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Continuous Markov Processes

Today and in the next few lectures we are going to study a very important class of continuous

Markov processes called diffusion processes and there is a very large body of literature on these

processes and very large number of applications both in physics and in other subjects, chemical

physics for instance, chemistry and so on and so forth but what we are going to focus on is not so

much the detailed technical mathematical rigorously mathematical aspects of the subject as the

possible applications to various physical situations.

Let me begin by recalling to you that we just started defining continuous Markov processes and

in particular I said we will talk about stationary continuous Markov processes. We can relax this

assumption of stationarity a little bit and talk about stationary or non-stationary processes and as

you will see as we go along the most important non-stationary random process is in fact the

diffusion of a particle.

That itself it is position is a non-stationary process. The velocity turns out to be stationary but the

position is non-stationary as you will see when we go along.
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So to start with recall that we said that these process are described by a conditional density which

satisfies an equation of this kind in the stationary case okay; x is the random variable and a set of

value is taken by the random variable and the probability density function the conditional density

function conditioned on this initial value satisfies an equation of the form an integral over all

possible x primes  the x primes and then inside you have a w of x x prime p of x prime t at x not

minus the lost term which is w of x prime x p of x t x not.

This is the continuum analog of the discrete equation that we wrote down in the case of a process

which took on a discrete set of values or attained the discrete set of states okay. Now as in the

other case this is an integrodifferential equation although it is linear in this p and therefore is not

a very trivial equation to solve. Certainly if it had been a matrix equation we could have written

the solution as the exponential of a matrix multiplied by t and then try to look for methods of

exponentiating this matrix but here that is not true.

This is some kernel so it is an integrodifferential equation. This is some kernel function of x and

x prime ditto here and it is not at all so obvious what the solution is here. One approach would be

to try to convert this to a differential equation but because it is an integral equation and you are

integrating  on  all  values  of  this  here  and  no  conditions  have  been  put  on  these  transition

probabilities at all these transition rates.



It  is  immediately  sort  of  intuitively  clear  that  the order  of  the  differential  equation  in  the  x

variable will tend to become infinite in this case and in fact that is so and I will write that down

without going through the intermediate steps except to indicate how to do it. What you have to

do is to treat this as a function of x prime and you put x for instance is x - x prime you put it

equal to some delta x or something like that.

Does not have to be small and then you will do a taylor expansion in terms of this delta x and

whenever you get derivative operators you try to put it on the p by integration by parts. And the

result is that this becomes equal to also equal to and I am going to skip these steps as summation

from n equal to 1 to infinity - 1 to the n over n! delta n over delta x n A n of x p of x t for given x

not. So it becomes equal to that formally.

These 2 are equal to each other where these coefficients A n of x equal to an integral of moments

of this guy x + delta x starting with x for example and then delta x to the power n and d delta x.

This  difference  and the  nth  moment  of  this  increment  with  this  as  the  weight  factor  is  the

definition of A n of x here. And delta x is over the range, allowed range here. So it is a definite

integral. This thing is a definite integral and it is a function of where you start namely x out here.

So this is the exact formal equivalence and now of course it immediately raises the question of

when is this valid when is it convergent and so on and so forth. I am not going to talk about those

technical issues at the moment except to say that you can make specific conditions put specific

conditions under which this equation reduces to this infinite order partial differential equation

and this is called the Kramers-Moyal expansion.

Does  not  serve  much  purpose  except  for  formal  purposes  because  it  is  an  infinity  order

differential equation. So it is not any easier to solve than this but it gives a little bit of physical

insight as to what are the terms that are contributing out here and how do you interpret them and

so on and so forth okay. But there is one great simplification that occurs for a specific class of

processes called diffusion processes.



And by this I do not mean I mean diffusion in a technical sense which is not restricted to the

physical diffusion of a particle in space or anything like that but a mathematical term which says

there  is  a  class  of  processes  called  diffusion  processes  for  which  this  equation  simplifies

enormously okay.

