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So let us continue with our study of the Fokker-Planck equation and for the next lecture or two

we are going to talk about physical model of particle in a fluid undergoing random kicks due to

the molecular collisions and at the same time possibly be subject to some external force but let us

look at the case first where you just have free diffusion of a particle in a fluid. I would not

specify at the moment how big this particle has to be.

We will come a little later and distinguish between different time scales and we will see under

what conditions this whole thing applies but right now we take a very naïve approach and say

alright  suppose  I  have  a  small  particle  in  a  fluid  and this  is  undergoing  collisions,  random

collisions due to the agitation,  thermal agitation of the molecules of the fluid.  What kind of

equation of motion can we write for this system here?

Recall  that  we made a  correspondence.  We said we stated  that  there  was a  correspondence

between certain kinds of stochastic differential equations describing diffusion processes and the

corresponding Fokker-Planck equation. So what I am about to do now is a physical example of

that in a very simple case in which the drift term will be a linear, linear in the variable. So let us

look at this in little bit of detail.

Again, you refresh your memory. I said that if you had a stochastic equation in some random

variable x, I use the symbol x but now for this application I am going to use x for the Cartesian

coordinate of the particle. So let us be neutral and call it psi or something like that.
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So if you have a stochastic equation of the form psi dot equal to some f of psi plus z of psi times

the white noise and this was white noise, Gaussian white noise in fact satisfying eta = 0 and the

autocorrelation t eta of t prime = delta of t - t prime. Under those conditions, this was equivalent

to a Fokker-Planck equation for the conditional density of this psi with some initial condition of

the form delta over delta t p of psi, t for a given psi not.

Say this is equal to - delta over delta psi f of psi times p + one half delta 2 over delta psi 2 g

square of psi  times p.  This was the Fokker-Planck equation whereas that was the stochastic

differential equation for this random variable psi. Now let us look at some the simplest example.

We even wrote this down.
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I said if the position of a particle undergoing diffusion on a line satisfies x dot equal to  square

root of 2D times eta of t. This immediately implied that p(x, t) with some initial point x not

satisfies  the  diffusion  equation  delta  p  over  delta  t  =  D  d  2  p  over  d  x  2.  That  was  the

correspondence we had made. But now let us be a little more detailed and ask look whatever

force the particle is subject to is going to cause an acceleration.

So let us say that the equation of motion that you should write down for this particle moving in

one dimension or one Cartesian coordinate of it. Let us call the velocity v and we should really

say well mv dot that is the acceleration should be equal to whatever force it is subject to and in

the simplest instance you would say this force is a completely random force. It is due to all these

molecular collisions. I do not know anything about it.

So in the simplest instance you would say this is equal to eta of t itself in this fashion but of

course dimensional reasons and as well as the fact that this eta of t need not have unit delta

function strength but some arbitrary number. So let us call it equal to square root of some gamma

times eta of t where this is some constant which we may or may not be able to determine in a

self-consistent way to start with okay. Now what does this imply.

This immediately implies a Fokker-Planck equation for the for the quantity of interest namely the

velocity distribution function density function but instead of writing this down let us take this



stochastic equation seriously and ask whether it makes any physical sense or not before we do

this. Now, this will of course mean v dot is this and you can formally solve this equation. This is

a stochastic differential equation but it is very simple and we can formally in principle we can

solve it.

So this will of course immediately imply that v of t equal to some initial condition whatever it be

some initial value v not + square root of gamma over m integral from 0 to t dt prime eta of t

prime okay. Now remember our physical context. We have a fluid. We imagine a fluid in which

we are looking at one Cartesian component of the velocity of some tagged particle and this fluid

is taken to be a thermal equilibrium at some temperature t okay.

Then it says the velocity is equal to this, the instantaneous velocity but what we are interested in

is averages always. So what is the average value of v of t. Now when we say averages I got to be

a little careful. Average over what ensemble? We have already specified an initial condition. So it

is an average over all those particles whose initial  value of the velocity is given to be some

number v0 right. It is not an average over all possible initial velocities as well.

That will come a little later. So we have 2 pluses of averages. One is over a sub collection of

particles whose initial velocity is v not and then we say look let us average over v not as well

over some initial distribution or since I said already that the fluid is in thermal equilibrium at

temperature t over say the Maxwellian distribution at temperature t. That is what I should do

really.

