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Right, so let us get started. Just to recap where we ended last time, we ended with the statement

that if you looked at the velocity of a particle satisfying the Langevin equation, the stochastic

differential equation
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Which recall was v dot is - gamma v + square root of gamma over m eta of t and this was a

Gaussian white noise, a Gaussian white noise which was delta correlated and had mean 0. Then

we discovered this was entirely equivalent to and this was the statement made, it was entirely

equivalent to the Fokker-Planck equation for the conditional probability density of the velocity

which was delta over delta t p of v, t given some initial condition v not.

This was equal to gamma times delta over delta v v times p + gamma kt over m d 2 p over d v 2.

This is the Fokker-Planck equation and this was the Langevin equation. This was a stochastic

differential  equation  of  the  first  order  with  a  white  noise  term  here  and  it  said  that  the

corresponding  probability  density  for  some  specified  initial  condition  satisfied  this  Fokker-

Planck  equation,  second  order  partial  differential  equation.  I  have  put  in  the  fact  that  the



consistency requires that the system if it is in thermal equilibrium, consistency requires that this

quantity be related to little gamma according to gamma s 2 m gamma k Boltzmann T.
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We will put that consistency condition in all the time because it implies that the system is in

thermal equilibrium. So in a sense what this probability density describes is the approach of

some arbitrary initial condition to the equilibrium distribution, the Maxwellian distribution. So it

is really telling you something about the manner in which equilibrium is approached and how

does it equilibrate. It equilibrates due to collisions, due to thermal collisions right, alright.

So given these 2, they form a pair out here one can also ask what is the correlation of the velocity

itself like what is the solution to this Fokker-Planck equation like and so on and I mentioned that

the solution itself is a Gaussian once again just as the noise is. So this was the driving force and

is Gaussian and so is the output variable v, it is a Gaussian.

And the solution to the Fokker-Planck equation was the Ornstein-Uhlenbeck process which read

p of v, t v not equal to there is a normalization factor and then it was a Gaussian which is the

exponential of - v - v not e to the - gamma t whole square. That is the mean v not e to the -

gamma t the conditional mean/2k Boltzmann T - m times that into 1 - e to the - 2 gamma t and

then there is a normalization factor which was m over 2 pi k Boltzmann T 1 - e to the - 2 gamma

t.



This to the power half times that exponential. It is a Gaussian, okay in which the mean slowly

drifts from v not to 0 and the variance slowly broadens till it hits the value at equilibrium, the

thermal equilibrium value of kt over n okay. So we know everything about the velocity from this.

Now the question is what is the correlation time of the velocity and this requires, you can do this

in many ways.

We could  start  by  the  Langevin  equation  here  and  ab  initio  compute  the  correlation  time

correlation  function  autocorrelation  by  asking  what  is  v  of  t  1,  v  of  t  2  averaged  over  all

realizations of this noise and I left that as an exercise to you. We found the mean square and I

said now find what the correlation looks like.

(Refer Slide Time: 05:14)

And if  you  have  done  that  then  you  know that  the  expectation  value  of  v(t  1)  v(t  2)  =  k

Boltzmann T over m e to the power - gamma mod t 1 - t 2. So it is exponentially correlated okay.

Now there is a little theorem which says and this theorem is due to Doob, it is called Doob’s

theorem and it says the following. In effect it says that the only continuous, this is a continuous

process, this v is a continuous random process.

The  only  continuous  stationary  Gaussian  process  is  the  Ornstein-Uhlenbeck  process.  It  is  a

Markov process  and it  is  a  the  Ornstein-Uhlenbeck  process  in  particular.  So  note,  note  the



conditions. The only, the only stationary Gaussian exponentially correlated process, I forgot to

say  that  earlier.  So  all  the  conditions  are  important.  You  want  stationarity.  This  process  is

certainly stationary, v is a stationary random process as is the noise here. It is Gaussian.

We see that the distribution function is a Gaussian, this guy here, they are density function. It is

exponentially correlated out here. And the only such process is Markov and moreover on top of it

the Ornstein-Uhlenbeck process okay. All the conditions are needed. If you drop for instance

Gaussian and said what about a stationary Markov process which is exponentially correlated.