And there is a theorem a rigorous theorem which says remarkably enough if these moments of

this increment delta x the amount by which x jumps to a new value if these moments vanish for

any n greater than equal to 3 if so happens that A n is identically 0 for any n greater than equal to

3 then A n is equal to 0 for all n greater than equal to 3 okay. It is called Pawula’s theorem and it

is a remarkable theorem. It is not magic. It is possible to derive it fairly straightforwardly.
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But the statement is if A n = 0 for some n greater than equal to 3 for all okay. And of course that

immediately  simplifies  matters  enormously  and processes  for  which  this  happens  are  called

diffusion processes okay because that would immediately imply so that this equation becomes

the following. Delta p over delta, let us leave out all the arguments of this p equal to - delta over

delta x A 1 of x p +s one half delta 2 over delta x 2 A 2 of x because the higher moments are 0

out here and this two factorial I have put in here as a half there okay.

This  is  called the Fokker-Planck equation.  They originally  derived it  under  different  context

altogether in a related context but in a physical context of a particle diffusing in space and this



was to the velocity of this particle but today we call it a Fokker-Planck equation in general for

any diffusion process and I will use the same terminology. And you can go ahead and interpret

what this means and it will turn out we will see the specific examples that this term represents

the effect of noise on this variable x.

That is what causes x to fluctuate randomly whereas this term very often describes the effect of

deterministic evolution in this x as we will see from the examples. So this part is what x would

do, its distribution would do in the absence of any noise and this is what makes it random. So

very often this is called the drift term and that is called the diffusion term and we will use these

terms in general even though they come from the physical application I am going to talk about.

So this is if  you like this is the drift and this  portion is the diffusion. It  is still  not a trivial

equation as you can see because it is got this term here. It is a second order in the position

variable. I will frequently call this a special variable because for want of a better term although it

need not be that at all. In fact in the original context of the Fokker-Planck equation it was a

velocity variable. It is first order in time but second order in the other variable.

So this is technically not as simple an equation as say Laplace’s equation or Poisson’s equation

because of this inhomogeneity. You’ll recognize special cases of it. For example if this A 1 had

not been present and if that A 2 were a constant this looks like the diffusion equation the ordinary

diffusion equation for particles diffusing on a line which would be delta p over delta t is d times

d2p over dx 2.

We will see how that comes about. Now of course one could ask what happens, can I solve this

equation in general and so on. The answer is no. In general for arbitrary coefficients A 1 and A 2

it is not so trivial to solve at all. Can I incorporate non-stationary process in this? Yes, indeed.

That  has  nothing  to  do  with  the  vanishing  of  the  moments  or  anything  like  that.  It  is  an

independent statement.

If these were time dependent explicitly then of course you have a non-stationary Markov process

and then you have to be careful. You have to write x not comma t not etc. keep track of that and



then this would become time dependent here and it would be time dependent here because w

would be time dependent explicitly. So it  is possible to incorporate  non-stationarity  into this

business by looking at time dependent coefficients. We are not going to do that.

All  the cases  we look at  would be stationary  in that  sense but we will  come across  a  non-

stationary process. We will see what happens in that case where you do not have explicit time

dependence and yet you will have a non-stationary random process which will be the position for

instance.  We will  see how it  comes about okay. Now to make it  familiar  with the diffusion

equation one possibility is to derive this diffusion equation independently altogether.

We already looked at  diffusion on a linear  lattice in the presence of a bias.  We looked at  a

random walk and the question was can the random walk be made into an equation of this kind.

Then of course you begin to see immediately the connection between these two. So we will do

that now. But one thing I want to point out is that there is a special case of even this Fokker-

Planck equation and that is very important. It is a very basic process.

In fact it is the most basic Gaussian stationary Markov process and it is just one of them it turns

out and everything else can be mapped on to that and it is called the Ornstein-Uhlenbeck process.

It corresponds to the case in which you have the following, extra simplification.
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So the case in which A 1 of x equal to a 1 x and A 2 of x equal to a 2; a 1, 2 equal to constants.

So case in which the drift is linear in x and the diffusion term is just a constant, this coefficient A

2 is  a  constant.  This  is  called,  this  particular  process  then  is  called  an  Ornstein-Uhlenbeck

process. So let us write it down, a very important special  case and we will spent some time

solving this, for the density function of this Ornstein-Uhlenbeck process along with a physical

example.

But in the meantime let us go back and see whether we can derive this kind of equation from the

random walk model altogether. So let us go back to the case of a biased random walk on a linear

lattice in one dimension. So if you go back and recall what the statement of this problem was. We

had a linear lattice, an infinite lattice say labeled by the site index j, some arbitrary site was the

origin and then you had a probability  if  you are at the site j of jumping to the right with a

probability alpha and to the left with a probability beta and this was true at every site.