So to distinguish between these 2 things, these 2 kinds of averages let me put an overhead bar to

denote averages over a given initial condition v not and then a subsequent average over these v

nots will give me a final average for which I will use angular brackets. So this will immediately

imply that v of t bar is equal to well average of v not but v not is a deterministic given number of

course v not plus the average of this integral but the integral is essentially a summation over

different values of eta of t prime.



So since 2 different sums commute in either order this overhead bar is the same as putting it

inside the integral right. So this becomes plus square root of gamma over m integral 0 to t dt

prime eta of t prime an average over all realizations of this eta of t prime. Now the physical

assumption is that you are looking at one particle that is with a small number of degrees of

freedom inside a huge collection of particles in thermal equilibrium.

And the heat bath which is providing the fluctuations on the of the velocity of this particle that is

not going to be affected by what this particle does. So whether I fix the initial velocity of the

particle or not is not going to affect the average value of the random force at all. So as far as eta

is concerned whether I put a bar or take a full average it does not matter at all. We have already

assumed that it is got 0 average. It is a Gaussian white noise.

So this quantity is actually 0, this integral and this becomes equal to V not since the average

value of this random force is 0 in any case okay. So, so far so good. It just says the average value

remains this which is physically expected. You are saying that the force can be as much as much

to the right as to the left and the average velocity component is 0, the average is 0. It remains

whatever it was initially. But what does this tell you? What is v square of t?

If you compute the square of the velocity then I have to find the square of this guy and find the

average. So it is evident that there is a term which is v not square and then there is twice v not

times this and then I want to take an average. So let us put that average in there. There is nothing

to average here and then I have v not times eta of t prime averaged but v not comes out of the

averaging and it is just the average of eta of t prime again.

So the cross terms average again goes to 0 but then I have a term which is plus gamma over m

square when I square this term here and then I have to take 0 to t dt let us call it dt 1 so that I do

not mess around with primes and then again 0 to t dt 2 eta of t 1, eta of t 2 with an average out

there. But that quantity is not the product of averages because eta is a random variable with a

delta correlation, this guy.
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So I have to put that delta correlation there and then it says that v square of t average is v not

square plus gamma over m square. An integral over this with delta function, did I put the, yes a

delta of t 1 - t 2 in here okay and that contributes as long as t 1 = t 2 and that always contributes

for all values of t 1 between 0 and t and that is easy to see because if you draw a little picture,

here is t 1, here is t 2 and in each case you are going to integrate from 0 to t in this fashion and

the delta function constraint tells you t 1 equal to t 2 out there.

So it says if you do the t 2 integration first which is the way I have written it here then it is clear

that no matter what t 1 I have between 0 and t there is a value of t 2 as you scan this at which the

delta function fires. So I can therefore remove the t 2 integral and replace wherever t 2 appears I

replace it with t 1 okay and that gives you 0 to t dt 1 and this integral is gone, the t 2 integration

is gone which therefore gives v not square + gamma t over n square.

So it gives us this rather unphysical result which says that the square of the average value of the

square  of  the  velocity  increases  without  bound  as  t  increases  okay.  If  you  identify  the

temperature with half mv square average this means that if you leave this particle untouched, you

keep a beaker of fluid then the average kinetic energy of any particle in there increases without

bound okay and the effective temperature increases without bound.



So it is completely unphysical, complete. So this cannot be right. This model cannot be right.

This equation cannot be right because there is nothing else that can go wrong here okay. You

might say oh this perhaps this is unphysical perhaps this is not correct. I should not use a delta

correlation. I should use an exponentially decaying correlation with some finite correlation time

but even if you did that you would still get an unphysical answer and I leave you to check this

out.

Even if I took this quantity to be some e to the minus t over tau for some very small value of tau

and computed what this number is explicitly you would still get an unpleasant answer here. It

would still be unphysical and this is not right. So the only thing that can possibly be incorrect

would be the initial model itself. This model cannot be right okay. And whatever I left out of it, I

have left out the fact that there is a systematic component in the random force.