The only continuous and this should be continuous because otherwise we have directly before as

we have already seen an example of a process which is stationary, which is Markov, which is

exponentially correlated and that is the dichotomic Markov process. The dichotomous Markov

process had all these conditions but it was a discontinuous process. It jumped from one value to

another and certainly not Gaussian or anything like that.

You could ask are they continuous, stationary, non-Gaussian processes which are exponentially

correlated and which are Markov also? Yes, this is a whole family of such processes. They are

many such processes but they can be classified into 5 families in all just as a matter of curiosity

let me mention that these are examples of processes which are continuous, stationary, Markov,

and  exponentially  correlated  but  which  are  different  from  the  Ornstein-Uhlenbeck  process

because they are not Gaussian okay.
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And such processes are those for which this quantity p of psi t psi not this asymptotically as t

tends to infinity tends to the stationary probability density p of psi where this p of psi satisfies

satisfies the equation dp over dx equal to say some A(x) over B(x) p(x) and this fellow is at best

linear of the form a 1 x  p(x) we will just use the symbol x for this whole thing and this guy is

quadratic.

So  consider  those  processes  for  which  the  stationary  distribution  satisfies  this  differential

equation. These are called Fischer processes where A is at best a linear function of x and B is at

best a quadratic function and of course these are constants whose values can be adjusted. So for

instance you could have a situation where these 2 go away and this is a constant here and so on.

You can easily see the conditions under which this p of x is going to become a Gaussian.

You want to basically have an x there and nothing more and then it becomes a Gaussian. But if

you have any of these possibilities you have other kinds of processes, random processes which

are continuous, stationary, exponentially correlated, and Markov but not Gaussian and Doob’s

theorem does not apply in those cases. So there are such processes and they are useful in certain

context but we are focusing here on this theorem here.

There are other processes which are discontinuous like the dichotomous Markov process. There

is  another  process  called  the  Kubo-Anderson  process  and  yet  another  called  the  kangaroo



process. I will talk about these a little later when we come to some applications and they too will

be exponentially correlated in certain special cases but you will see they are not Gaussian and

they are Markov but they are not Gaussian. So this is a very useful theorem this guy here. The

velocity is exponentially correlated in the Langevin equation okay. Now where does that get us?

What we need to see is what happens to the other piece of information that we know and we will

find that out by taking the continuum limit of a random walk itself. So let us look at the position

variable of this diffusing particle and we know that the position variable in some limit satisfies

its probability density, satisfies the diffusion equation.
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So we have a statement  which says delta  p,  I  will  use the same symbol p,  it  should not be

confusing for the probability density of the position of x, t given some starting point say x not

over delta t = D times d 2 p. This is the ordinary diffusion equation and we know this x of t is

also a Markov process continuous. This should imply a stochastic differential equation of what

kind. This implies immediately by the rule that we had earlier this should be the corresponding

“Langevin equation” in this case should be x dot equal to there is no drift term.

This term is missing and we just have a diffusion term and by this correspondence I talked about

it is square root of 2D times eta of t where this again is Gaussian white noise which is unit delta

correlated. How does this link up with that. After all x is a position variable corresponding to the



integral of the velocity. So the question is how does this connect up with this result here, in what

limit is this result going to go over into whatever this says.

Mind you this says that the velocity this guy here, x dot is the velocity is delta correlated. On the

other hand we know from this Langevin equation that the velocity is exponentially correlated

right. Under what conditions is that exponent going to become a delta function if gamma tends to

infinity, if gamma tends to infinity or if you like if gamma t is much bigger than 1 right. So we

keep that in the back of our minds that on time scales on which t is much bigger than gamma

inverse it is as if the velocity is delta correlated.

After  all  what  is  the graph of this  function look like  if  I  plot  this  correlation  function  as a

function of t and say c of t is k B T over m e to the - gamma mod t. This guy looks like this. It is

an e to the - gamma mod t, looks like that. It is a symmetric function and you can see that when

gamma becomes very large this function is going to be 0 everywhere unless t is 0. So it is going

to become like a delta function spike.

