write this out for each

Cartesian component and notice exactly the same property as before. I multiply this, for v j I

write v j dot, there is a v j here and an eta j and I multiply by v j of 0 on the left hand side and

solve the differential equation, use the same causality argument and you get exactly the same

answer for each Cartesian component right. So therefore what would this be?
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As a vector v of 0 dotted with v of t in equilibrium what would this turn out to be? Ya, it is kt

over m times e to the - gamma t for each of these components and then you are taking a dot



product so this is equal to 3. What would this be? What would v of 0 cross product, v of t. So

now I want correlations of v 1 with v 2, v 1 at an earlier time, v 2 at a later time and so on,

unequal components. What do you think is going to happen?

So I write the ith component of this is epsilon ijk vj and vk out here and I do the same trick as

before and again compute I can solve for this thing. What do you think it will be? It will turn out

to be 0 because the different Cartesian components are completely uncorrelated with each other

because they are driven by noises which are uncorrelated with each other. This property here,

there is a delta function here.

So the correlation of one component of eta with another component of eta even at the same time

is 0. So this is identically 0 okay. What would happen if I switched on a magnetic field? What is

going to be the equation of motion?  Yes,  because now we have exactly  the  same Langevin

equation as before but now there is a term.
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let us say the charge of the particle is q or something like that plus q over m v cross B. So there is

this term plus root gamma over m eta of t, that is not affected. Now all kinds of correlations will

happen because it is clear that this velocity dependent force, the acceleration in the x direction

depends on the velocity in the y direction and so on and so forth, so there is correlations between

the different components.



Even though this noise is uncorrelated, the Cartesian components are uncorrelated because of

this term here we are going to get correlations between the different velocities and  you can solve

this problem for a constant magnetic field exactly the same way as before. Once again we know

from physical arguments that the energy of the particle is not changed in a magnetic field, that

the Maxwellian distribution is not disturbed at all in equilibrium.

There is a stationary distribution, that is the Maxwellian distribution. All that will happen is that

the  diffusion  coefficients  in  the different  directions  are  going to  be different  because  in  the

direction of the magnetic field it will be the unperturbed one but in the direction of the field there

will  be  this  cyclotron  motion  inhibiting  long  range  diffusion  by  changing  the  diffusion

coefficient. Nothing else is going to happen.

So I leave you to compute these quantities in this case, this case here. So, in the presence of B. it

is  a  simple  exercise  but  a  very  instructive  one  and  you  can  find  out  what  are  the  cross

correlations in this case okay. This is a very  special kind of force here. It is velocity dependent

but it is linear in v once again and this drift of course is linear in v. Now we know that anything

that is linear in a variable you can solve the problem completely.

You can write the Fokker-Planck equation down and solve it. You can find the Green function,

you can solve the differential equation, the Langevin equation itself etc. So in exactly the same

way you can extend whatever we did earlier in the absence of a magnetic field to this case here.

We already also saw what happens in the case of the oscillator where you have a term that is

linear but that is linear in x instead of v and that did not bother us either. We were able to solve it.

So this  problem can be explicitly  solved, can look at  it  exactly. In fact as the particle  does

cyclotron  motion  with a  characteristic  frequency what  is  the characteristic  frequency for  the

cyclotron motion in a magnetic field B? There is a quantity of dimensions, once you have a thing

like this what is the cyclotron frequency where the force is q over m v cross B right. So there is a

time scale here. This is v dot so there is a 1 over t here times velocity.



There is a velocity here already. So it is clear that whatever is of inverse time scale must be q B

over m right. That is the cyclotron frequency okay, is from dimensional arguments. It turns out to

be exactly that. The numerical factor is 1. So if you go to a rotating frame of reference, it is

rotating about the direction of the magnetic field with this frequency then it is as if you do not

have this field.

So in that frame so you must transform from v to a variable u which takes into account that

rotation and then of course you can solve the Fokker-Planck equation much more easily. Or you

can leave it  as it  is and work it  out including this  v okay. So I  leave this,  computing these

correlations as an exercise okay. Now let us get back and examine this Brownian motion itself a

little more carefully.