This force eta is completely random uncorrelated and so on. That is fine, but however if this

tagged particle starts moving in one direction at a velocity higher than the average velocity it gets

hit back by the friction in the problem, by the viscosity. The very same molecules that cause

fluctuations in its velocity will also damp out these fluctuations by having more collisions from

the front than from the back if you are moving in this direction okay. So this means that I have to

modify this model and this is not correct and let us see what the correct model is.
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The correct model would be.mv dot equal to there is an eta of t so there is a square root of

gamma times eta of t that part certainly exists that was the original model but there is a portion

which says there is a viscous damping and for small velocities Newton’s law viscosity tells you

the viscous drag is proportional to the force but with an opposite sign right. So this is equal to

minus m gamma v plus this but gamma is a quantity which has dimensions of 1 over time so that

it matches this on this side. It is a friction coefficient.

I took out the m explicitly because it is easier that way right. So this is my model. This is by the

way the simplest example of what is called a Langevin equation where this is again Gaussian

white noise but there is a systematic component to the random force. A model, again it is a model

and we have to see whether it makes any physical sense or not. Now look at what is going to

happen. We repeat exactly what we did before and I divide through by m.

Then average v(t) equal to the solution now, by the way we can write down the solution first, let

us do that. So the solution is v(t) = v not but that is multiplied by e to the - gamma t because

there is this term here + square root of gamma over n integral from 0 to t dt prime e to the -

gamma t - t prime eta of t prime; because this is of the form dy over dx + p of x times y = q(x).

And you have the standard formula for solving a first order differential equation of that kind, an

inhomogeneous equation and this gives you the explicit solution. That is already telling us we are

on the right track because it immediately tells us that v of t average is v not e to the - gamma t

because whether this factor is present or not when you take the average of eta it is again 0 so you

have this feature here.

Already getting us on the right track because it says that if t becomes very large compared to

gamma inverse this says the average velocity goes to 0 which is exactly what you would expect.

There is no reason why the memory of the initial condition should remain forever when you have

viscosity in the system it is going to be damped out. So this is a good feature that it exponentially

vanishes as t increases okay and what does the square do. It does exactly what happened earlier

except for that extra factor.
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So this is now v not square e to the - twice gamma t because that factor remains + gamma over m

square once again integral 0 to t dt1 0 to t dt 2 e to the - gamma t - t 1 e to the - gamma t -  t 2

and then an eta of t 1 eta of t 2 whose correlation average value is delta of t 1 - t 2. Exactly the

same way as before we can now do the t 2 integration and replace t 2 with t 1 everywhere.

So this integral is easy to do. It is v not square e to the - 2 gamma t + gamma over m square

integral 0 to t dt 1 and then there was already an e to the - 2 gamma t sitting here and then you

had e to the gamma t 1 e to the gamma t 2 but now t 2 is equal to t 1 right. So e to the 2 gamma t

1 and that is the integral; e to the 2 gamma t comes out of the integration and then you have to do

this fellow here.

So this is v not square e to the - 2 gamma t + gamma over 2 m square gamma because when I do

this integration that factor comes out downstairs and then e to the 2 gamma t 1 from 0 to t here.

The first term will cancel out and give you a 1 and the second one gives you e to the - 2 gamma

because this integration is e to the 2 gamma t 1 - gamma t - 1. So that is the result out here and

this has no exponential blowup, this linear blowup.

This does not increase unboundedly as t goes along because these exponential factors cancel and

go to 0 and it looks like it is going to some constant which is what you should expect because if

you are in thermal equilibrium it should remain fixed in thermal equilibrium right. You could



also rewrite this as equal to gamma over 2 m square gamma + v not square - gamma over 2 m

square gamma e to the - 2 gamma.

This is for a given v 0 for some over the sub ensemble of particles with a given v 0 this is what

you get and now what happens to it as t tends to infinity. Well, gamma t tends to infinity. This

becomes gamma, independent of the initial condition. It is forgotten the initial condition and it

tends  to  some  fixed  limit  out  there.  So  remember  that  this  average  is  being  taken  over  a

conditional density. The condition being that the initial condition is v 0.

So it is being taken really that average is being taken over this p(v, t) given a v 0. This thing is

given to you. We have not yet found this. We have not yet even written down the Fokker-Planck

equation for this process but already it is telling us that the mean square value has this structure

better  have  this  structure  from  the  Langevin  equation  itself  and  now  if  you  insist  that  in

equilibrium this whole thing is independent of time as t tends to infinity.