Well, that gives us the hint that says this must be the limit of either gamma going to infinity or

more physically the situation where t is much bigger than gamma inverse. Therefore gamma

inverse can be neglected, essentially set to = 0. So let us see how that comes about, where this

comes  about  from.  For  that  let  us  go  back  and  compute  what  is  the  exact  mean  square

displacement because what is the thing that this implies.
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This diffusion equation immediately implies that the variance that the expectation value of x of t

- x of 0 whole square this quantity this guy equal to 2Dt and that trivial to do because we know

the solution of this the free solution of this. It is the Gaussian e to the - x - x not square over 4 dt.

You put that in integrate over x square and you get this result right. This is diffusive behaviour. It

says the mean square displacement goes like linearly in the time.

That is pure diffusive behaviour right. Now let us see if that is exact or it is an approximation

from what did you talk about so far it is clearly an approximation. So the question is what is the

“exact result” in this case and that is easily found because all we have to do is to go back and say
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X(t) – x(0) square this guy equal to x(t) – x(0) is the integral of the velocity 0 to t dt 1 v( t 1) and

I want to square it and then take the average. So it is clear this is equal to 0 to t dt 1 0 to t dt 2

average value v or t 1 v of t 2. Full average over the initial condition as well because I have put

these bars here okay and we need to compute this number, this quantity okay.

But now we have the explicit expression for this correlation function and this is by definition

true. This thing is equal to that by definition, by the very definition of velocity this is true. So this

is equal to k B T over m integral 0 to t d t 1 integral d t 2 e to the - gamma mod t 1 - t 2. Now

what is the region of integration? In the variables t 1 and t 2 the region of integration is 0 to t in

each case 0 to t in each of these cases right.

This is a symmetric function of t 1 - t 2. So if you reverse the sign of t 1 - t 2 the function does

not change and you are going to integrate over this unit square over this square from 0 to t. In

this range the value at any point is equal to the value of the function at this point. It is completely

symmetric. So the integral can be written as equal to twice 0 to t dt 1, 0 to t 1 dt 2 right.

So I integrate in t 2 only up to t 1 which means in this function I integrate like this up to that

point and that is way I scan it. I fix the t 1 between 0 and t, I integrate in t 2 up to t 1 and I go on

to the next value of t 1 and integrate and it gives me this. And now since t 1 is always bigger than

t 2 I can get rid of this and write it as t 1 - t 2 and I put the factor 2 outside which is equal to

twice k Boltzmann T over m integral 0 to t dt 1 e to the - gamma t 1.

And then I integrate e to the gamma t 2 from 0 to t 1. So that is trivial. This is equal to e to the

gamma t 1 - 1 over gamma. But this I can write as 1 - e to the - gamma t 1, so which is equal to

twice k Boltzmann T over m gamma and then I have to do this integral which of course is equal

to t the first term is t and then this minus cancels against that so it is a 1 over gamma e to the

minus gamma t - 1. That is the integral right.

So let us pull out this gamma square here. I will write this as gamma t - 1 + e to the - gamma t.

That  is  the  exact  expression  for  the  mean  square  displacement  for  a  particle  obeying  the



Langevin whose velocity obeys the Langevin equation. What does it do for very small gamma,

for small t? This is really not a very good model for t much less than gamma inverse.

But is a good model for t of the order of and bigger than gamma inverse certainly it is a good

model. What does it do? Just for fun, what does it do for t much less than gamma inverse. So

gamma t tending to 0 say. What is the leading term? Well, I have to expand this; the 1 cancels,

the gamma t cancels. So you are left with gamma square t square over 2! right. 
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So this becomes  x of t - x of 0 whole square is equal to this whole thing and this tends as gamma

t tends to 0 the leading behaviour is k B T over m the 2 cancels with the 2!, the gamma square

cancels and then t square right which is of course equal to v square in thermal equilibrium t

square because the mean square velocity is in a fluid in thermal equilibrium at temperature t this

is equal to precisely kT over m because half mv square must be half kT by the equipartition

theorem.