We have to define what is meant by Brownian motion and by this I now do not mean the physical

Brownian motion  which  was  what  was  discovered  first  when they had these  Robert  Brown

observed among other people. He first understood what the nature of this motion was to some

extent  when  you  crush  pollen  grains  and  put  it  in  water  and  then  you  look  at  it  under  a

microscope you see these irregular jagged motions jerky motion of these particles and that is

what Brown described and it was called Brownian motion okay.

That  is  physical  Brownian  motion.  We know what  it  is  due  to.  We know that  it  is  due  to

molecular collisions and so. But mathematical Brownian motion is an idealization okay. This is

defined by several ways and I am going to define in one particular way today. But this is exactly

what the x which occurs in the diffusion equation the simple diffusion equation is supposed to

describe.

So the process x whose probability density obeys the ordinary diffusion equation in any number

of dimensions is called mathematical Brownian motion and let us go back and ask what that

diffusion equation was.
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So we had delta p of x t over delta t equal to D d 2 p over dx 2 in one dimension. Otherwise you

got a del square out here okay, with some given constant D okay and we know this comes from

the Langevin equation for a free particle in one dimension in the presence of this random force

eta in the diffusion limit, the limit in which t is much bigger than gamma inverse okay and we

also saw that this D is related to that gamma by kt over m gamma was equal to this D.

Right now we are not worried about it. We just ask what does this say? What does this equation

say okay and it is useful to write down it is fundamental solution of this particular equation. The

solution which says that p and its derivatives vanish at plus minus infinity in x and we assume

also that the particles start at the origin at t = 0 okay. So you are really solving for the Green

function of this differential operator. So the fundamental solution is p(x, t).

The normalized solution is square root of 4 pi Dt e to the - x square over 4 Dt okay. That is the

basic solution. Now of course you started this process at some time t prime and t gets replaced by

t - t prime and if you start at some point x not then x gets replaced by x - x not okay. Now we ask

what is the stochastic differential equation corresponding satisfied by x corresponding to this

equation.  We  have  this  correspondence  between  diffusion  processes  a  Fokker-Planck  like

equations and stochastic differential equations which we call the Langevin equation right.
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So by that correspondence this thing here is entirely equivalent is saying x dot equal to square

root of 2D times eta of t where this is a Gaussian white noise. By that I mean eta equal to 0 and

eta of t eta t prime equal to a delta function okay. So this process x I have not distinguished here

for ease of writing between the random variable  itself  and the values it  takes which is what

appears here in this thing here. It is a matter of notation.

One should be a little careful but no confusion should arise. So this process x is the integral of

white noise if you like because you could write x(t) equal to an integral from 0 to t dt 1, eta of t 1

formally, formally one can write it in this fashion. For particles which start from the origin at t =

0 this is the formal solution to this equation. Is this a stationary process? That is a stationary

process. It is statistical properties are independent of the origin of time but this is not.

Remember the velocity was a stationary process. When I wrote the Langevin equation down it

turned out to be a stationary random process. This one is not a stationary random process here

and that is easily seen because all you have to do is to look at x of t, x of t prime and take its

average. Now this average we are now taking for all those particles which start at 0 at the origin

at t equal to 0 right. So it is a conditional average.

There is no equilibrium distribution corresponding to this because this guy vanishes as t tends to

infinity. There is no stationary distribution at all for this process here unlike the velocity process



where you got the Maxwellian as the stationary distribution. Now what is this going to be? So let

me denote by this overhead bar this conditional average that its fore particles which start at t = 0

at x = 0 okay. So what is this guy going to be equal to.

It is equal to integral 0 to t dt 1 0 to t dt 2 t prime dt 2 and then eta of t 1 eta of t 2 average.

Whether I put this average or I put angular brackets here does not matter because our philosophy

is that the random noise which comes from all the other particles does not is not affected by the

motion of this single test particle okay. So that acts like some kind of heat bath or reservoir and

affects the particle we are looking at, the tag particle, but there is no effect of the tag particle on

the noise itself okay.