Now if you insist that this should be true at all instance of time because this fellow here is in

thermal equilibrium. Another way of saying it is let us compute what v square average is over a

full average. So I compute v square of t and what can that be. How do I compute it from v square

bar of t. I should now average over all v not’s right. Over what ensemble should I average this? It

is in thermal equilibrium; so over the Maxwell distribution right.
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So I need to compute, I need to compute v square of t equal to integral v square of t bar over p of

v not dv not where this thing here is the equilibrium or stationary distribution and that is of

course m over 2 pi k Boltzmann T to the power half e to the - mv square over 2k Boltzmann T in

v not. So I have to do the average over this distribution right and then I get v square average

here. Let us do that and look at what happens.

This is equal to, well this fellow is a number, there is nothing to average and p of v not is a

normalized distribution so you are back with this, this is got to be as it is. So this is equal to

gamma over 2 m square gamma plus this quantity is averaged over. You need to average over

this definitely but what is the value of v not square average over the Maxwell distribution where

the average kinetic energy is half kt. It is only one degree of freedom. That is just a Gaussian.

When once you put that in and do a Gaussian integral you discover that the half mv not square

average is equal to half kt right. So v not square average is kt over m. So this immediately tells

us this is k Boltzmann t over m - gamma over 2 m square gamma e to the - 2 gamma. But this

cannot depend on time. The system is in thermal equilibrium right. It cannot depend on time and

the only way that can happen is if this is equal to that right.

So if this is equal to that if gamma is such that this quantity is equal to that the time dependence

goes away because the system is in equilibrium. At no time does half mv square average change.



It  remains  kt  over  m  because  the  system  is  in  thermal  equilibrium  and  that  is  completely

consistent with the fact that if this goes away you get exactly kt over m here once again. You

need that because if this constant had been different from that constant you are in trouble. The

fact that you insist that this should be equal to that automatically gives the right value here also.
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So it says that consistency requires we must have gamma over 2m square gamma = k Boltzmann

t  over  m or  capital  gamma  equal  to  2m little  gamma  k  Boltzmann  T. This  is  required  by

consistency. Now what does it physically? Well if you go back to the Langevin equation, that

equation was v dot equal to gamma v with a minus sign equal to - gamma v + square root of

gamma over m eta of t.

Now this measured the viscous damping in the medium, the viscosity in the medium which

damped out fluctuations. This measured the strength of these fluctuations how far does it get

pushed out in some sense, how strongly does it get kicked and now we are saying that the two

are  not  independent  parameters.  The  larger  the  viscosity  the  larger  the  fluctuations  here  or

conversely  the  larger  the  fluctuations  the  larger  the  viscosity  must  be  to  damp  out  those

fluctuations and maintain thermal equilibrium.

There is therefore a connection between the source of fluctuations and the dissipation in the

system okay and this  is  the  first  example  of  it,  the  simplest  example  of  it.  It  is  called  the



fluctuation dissipation relation or theorem if you like in some case. We will come across more

further examples of this but this is the simplest of the lot okay. You are already familiar with this

in the context of thermal noise in the register, electrical register.

You know if u have an electrical  register due to the Brownian motion of the electrons in it

voltages are set up at the 2 ends and there is a current which fluctuates and flows in this register

and  this  current  you  can  ask  this  fluctuating  current  what  is  the  power  spectrum  of  this

fluctuating current. How much is the power carried by it in some given frequency window okay.

We will talk about power spectra of noise a little later.

But we know that there is a relationship which connects the dissipation in the register measured

by the resistance to this the temperature on the right hand side. So we know that the power

spectrum of the fluctuations in the response of the system is related to the resistance multiplied

by the temperature and is called the Nyquist relation. This is the Nyquist relation in this context.

It is exactly the Nyquist relation for thermal noise or Johnson noise whatever okay.

But physically what it means is the same the same fluctuations that give rise to while oscillations

or which give rise to randomness in the velocity are the ones also responsible for the dissipation

in  the  system and  there  is  a  consistency  condition  between  the  two.  You  cannot  have  one

unboundedly  growing  independent  of  the  other  in  this  context.  It  is  required  for  thermal

equilibrium. This is required to maintain thermal equilibrium.