So this is certainly true from the Gaussian. So v square average is found by averaging over the

Maxwellian distribution and it gives you this. In other words the root mean square displacement

is  the  root  mean  square  velocity  multiplied  by  the  time.  It  is  almost  ballistic  but  with  this

effective velocity which is a root mean square velocity as you would physically expect right but

what is interesting here is a long time limit.



So what happens to this as gamma t tends to infinity, much greater than 1. What happens in that

limit? Well, this term is certainly negligible, that is negligible. This guy is becoming extremely

large. So you end up with and one of the gamma cancels so it is twice k B T over m gamma

times t but that is precisely the result we got from the diffusion equation which said that the

mean square displacement goes like twice the diffusion constant times t.

You get exactly the same thing and now as a bonus you get a formula for the diffusion constant.

Earlier, the diffusion constant and the diffusion equation was an input. It was just a parameter

you put in. But now you have related it to a microscopic parameter. So this implies, this thing

implies D is k Boltzmann t over m gamma. That is a fundamental result.

This is the result that was used by Einstein to determine Avogadro’s number in his early work on

Brownian motion because what he did was to argue that if you looked at these particles, spherical

particles of radius a or something like that then m gamma times v is a retarding force that must

be by Stoke’s law equal to 6 pi a eta v right.
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So that comparison immediately tells you that D is k Boltzmann t over 6 pi a eta. Of course this

quantity here is the gas constant divided by Avogadro’s number. So it gives you a formula for

Avogadro’s number if you know all the other parameters in the system. Does this mean by the



way that the diffusion constant in a fluid is directly proportional to the temperature? You would

expect things would diffuse faster at higher temperatures right.

Would  it  go  linearly?  What  would  it  do?  The  viscosity  is  very  strongly  dependent  on  the

temperature, by the Arrhenius formula. So it increases much more rapidly than that. So there is a

huge dependence due to this. This is in fact irrelevant practically compared to this activation

form that is the Arrhenius form that is sitting here in eta okay. But anyway it gives us a formula

for the diffusion constant. In fact you can go further.

We used the fact that in the Langevin model the velocity was exponentially correlated. We do not

have to do that. We do not really have to do that. What we need is the following.

(Refer Slide Time: 25:58)

We need to recognize that this guy is equal to integral 0 to t dt 1 integral 0 to t dt 2 times the

velocity correlation function right. So let me call that c of modulus t 1 - t 2 and this fellow here

stands for v of t 1, v of t 2 okay. All we need is the statement that this v is a stationary process so

that that c of t 1 - t 2 the velocity correlation is a function of the modulus, the time difference and

the modulus of the difference okay.

So all we need is that piece of information and then we are done actually from here because now

we will  immediately  get  a  formula  for  the  differential  constant  in  general  even  outside  the



Langevin  model  because  as  soon  as  you  have  this  this  function  here  out  here  which  is  a

symmetric function you can write this as twice the usual thing. So write this as twice 0 to t dt 1

integral 0 to t 1 dt 2 c of t 1 - t 2 okay. Now let us put let t 1 - t 2 equal to t prime say.

I want to change from t 2 to t prime okay. So this becomes equal to twice integral 0 to t dt 1 and

then what do I get? When t 2 equal to t 1 the limit is 0 and when t 2 = 0 the limit is t 1 but there

is a minus sign between dt 2 and dt prime. So it again gives you 0 to t 1 dt prime c of t prime.

Again gives you exactly the same thing okay. But what does this look like now?
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The region of integration, here is t 1 and here is t prime and it says integrate up to this point. So it

says this is t, this is 0, this is also t and when integrating over this triangle. For each t 1 you are

integrating up to t 1 in t prime. Instead of doing that way we could as well flip the integration

and integrate in this direction in this fashion okay. So what does that become? This is equal to

twice integral again t prime must run from 0 to t that is clear from this figure 0 to t dt prime and

since this guy does not depend on t 1 I can bring it out.