All we have to do is to put this in here and then you immediately see that if you integrate over t 1

and t 2 and t 2 is up to t prime and t 1 is up to some number t. The integration has support over

this 45 degree line. Therefore it gives a nonzero contribution only as long as t1 is runs up to t

prime and after that it is 0 and if it runs up to t prime you can get rid of the delta function integral

delta function to get rid of the t 2 integration.

And then t 1 runs from 0 to t prime  right and had it been the other way about had t prime been

bigger than t what I have shown here is t prime less than t it would run up to the lesser of the two

always. So this immediately is equal to oh there is a 2D also, 2 D equal to 2D the lesser of t and t

prime. So that is the point. It is not stationary. This is not a function of t - t prime as you would

expect. Had this been stationary you would have ended up with t - t prime.

It  is  not  true  okay. However,  the  increments  are  stationary  because  eta  itself  is  stationary.

Therefore I could write this as dx if you like the increment in x is eta of t dt and then those

increments are stationary because eta is stationary. Or another way of saying it is if I computed x

of t - x of 0 and x of t prime - x of 0 and took the average over that you would end up with 2t

modulus of t - t prime okay. So this thing here is a very crucial result.

This is a very crucial result and in fact you could say that if you have a process whose average is

0 and whose correlation, autocorrelation satisfies this thing here and you are given that it is a



Gaussian process if you are given that then all the other properties of Brownian motion follow

including the fact that it is a Markov process, everything else follows.

So that is one way of defining mathematical Brownian motion namely it is a Gaussian process

whose mean is 0, x of t average is 0 at any time t and whose autocorrelation is this function here,

some constant times the lesser of t and t prime and this suffices to define the process and it has

got remarkable properties. But you already see that x is smoother in some sense than this white

noise because it is the integral of white noise but it is going to be rough as we will see as is bad

enough as it stands. It is very different from what the velocity was.

That  was  the  Ornstein-Uhlenbeck  process  and  that  had  an  autocorrelation  which  was

exponentially dying down okay. This looks very different altogether and is non-stationary as it

stands. Now some statements about the paths, the possible trajectories if you like in a typical

realization  of  this  x  of  t  and I  am not  going to  prove this.  This  requires  now a little  more

mathematical machinery which I am not going to use here but here are some facts.
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So let us call it Brownian trails. If I plotted, here is t and I plotted this process x of t Brownian

motion then a lot of interesting facts emerge. In a typical realization it is hard to plot. There is no

way that I can actually draw a realistic realization. But if I started here and did this and like this



then the statement is that this x does not have any bound. In any short interval however short of

time you can attain arbitrarily large values of x on either side of the axis okay.

The second property is that while it is continuous the curve is continuous it is not differentiable

anywhere in the sense that this is a very singular object. This guy is a very peculiar singular

object okay although we have written it in this fashion it is really a very singular object. This

curve is kinky on all time scales. Does not have a derivative almost everywhere. What should it

be in order for it to have a derivative?

It is clear that you must have x of t + epsilon - x of t the modulus of this guy here must be of

order epsilon. So that if I divide over epsilon and take the limit, I have a finite number right. But

it turns out that this is less than equal to some constant times epsilon taking epsilon to be positive

to the power beta where beta is less than half. The fact that you have a finite a positive beta

shows that the curve is continuous and it is said to be holder continuous with exponent beta if

this is satisfied okay. But it turns out that beta is less than half almost everywhere.

But it can be made arbitrarily close to half from below almost everywhere okay. So this quantity

beta tends to half, from below okay. There is an set of points where beta is exactly a half but that

is a set of measure 0. On the other hand beta can become arbitrarily close to half from below. So

it is almost certainly not differentiable because you need beta equal to 1 for differentiability and

this is less than that. So that is the first property.

The other property, the next property is that these points where it crosses the origin they form the

0 set of Brownian motion. So you start from 0 and you ask when does the particle come back to

0 etc. This 0 set, the set of points such that x(t) = 0 has a fractal dimension which is half in this

case. That set is not countable and its box counting or fractal dimension happens to be half. This

is a reflection of the fact that in this Brownian motion x square, the square of the length scales

like the time diverse power.