So we will put that in henceforth and now notice that once you put it in this thing here becomes

equal to k B T over m independent of T. So it is already starting to tell us that perhaps this v of T

is really going to be a stationary Markov process. We started with that assumption. We already

put that in.

I have not explicitly shown it here but we already when we wrote this Langevin equation, to cut

a long story short, once you have a Langevin equation of this kind then what it means is if this is

a  Gaussian  white  noise,  in  other  words  it  is  a  stationary  Gaussian  delta  correlated  Markov

process  then  you  are  guaranteed  that  this  v  the  output  or  driven  variable  is  going  to  be  a



stationary Gaussian Markov process but not delta correlated. It will have a finite correlation time.

What do you think will be the correlation time in this velocity?

Or what time scale is this thing losing its or what time scale is this average value going to 0. It is

going e to the - gamma t. So there is only one such time scale in the problem which is little

gamma inverse ya so indeed it will turn out little gamma inverse is the velocity correlation time.

With  that  information  there  which  you  got  there  we  can  actually  write  down  the  solution

completely to the Fokker-Planck equation fully but we would not quite do that as yet.

We will just see what the Fokker-Planck equation is before we do this. But we are going to use

this  connection henceforth.  Now let  us write that  Fokker-Planck equation down immediately

using this correspondence between the Langevin equation and the Fokker-Planck equation. We

will write it down then look at what its solution is. In the meantime we will compute the velocity

autocorrelation function.
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So now that we know what this little gamma is this is equal to minus gamma v plus this fellow is

2m little gamma kT with a square root over m so let us take that over m. That is the Langevin

equation where we put in this consistency condition okay and what does that imply at once. It at

once implies that delta over delta t p of v, t v not must satisfy, the drift term is this but remember

by looking at our general rule here it is minus.



So the minus cancels gamma is a constant delta over delta p v times p the same p plus one half

the square of this guy and the half this kills that so you have gamma k Boltzmann T over m d 2 p

over delta v 2. This was the original Fokker-Planck equation, the first one written down okay. We

use the term in general for the second order master equation with up to second derivative but this

was the original one with a linear drift term out here okay.

Now of course you can take this equation and ask what is its solution but we need the initial

condition and that is obvious here. The initial condition is p of v, t v not equal to delta of v - v

not.  This  is  the  initial  condition,  of  course.  What  is  the  stationary  distribution?  Is  there  a

stationary distribution in this problem? Unlike the diffusion equation where everything went to 0

the question is, is there a stationary distribution in this problem.

That would be found by putting this equal to 0 and then asking what happens to this stationary

distribution. What should you expect as a stationary distribution, the Maxwellian. I should expect

the Maxwellian once again right.

(Refer Slide Time: 34:37)

Because  I  should  expect  that  limit  t  tends  to  infinity  p  of  v, t  v  not  should  be  equal  to  p

equilibrium of v. The memory of the initial condition should be raised and you should have the

equilibrium distribution again if this process is a stationary random process. So let us see if that



happens. Well, the stationary distribution now does not have any t dependence so I write ordinary

derivatives with respect to v and it must be this quantity must be equal to 0.

Of course gamma is a constant so let us get rid of that and then it says d over dv of gamma,

gamma goes away, k Boltzmann T over m dp equilibrium over dv plus v times p equilibrium

equal to 0. That is the equation that I have right if it exists and it should be normalized to unity

and  so  on.  So  what  does  it  say?  It  says  this  quantity  in  the  bracket  should  be  a  constant

independent of v.
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So erase this and write this. I want this p equilibrium to be a normalizable distribution. So p

equilibrium must vanish as mod v tends to infinity. That is a necessary condition. Otherwise it is

not normalizable. We are going to integrate minus infinity to infinity so the function had better

vanish at the end point sufficiently rapidly. I want all moments of this also to be finite. I want the

mean square for example to be finite.

I want it to be equal to kt over m right. So you want this also to go to 0. You want this quantity to

go to 0 at infinity faster than any power of v because you want all these moments to be finite.