So c of t prime and then a integral over dt 1 and what should that run over? T prime ran from 0 to

t 1. T 1 was always bigger than t prime right. So if you are going to scan it this way then it is

clearly running from t prime up to t right. So this integral is from t prime up to t. One way to



remember it is that t 1 is bigger than t prime therefore t prime is smaller than t 1 okay. So instead

of raster going vertically you go horizontally. But that is a trivial integral to do right.

So it says this quantity is twice integral 0 to t dt prime t minus t prime c of t prime right. That is

exact. We have not made any assumption except that the velocity is a stationary random process

and that the velocity autocorrelation function is a symmetric function of its argument, an even

function of its argument. That actually follows from the time reversal property of the velocity. I

have not proved that here explicitly but we have seen that in our specific example that this is

true.

So this is it. This is the general thing. Now we ask what does this guy do as t becomes very large.

There is  no guarantee that  c of t prime is such that this  integral  converges when t  becomes

infinite. No guarantee as of now. But if it converges then what does it mean? This means that as t

tends to infinity the large t limit this factor in general is going to die down as the upper limit

increases. It is a correlation. It is going to die down as the argument increases.

So in this factor if t becomes very large this is negligible compared to this. So you can pull it out

of  the  integral  but  you  might  argue  oh  that  may  not  be  correct  because  what  about  the

contribution from those regions of integration where t prime is comparable to t. Then you cannot

throw out t prime relative to t. But those are large values of t prime and for those this takes care

of the convergence. It goes down.

You can say this much more rigorously using this dominated convergence theorem but the fact is

that as long as this integral over c of t prime is finite this is guaranteed to be twice t integral 0 to

infinity dt prime c of t prime provided this converges. If this integral of the velocity correlation

function over 0 to infinity does not converge that is a symptom that this behaviour is not going to

be proportional to t asymptotically.

But  if  it  converges  there  is  no  doubt  that  it  is  equal  to  this  guy  here.  But  we  know  that

asymptotically the diffusion constant is defined as the limit of the mean square displacement/2 t



as t  tends to infinity. That is the definition of the diffusion constant.  So what does it  tell  us

finally?
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It says in general I might as well write it as v of 0 v of t drop the primes and write it in this

fashion okay. So I shift  the origin to 0. This is a stationary autocorrelation function and the

integral of it from 0 to infinity gives me the diffusion constant. This is called a Kubo-Green

formula.  It  is  an  example  of  what  is  called  a  Kubo-Green  formula  where  various  response

functions  susceptibilities  and so on and so forth are  given as  autocorrelations  integrals  over

autocorrelations in equilibrium okay.

It is part of a more general definition where you subject this particle to a sinusoidal force and ask

what is its steady state response going to be depends on the frequency dependent mobility and

that will have fourier Laplace transform here e to the i omega t and at omega = 0 the static

susceptibility is called the related to the diffusion constant okay. Well that takes us into non-

equilibrium statistical mechanics. I do not want to get into that here.

But just to tell you that the specific case of the Langevin model where this guy was kt over m e

to the minus gamma t  is going to immediately give you D is kt over m gamma but this is the

more general formula okay. Okay so now we understand where this diffusion thing came from. It



came in the limit when gamma became very large or in the regime in which gamma t was much

bigger than unity okay.

Then the diffusion equation is a good approximation to the position of this variable. The next

question that arises is can I not look at the position and velocity together in phase space and try

to write down a formula or function  expression for an equation for the distribution not of x and v

independently but for the conditional distribution in x and v together, the joint distribution. Yes,

indeed we can.

But we need to write down now the corresponding Langevin equation for this and what does that

look like?
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Well, let us write it down and see what happens. So you have x dot and that is of course equal to

v by definition and v dot equal to - gamma v in our model + square root of gamma over m eta of

t. That was the Langevin equation of this guy here. So let us regard these 2 together as a vector

Langevin  equation.  I  should  worry  about  dimensions  but  let  us  assume  these  are  all  in

dimensionless units and let us introduce a psi vector which is equal to x v in this fashion okay.