That property appears over and over again in this business. You could also ask suppose you start

at 0 and it moves up to the positive side rather than the negative side, in a given time interval



what  is  the  fraction  of  the  time  that  it  spends  without  crossing  okay. You  can  ask  for  the

distribution of that fraction okay.
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So let us suppose that in a time interval t what is the statistics, what is the distribution of the

fraction. Let us suppose that in a given time interval t here and this is 0, we could ask for the

fraction of the time. Let us call  that t plus over t that it  spends in the positive side without

crossing 0 or negative side by symmetry okay. So, now this fraction here has an interesting

distribution. It must have a probability density function first of all.

And it turns out that that density function, let me call it f, the PDF of this random variable for a

given t, that is a random variable t plus this PDF f of t plus normalized PDF  when you integrate

this  from 0 to t  you must get  1 of course.  So this  is  equal  to 1 over okay and that  can be

rigorously  established.  What  does  that  graph  look  like?  What  would  this  look  like?  Well,

becomes unbounded at both 0 as well as so t plus is sitting here, ya it looks like an inverted u of

some kind, with some mean value at half a t over 2 okay.

But that is the least probable. That is the least probable value. You would normally expect that in

a given time interval t the fraction of the time the probability density function of the fraction of



the time it spends on either in the positive side or in the negative side of the x axis is you know

the most probable value you would think is a half but it is a least probable value okay.

So it is clear that most of the time this guy is spending is this particle is spending it is time either

on the positive side or on the negative side of the axis and yet in any finite interval of time it

crosses this axis an arbitrary number of times okay. So it is a very weird kind of motion. The

cumulative distribution function 0 to some number t + dt + prime f of t + prime is the actual

distribution function of this fraction.

And when t plus is equal to t it should be equal to 1 right. This is equal to  sin, sin inverse t plus

over t and sin inverse 1 is pi over 2. So this is 2 over pi. That is easy to derive. Complete the

square and integrate that is it. This is called a Levy’s okay. There is an even more exotic law

which says where is this particle likely to be most of the time okay.
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And it turns out that if you plot a time against the following function, it starts at the origin. So if

you plot it this function  2t 2Dt well let me let us work in dimensionless units put d equal to 1, 2 t

log log 1 over t square root and plot this function for sufficiently small t for t less than 1 this guy

is positive goes up there and this is minus that function. This guy is minus square root of the

same thing here.



And you multiply this by 1 plus epsilon you would get a curve like that and this is 1 - epsilon and

the square root and this function is 1 plus epsilon times this square root okay. Then the particle is

almost surely going to be in this range, either there or here, almost surely for every t sufficiently

small t okay and for sufficiently large t the 1 over t in the log is replaced by t okay. So look at

what is happening.

I mean we sort of know that the mean square root mean square displacement is proportional to

square root of t.  The mean square displacement  proportional to t so the root mean square is

proportional to root of t. So we kind of know there is a square root of t is sitting here. That will

be like the mean square displacement but now we are making a statement about the path itself.

This is called the law of the iterated logarithm.

It is Khinchin’s law okay and it is characteristic of Brownian motion. So all these properties and

more  emerge  from the  very simple  fact  that  we define mathematical  Brownian motion  as  a

Gaussian process with 0 mean and with correlation which look like this, x of t x of t prime

correlation is the lesser of t and t prime okay. Now you could ask is there any relation between

this process and the Ornstein-Uhlenbeck process.

Because  in  some  sense  we  said  look  the  Ornstein-Uhlenbeck  process  came  about  has  an

exponential correlation and it came about when we treated the motion of this Brownian particle a

little more carefully keeping track of the velocity correlation time and so on. We also said that

that  process  is  exponentially  correlated  and  I  made  a  statement  that  the  only  continuous

stationary  one-dimensional  continuous  stationary  Gaussian  Markov  process  is  the  Ornstein-

Uhlenbeck process and it has an exponential correlation right, made that statement.