Therefore it is derivative also will go to 0 faster than any power of v. The value of the constant

therefore is 0 because it is independent of v and when v is plus tends towards infinity the value is

0. Therefore it is the value everywhere okay. Is that is that clear? Okay. So this constant is 0.



Well there is another way to write this down to look at it. You know if you write this Fokker-

Planck equation down you can also write it like a continuity equation.
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You can write  delta  p over delta  t +delta j  over delta  v equal to 0. This is del dot j  in one

dimension with v being the independent variable and what is j it is just this fellow but without

the equilibrium, without the equilibrium, time dependent with the time dependent density.

That is the current. This j is the probability current. You do not want this current to be finite at

infinity. You do not want any flux at infinity of probability. So this guy must be 0 at infinity but

in the case of the stationary distribution it is 0 everywhere for all values of v because it is got to

be a constant.

“Professor - student conversation starts” Sir, in that case will it always be 0. Pardon me. In

that case scenario at infinity, yes the boundary condition at infinity will be such that this quantity

delta kt over m delta p over delta v + v times p where this is time dependent the conditional

density, this will tend to 0 as v tends to infinity mod v tends to infinity. It appears that in every

problem it will become 0? Not necessarily. We are going to do finite problems where this may

not be 0 okay. “Professor - student conversation ends”. 



For instance, if I had not a velocity but it is a diffusing particle say and on one side I have a

barrier where if it hits that barrier it bounces back and forth and on the other side I have a barrier

where it absorbs like a sponge for instance then this boundary condition on the right hand side is

not true if it is an absorbing barrier. It is only saying the flux is 0. So it is equivalent to saying

that there is a reflecting boundary condition.

But here it is at infinity. So this is a natural boundary condition that this whole thing vanishes at

infinity  otherwise  you do not  even have  a  normalizable  density  okay. So I  used  a  physical

argument to say that I want this equilibrium distribution to have finite moments, in particular I

want the finite variance so that I can relate it to the average kinetic energy and so on okay. So

this thing immediately tells me if I solve this equation, it is an ordinary first order differential

equation.
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Of course  it  immediately  says  mv  over  k  Boltzmann  T times  this  is  0  and  that  of  course

automatically implies that p equilibrium apart from a normalization constant is e to the - mv

square over 2k Boltzmann T. All I have to do is to integrate this, move it to the right hand side

separate variables and that is it and that is your Maxwellian distribution back again. So we now

know  that  this  equation,  this  Fokker-Planck  equation  is  consistent  with  the  equilibrium

distribution. The Maxwellian distribution.



Can we write a solution of this equation down, a time dependent solution which satisfies this

initial  condition? What key input would you need for that?  We should be able  to solve this

equation, that is one thing, but it is a hard equation to solve. At least it is not a trivial equation to

solve and you have to integrate this second order partial distribution equation. It is first order in

time, second order in space and so on and so forth. We could do the following.

We could ask what is the mean square value, mean value etc. for a given initial condition which

we derived from the Langevin equation but the question is can we do it directly from the Fokker-

Planck  equation.  Yes  we  can,  yes  we  indeed  can.  Suppose  I  multiply  both  sides  by  v  and

integrate. Then this is the rate of change of the mean value of v and that satisfies an ordinary

differential equation because if I integrate, I multiply by v all I have to do is to integrate by parts

to bring these derivatives out of this p and write it as some averages.

So you can get an equation for v average bar v square average bar by multiplying the v square

and ask can those be and do they form a closed set of equations or not and in this case they do

and you can solve them. So you would have the variance and the mean, the conditional variance

and the mean. And then what else would be needed. What assumption would you need to say that

that is sufficient?

What kind of process, continuous process are you familiar with in which a knowledge of the

variance and the mean is sufficient to write, a Gaussian ya. If this were Gaussian, that would be

it.  All  higher  cumulants  are  gone  and  then  we  could  write  this  solution  down  explicitly.

“Professor  -  student  conversation  starts” Ya.  Sir,  isn’t  it  just  the  fact  that  there  is  a

correspondence between the Langevin equation and the Fokker-Planck equation and you already

use the fact that v not is Maxwellian in the Langevin equation. So isn’t this the reflection of that

coming back in the. Yes, absolutely.  “Professor - student conversation ends”.