Then we have a vector Langevin equation for a two component vector which looks like this. It

says psi dot equal to and let us bring this v to this side, so plus some matrix times psi because



these 2 guys are linear in the coordinate position. In fact x does not appear here at all. So let us

say there is some matrix R which takes care of the dissipation, this guy here equal to square root

of gamma over m, a vector value eta of t and this fellow stands for 0 the usual eta of t.

Remember that capital gamma is little 2 m gamma kt. We are going to put that in always as a

consistency condition. What is this vector, this matrix R? ya, it is going to be 0 - 1 0 gamma to

take care of these 2 guys, bring them to this side and then gamma becomes positive this becomes

negative out here. Acting on x, v is going to give you precisely these equations okay.

Now just as we solve the ordinary Langevin equation by using this integrating factor e to the

minus gamma t I need to now use the integrating factor e to the - R t and it is a 2 by 2 matrix. So

I need to exponentiate this matrix to find that Green function right. Now that is not very difficult

to do because you notice that R square, this implies that R square if I multiply twice together is

going to give me a - gamma on that side and a gamma square in the denominator.

So this is equal to gamma times R. So once you have that the exponential is trivial because then

R cubed is gamma R square which is gamma square R and so on. So R to the power n is just

gamma to the n - 1 times R and therefore you can compute the exponential. So in principle you

can write the solution down and take averages and so on as we did earlier. So in principle you

can find all the correlations.

You can find v of 0, v of t, x of 0, v of t we can do all these things. But you must remember that

x is  not  a stationary random variable.  It  is  the integral  of the velocity  and the velocity  is  a

stationary random variable. When you integrate, this stationarity property is lost. But it does not

matter. You can specify initial conditions, x not v not etc., and compute this whole thing.

But you would now ask just as I have a Langevin equation here with white noise is this not equal

to a Fokker-Planck equation equivalent to some Fokker-Planck equation, a matrix Fokker-Planck

equation this time, will involve some matrixes etc. But for the joint distribution of x and v and

indeed that is so. This implies the following equation.
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So this guy implies the following, implies the following Fokker-Planck equation for the density

of x and v together. So let us not use the symbol p for it. Let us use the symbol rho of x v t given

x not and v not at t = 0 okay. So let us specify that at the initial instant of time you had some

initial position, some initial velocity and this is the one particle density phase space density or

conditional probability density in this case okay.

It implies the following equation delta rho over delta t equal to and then because this thing is a

drift term is linear in this case it is R i j delta over delta psi i psi j times rho it is got to be scalar

so it just contracted plus D i j d 2 rho over delta psi i delta psi j where I have to explain what

these matrixes are. This guy here this D i j is just 0, 0, 0, gamma k T over m because the noise is

only in the second equation.

In principle we could have had a noise here too separately but then x dot is v by definition in this

example, there is no voice there and the noise is in the velocity because it is the force that is

random. So it appears in the equation for the acceleration okay and a summation over repeated

indices  is  implied  psi  1 by definition  equal  to  x psi  2 by definition  is  v. So it  implies  this

equation. Again by this equivalence between the stochastic differential and Langevin equation

and the Fokker-Planck equation for a two-dimensional diffusion process in this case and what

does that look like. What does this equation look like now?
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If we simplify it this is delta rho over delta t equal to R i j. Now R 1 1 is 0 and R 1 2 has got a

minus 1 out here. So it is R 1 2 delta over delta x and then you have v times rho and what is R 1

2 minus, minus delta over delta x 0. Is there any other term? R 2 2 is not 0 right? So plus gamma

times delta over delta v 0 because psi 2 was equal to v and i and j are both equal to 2 and then the

only term that survives in this thing here is plus gamma k Boltzmann T over m d 2 rho over delta

v2. In this case all the other terms are 0.

This is the equation satisfied by the phase space conditional density in position and velocity

together. But what does this tell us? This says delta rho over delta t plus I bring it to this side and

since v index are independent variables in phase space this says v delta over delta x rho equal to

gamma the usual thing that appear on the right hand side. What does this remind you of? It is a v

dot del. So the left hand side is like a convective derivative.