So in that sense that is a fundamental Gauss-Markov process. This is Gauss and this is Markov, it

is not stationary though. Is there a connection between this and that and the answer turns out to

be  very  interesting.  It  turns  out  that  every  Gaussian  Markov  process  continuous  Gaussian

Markov, continuous of course because it is Gaussian Markov process is some kind of Brownian

motion of some kind.
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So let me call  this Brownian motion, mathematical Brownian motion this quantity dw, let us put

this 2d, let us get rid of that 2d and let me call w of t a process such that w dot of t is eta of t. So I

do not have these constants or if you like w of t, d w of t is eta of t dt. This quantity this w of t is

called a Wiener process or mathematical Brownian motion and it satisfies w of t, w of t prime

average equal to the lesser of t and t prime and w of t average equal to 0.

It  is  a  Gaussian  process  which  has  got  0  mean  and whose  autocorrelation  is  given  by this

quantity. In loose terms it is the integral of white noise okay and it is a process with stationary

increments because this guy is stationary okay and that is an increment in the process okay. Now

what I was going to say was I lost my train of thought yes. Now the statement is that every

Gaussian Markov process okay it  has  to  be Markov, it  has to  be Gaussian is  some kind of

Brownian motion, a Wiener process in rescaled variables.

So if you give me an arbitrary Gaussian Markov process, let us call  that process psi of t in

distribution as far as the probability distributions of this process are concerned this thing would

be equal in distribution. So let me write a d her to show that the probability distributions are the

same can be written as some Wiener process in some rescaled time times some other function of

t. So this is an arbitrary Gauss-Markov and you can always write it as a Brownian motion in

some other variable okay.



We will see an explicit illustration of it. I want to connect up the velocity process, the Ornstein-

Uhlenbeck process to Brownian motion of this kind. Now you might wonder how that is going to

happen. After all, this fellow here has a correlation which is very different. It is not a function of

t - t prime and yet this fellow here if it is the Ornstein-Uhlenbeck is a function of t - t prime right.

How did this happen. Well, the mapping is as follows. You can kind of guess what the mapping

is going to be.
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let us recall what the velocity process did. So we had a v of t such that the average value of v of t

for a given initial condition was equal to v not e to the - gamma t if you recall from the Langevin

equation and we found that the correlation time so if I define delta v of t equal to v of t - v of t

bar and if I subtract out this average conditional average here then delta v of t delta v of t prime

this quantity conditional average we discovered this guy here was equal to k Boltzmann T over

m e to the - gamma mod t - t prime.

This is what we discovered right. This is what we saw from the Langevin equation and it follows

from e to the Langevin equation directly or from the solution to the Fokker-Planck equation

okay, agree? Now, how is this going to be related to that? Well, the claim is the following. Delta

v of t is equal in distribution apart from this constant so let us get rid of it by writing square root

of k  B T over m.



This guy is t - t prime if t is greater than t prime and t prime - t if t is less than t prime right. So

let us write this as equal to e to the - gamma t a Wiener process of e to the twice gamma t. So this

scale factor outside is e to the - gamma t and the time is getting replaced by e to the t okay. Then

we apply this rule.

So it immediately follows this thing will immediately follow that delta v of t delta v of t prime

average is k Boltzmann T over m e to the - gamma into t + t prime, these 2 factors and then the

smaller of e to the 2 gamma t, e to the 2 gamma t prime okay. Of course this is a monotonically

increasing function of t. So if t is bigger than t prime it is this guy and that immediately kills this

factor and makes it a plus sign so you end up with this result here.

So this is how magically this exponential where the exponents add up. It immediately once you

take the exponents and write e to the t  instead of t or e to the 2 gamma t immediately this

correlation looks like this but in a rescaled variable. So you could say that Brownian motion is

the  Ornstein-Uhlenbeck  process  in  logarithmic  time  if  you  like  or  the  Wiener  process  in

exponential time gives you the Ornstein-Uhlenbeck process okay.

But the statement is every Gaussian Markov process can be converted to Brownian motion. So

you could now ask what about the path sample paths of the velocity process itself. What would

those look like? After all the x process had this very jagged property and I said it is a fractal it

has got 0 sets and so on which are fractals and not differential; what would happen to the v

process?

Well, the crude answer is whenever you have this kind of white noise somewhere in there you

are going to see this weird property always. Whenever there is some driving force which is a

Wiener process, you are going to have  which is the derivative of Wiener process you are going

to have this problem always of this very irregular paths okay. So even for the velocity process

that is still true.