So this should be consistent. Otherwise, I will be very surprised. But we have not yet said that

this is the solution of this we have not said is a Gaussian. That is not so obvious as yet. If it were

then this would be immediately true. I could write the solution down explicitly. All I need to

know is  what  does  the  variance  do and what  does  the  mean do and I  can write  this  down



immediately provided it were a Gaussian because I know how to write a Gaussian down once

you give me the mean and the variance.

In fact, let us go back there and ask what is the variance of this guy? What does the variance look

like? So we need to compute. We go right back at this stage and say we have an expression for v

square we got an expression for v average and let us see what the conditional variance looks like.

So that is a good exercise to do.

(Refer Slide Time: 43:53)

We have v of t bar is v not e to the - gamma t and we have v square of t average equal to v not

square e to the - 2 gamma t + gamma over 2 m square gamma 1 - e to the - 2 gamma t in this

fashion. That was what v square is. So the variance v of t so let us say for given v not we should

always remember that this is with a conditional ensemble then in a given v not this is equal to

this fellow minus this square.

So this cancels out and you end up with gamma over 2 m square gamma 1 - e to the - 2 gamma t.

Notice that v not gets rid, is gone. There is no dependence on v not at all. Whatever be the initial

v not some given v not the variance of the velocity does not reflect it at all and it is gone. And

now if  you put  in the fluctuation  dissipation  relation  which  just  says the system remains  in

equilibrium then this fellow here is kt k Boltzmann T over m 1 - e to the - 2 gamma t.



(Refer Slide Time: 45:43)

If I now assert without proof at the moment that the solution to this with this initial condition is a

Gaussian, if the solution is a Gaussian is a Gaussian then we can write it down p of v t v not must

be equal to e to the power - v - v of t bar square over twice the variance whatever it is divided by

times a normalization factor, times this guy right. We can explicitly write it down. Well let us put

those factors in and see what it is. So it looks big but it is actually very straightforward.

(Refer Slide Time: 46:50)

P of v, t v not equal to now the variance is given to you. It is this guy here. So it is 1 over root 2

pi sigma square and sigma square is here. So it is equal to m over 2 pi k Boltzmann T, 1 - e to the

- 2 gamma t and this guy here and the whole thing is to the power of half one over square root of



2 pi sigma square and then e to the power exponent - x -  v - v not e to the - gamma t that is the

mean square/2 sigma square and that is - m and then there is a 2  sigma square is 2 kT 1 - e to - 2

gamma t.

Looks complicated but it is actually very simple in structure okay. Again you have to check that

as t tends to infinity it goes to the Maxwellian the right Maxwellian and indeed it does because as

t tends to infinity this goes away the exponent. That goes away, this goes away and you have mv

square over 2k t which is precisely the Maxwellian as it should be. What happens as t goes to 0.

It becomes singular. It becomes you got to be very careful taking limits.

It becomes singular because this becomes this t goes to 0 this factor goes away. You have e to the

v - v not whole square and then this fellow here vanishes. So intuitively it is clear that the only

contribution will come from v = v not so that the numerator also vanishes and it should in fact go

to the delta function. So it starts as a singular not square integrable and thinks a singular delta

function distribution and then smooth becomes smooth, becomes a Gaussian.

(Refer Slide Time: 49:12)

So in pictures what it does is the following. If I plot v here then initially it is a spike at v equal to

v not a delta function spike and asymptotically it is a Gaussian the equilibrium distribution in



velocity and as time increases the mean value which is also the peak in this case shifts gradually

to the left like v not e to the - gamma t. So after a little bit of time it looks like this and then the

peak shifts it comes down so that the area under the curve remains 1 always.

And it finally settles at the Maxwellian distribution which is just what you would expect this

thing would do. And we need to prove of course that the solution is a Gaussian. That takes a little

bit of doing but it is not very hard in this context. We can actually compute the other cumulants

and discover that they are all 0 and then it is exactly this. There are other ways of solving this

and we will not do that right now. We will come back and if time permits we will talk about other

ways of solving this equation okay.

Because  I  want  to  also  introduce  another  stochastic  equation  and  for  the  position  of  a

harmonically  bound particle  which would look exactly  like this  and you know all  about  the

harmonic  oscillator  so  we  can  use  that  knowledge  to  solve  this  equation.  But  you  can  see

physically this is happening. What is remaining in this context is to ask what does the velocity

correlation itself do?