This term is like a convective derivative. You have partial delta over delta t + v dot del and that is

the total derivative. So it is just very physical thing. It tells you as soon as have a flow which

goes like this, this will automatically emerge. It will emerge automatically that there will be this

term delta over delta t + v dot del will appear automatically and then that acts on rho to give the

total time derivative and that will have the dynamics on the right hand side okay.



So this is the Fokker-Planck equation in the case when you have a phase space when you look at

the Langevin equation as an equation in phase space in both x and v. The question is what sort of

solutions does this have. Again, the initial condition is obvious in this case. Our initial condition

is rho of x, v, 0 x not v not 0 is equal to delta of v - v not delta of x - x not and you can do this in

several ways. You get a bivariate Gaussian in x and v.

So it will have terms like e to the minus something or the other times v square and then there is

an x v term and then the minus x square term okay. You can get some Gaussian numbers form

which can be written down we can actually write the solution down. I am not going to do that

here.  But what is  of interest  was is  what does this  solution become what  does this  solution

become if you reduce this to one of the two variables.

If you reduce to the v variable for which we already have a relation. So I want p of v t v not. This

should be found by actually integrating over all x. So I integrate d x minus infinity to infinity rho

of x, v, t whatever and it turns out this gives you the Ornstein-Uhlenbeck distribution as it should

okay which is exactly what you expect. What would you what would happen if I integrated over

v instead? I would get an expression for x right.

I would get an expression for x but it will not be the solution to the diffusion equation. It would

not be that Gaussian because that is only true when gamma t is much bigger than 1. So it is some

complicated expression which will in fact involve v not as well not just x not but v not as well

showing that x is not a stationary random variable okay. That is not of much interest. We can

compute it. It is not of much interest. But we can ask what does this guy do when t becomes very

large, what would you expect it to do.

(Refer Slide Time: 47:37)



So I take this solution, take this guy here with this initial condition and ask what is rho of x, v, t x

not v not 0 as t tends to infinity or gamma t is much bigger than 1. What would it tend to? What

would you expect now? I would expect the velocity to have thermalized completely and then

what would be the distribution of the velocity? The Maxwellian, I would expect the Maxwellian

in velocity. It would multiply a distribution in x and what would that distributions be.

The solution of the diffusion equation because this limit is a diffusion limit right. So this also is

true that this becomes in this limit to Maxwellian in v times e to the - x - x not square over 4 D t

over square root 4 pi D t. So let us write the Maxwellian as well. It would be equal to m over 2 pi

k Boltzmann T to the power half e to the - m v square over 2 k T. So the memory of v not is gone

is lost because this tends to the equilibrium distribution.

This  guy  there  is  no  equilibrium  distribution  position.  We  saw  in  the  diffusion  equation

everything goes to 0 at  all  points in an infinite  media okay. Again,  exactly  what you would

expect on physical grounds okay. So we would not go further into this. But we could ask for one

more generalization which is physically very relevant. Throughout I have assumed there is no

external force on this particle. I have said there is an internal random force and there is a friction

for consistency. What if I impose an external force on it from some potential v of x.
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Then this equation here is going to get modified because I am going to have minus out here. The

potential v prime of x over m that term is going to be there m gamma v plus root gamma over m

eta of t. So I have got an extra term here in this case and that is a complicated function of x

depending on the potential. When it is linear function of x then I argue that the whole thing is a

linear drift and I could extend this formalism.

But when this is a nonlinear function of x then I am in trouble. So we will look at what happens

next time tomorrow. We will look at what happens in the general case here. We will first look at a

linear problem, see what happens. A very drastic change is going to happen depending on what

kind of force this is. For instance what is physically happening is that without this force this

particle is diffusing clearly.

The variance of the position is becoming unbounded with time linearly. Now the question is

suppose we put this in a potential such that it does not let it go too far, cost too much energy. I

expect the diffusion may be curtailed. It may not be able to fluctuate that far. In other words

asymptotically it is possible the variance of the displacement is going to be bounded. It is not

going to diverge and we will see explicitly how this happens. So we will do that tomorrow.

 