But is really smoothed out in many other ways because of this finite correlation time and so on

okay. One could ask what happens in other dimensions, higher dimensions and so on. So that the



next thing we are going to talk about is a kind of generalization. I already mentioned there is a

connection between these diffusion processes and the Fokker-Planck equation here. We would

now like to go backwards and ask what about the Fokker-Planck equations obeyed by other

random variables connected to Brownian motion. For instance here is one.

If you have diffusion in d dimensions right, so you have a probability density which satisfies the

diffusion equation  in  d dimension.  So it  is  like  a  whole  lot  of  Brownian motions  in  higher

dimensions right. What sort of properties do those trails have? That is one question. The other

questions is what kind of Fokker-Planck or stochastic differential equation is satisfied by other

functions of these variables which are Brownian motion.
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For instance in 2 dimensions if you had x and y you could ask what about the random variable x

square + y square. What kind of distribution will that have? What about it is probability density

function and so on. What kind of Langevin equation would that satisfy? So what we will do is to

write down from the origin differential equation we write down what the solution is or what the

Fokker-Planck equation is corresponding diffusion equation is for these random variables.

And then use this connection between the stochastic differential equation and the master equation

in reverse to write down the stochastic differential equations and see what they new information

we get and that is an interesting exercise. So one of them would be to ask if I call this equal to r



square what about the diffusion equation satisfied by r square, what about the Langevin equation

satisfied by r square okay. How does that look.

What are its features and so on. You could also ask what about r  what about r itself, r square.

These are different random variables if you like. What about the square of a Brownian motion.

What about the nth power of Brownian motion in one dimension say. What about x square or x

cubed or x to the n. What does that look like? What about e to the x. What does that look like and

so on. We will talk about that. E to x is a very weird property. It is also a kind of Brownian

motion.

It is called geometric Brownian motion and that is the one that is used in the analysis of these

financial markets. So this famous Black-Scholes equation which you have which people use in

stochastic  differential  equations  is  applied  to  stock  market  prices  is  essentially  geometric

Brownian motion also called exponential Brownian motion. So we will try to write down the

stochastic equation for that and see what their properties are. Well, some properties will become,

they are not intuitively obvious.
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For instance if you ask in two dimensions for instance if you say okay the particle is moving on

this plane what kind of trail does it have? It turns out that this particle also has a probability 1 of

returning to the starting point whatever  it  be,  in other words intersecting itself  arbitrarily  an



arbitrary number of times. In fact the trail if you wait long enough will fill the plane. It is space

filling. It has a fractal dimension of 2.

Almost every point is visited an infinite number of times, revisited an infinite number of times.

That is one of the properties and you could also ask is it completely unbiased. It is because it

says the x and y directions these motions are not correlated to each other at all. But if you write it

in terms of the radial variable then you see there is going to be a bias immediately.

Because it says that although there is no drift term when you write the Langevin equation in the

Cartesian components if I now look at it at some point here at some instant of time right and ask

what about the radial variable what is that going to do then you see without loss or generality we

will take that point here just for ease of illustration. Anything that pushes it outside this circle is

going to increase the radial distance. Anything inside is going to decreases it right.

Now, assuming that you have equal kicks in both the x and y directions in an unbiased way in

arbitrary directions if you draw if you say in a given kick it cannot go further than that although

that is not true it can go arbitrarily far. You immediately realize that if all these points are equally

probable the measure of this set is bigger than the measure of that set. So you now realize that

the tendency will be to increase r rather than decrease it. There is more tendency to increase r.

And of course as you get close to the origin, if you are at the origin then any perturbations is

going to increase r automatically. But it is true at every point in this fashion. So this means that

when you write the stochastic differential equation for r in addition to the diffusion term there

will be a drift term as well and this is a real effect. So we need to see what that term looks like.

Intuitively I would expect that the closer you are to the origin, the greater this drift will be.

So I expect it will go like 1 over r maybe or something like that. We will see that it indeed is so

and it will also be dimension dependent. So for every d greater than equal to 2 this effect is going

to show up and we will write this down, these equations down and look at it. So we will do that

next time. 