What does the correlation of the velocity do and then there are several questions that arise which

we will all answer successively namely what about the position of the particle. We made this

model, we have solved the equation of motion, we found v of t, we found its average distribution

and so on. What about the position and then a much deeper question should we not really look at

this particle in phase space namely both x and v together.

And then should we not write down a stochastic differential equation for this quantity and then

find this distribution or conditional density in phase space for both position and velocity together.

That is really what we should do because then we could put external forces on the particle and

write the correct Langevin equation down and solve it in phase space because dynamics happens

in phase space so we will do that. We will write.



That will mean a multidimensional, 2 dimensional Fokker-Planck equation but we can do that

without much difficulty and we will see how the physics goes in. Just one remark here and that is

to find the following quantity. We found already v square of t.

(Refer Slide Time: 52:00)

Let us do v of t v of t prime and find the average here where t and t prime are both positive

numbers but different numbers. I leave this as an exercise to you because you would have exactly

the same thing as before. Again, each of these is v not e to the - gamma t etc., so there is going to

be a v not square e to the - 2  - gamma t + t prime. Those will be the first terms.

Then there would be one term where you have a v not term multiplying an eta an eta of t 2 say

and then a v not multiplying eta of t 1. Those averages go away and then you are left with plus

gamma over m square integral 0 to t d t 1 0 t prime d t 2 in this fashion e to the - gamma e - t 1 -

gamma t prime - t 2 in this case times eta of t 1, eta of t 2 average and that is a delta function. So

you have a delta function. Now you got to be careful okay.

So this much is straightforward. But now in removing this delta function to do the integral you

have to be a little careful. So let us for example see in pictures what happens. Here is t 1, here is t

2. This fellow is integrated up to t. The other guy is integrated up to t prime. Let us suppose t

prime is smaller than t. We also have to look at the case where it is larger. But this whole thing is

completely symmetrical in t 1 and t 2.



So we could actually interchange after we find the result. So let us suppose this is t prime and

what is the constraint on the integration, the delta function and where does that fire? On a line

which is at 45 degrees. So it clearly fires on this line. This is the line t 1 = 2. This is the case t

greater than t prime. Otherwise, the rectangle is upwards. Now what does that tell you? It says

that you are going to fix the t 1 and scan t 2.

So you fix the t 1 and you are scanning t 2 in this fashion and of course you hit this delta

function. You fix the next t 1 and scan you hit the delta function. And you can do this till a t 1

hits t prime and after that you get 0 as the answer. So the integration gets cut off at his point here.

So this thing reduces to integral o to t prime dt 1 e to the - gamma t - t 1 - gamma t prime - t 1,

one second.

You can set  t  1 = t 2 inside the integrand by using the delta function constraint but the t 1

integration is constrained to stop at t prime okay and then you have to do this integral etc., etc. If

t were greater than t prime do the t 2 integration later, do the t 1 first. Not surprisingly what

answer would you expect finally of this.  What kind of function of t and t  prime would you

expect?

I would expect it to be symmetric under t and t prime getting exchanged with each other right.

But we also know that if it is a stationary process I would expect this to be a function of the time

difference and I want it to be symmetric. So what would you expect? We will expect mod t - t

prime. I would expect the answer to be mod t - t prime. So show that this fellow reduces to e to

the - gamma times mod t - t prime.

It suffices to do it for t greater than t prime and then use this symmetry out here and you will see

therefore  that  the  velocity  is  exponentially  correlated  okay.  Then  there  is  a  very  powerful

theorem which says there is only one process which is Gaussian which is continuous process

which is one-dimensional process which is Gaussian, stationary, and Markov and exponentially

correlated and that is this process and nothing else.



And various other processes can be reduced to it by changes of variables, reparametrization and

so on. So that is the reason why this is worth studying in such great detail in addition to this

particular example here okay. So we will take it up from this point and I will point out how we

can extend this to phase space and see what exactly where the diffusion approximation comes in

and so on. We have got to understand the role of this gamma a little harder, a little better. We will

do that. Okay, so we take that up on Monday.