You toss this unfair coin and either jump to the right or to the left okay. Now we did that in the

discrete time case but we also did it in the continuum. We said the time was continuous and the

steps were given by a Poisson process with some mean rate lambda in which case the process

that corresponded to right step, steps to the right, had a mean rate lambda alpha and those to the

left had mean rate lambda beta and if you recall the master equation in that case was dP j, t.

I  suppress the fact that we started at the origin. We keep that going so that just  a matter  of

simplifying the notation. This was equal to lambda times alpha P of j - 1 t + beta times P of j + 1 t

- alpha + beta P of j, t. Alpha + beta is equal to 1 but I have put that back here as alpha + beta

because I am going to recombine terms okay. So do you recall? This this was the master equation

for this probability P of j, t okay.

And the initial condition was P of j, 0 is delta of j, 0 the Kronecker delta. We solved this and we

discovered the distribution was a modified Bessel function ij of 2 lambda t square root of alpha

beta etc. Right now we are not interested in that solution but we want to see what happens in the

continuum limit when this j becomes a continuous index. So what we do is to introduce a lattice

constant this spacing a.



I am going to let a go to 0 and correspondingly let the rate of jumps lambda become infinite

because the distance you have to jump is going to go to 0 and the rate becomes infinite in a

specific manner so as to derive a finite limit for the right hand side, a proper limit for the right

hand side.
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So the first step is to write this as equal to lambda times let us choose this first beta of P j + 1, t -

P of j, t - let us subtract the other difference also P of j, t - P of j - 1 t. So I have taken care of this

term and this beta here in this portion here and then I added I subtracted that too so I need to add

that back so this becomes + lambda times beta - alpha times P of j, t - P j - 1, t. So that is the

other term.

Did we go through this continuum approximation earlier? Have we explicitly done that? Okay,

so it is worth looking at it carefully to see what exactly is involved. So what I have done is to add

and subtract this thing here and I get this thing here. Now it is clear what you should do in order

to get the continuum limit because this looks like the second difference. This looks like P j + 1 -

twice P j - P j  + P j - 1.



So this looks like the double difference, the second derivative, and this looks the first derivative

if j were a continuous variable right. So what we need to do is to multiply and divide by the

lattice constant and take limits. So out here I need, I can rewrite this.
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This thing can be rewritten as P of j + 1, t - twice P of j, t + P of j + 1, t. I divide the whole thing

by a square because it is a double difference here and multiply by a square. I multiply this by a

and divide this by a okay and take the limit.
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So the correct limit that we need to take the continuum limit is lambda tending to z infinity a

tending to 0 and I want lambda a square to become finite. That can only happen if beta - alpha



also tends to 0 so that I get something which goes like an a square here. So we need a times alpha

tends to beta such that and j tending to infinity because what I am going to do is to put j a tends

to x so j also becomes infinite such that j times a is my x coordinate just like we went to the

continuum limit in time by saying the time step n multiplied by tau the unit time step was such

that n tends to infinity tau goes to 0 such that n tau went to t the continuous variable.

And exactly the same way j tends to infinity a tends to 0 such that j a goes to the variable x such

that what we need here is lambda a square beta limit lambda a square beta is finite equal to some

number d. By the way if alpha tends to beta this is the same as the limit half lambda a square

equal to d because beta is also going to go to alpha and a times alpha - beta times lambda tends

to limit equal to what would be the physical dimensions of this limit of this quantity?

That the length and that is the rate velocity just a velocity. So let us call it alpha - beta equal to c

okay. Then then this quantity P of j, t tends to the probability density P of x, t but you got to pay

attention  to  the  fact  that  there  is  a  dimensional  change  here  because  this  is  dimensionless

probability that is a density probability density. It has dimensions 1 over a, 1 over length right.

So you have to be careful about it. There is an extra a factor there which you can put in but it is

not so serious because it will appear on both sides out here.

(Refer Slide Time: 23:43)



And when you take that limit you end up with this equation becoming delta p over delta t of x, t

starting from some x not we do not care we do not put it here equal to this quantity is d and now

here we have - c delta p over delta x because that is the first derivative plus D okay and that is

exactly in the form of this Fokker-Planck equation that we have written down. So in this problem

A 1 of x equal to c, A 2 of x equal to D both of which are constants; a very trivial example in

which these coefficients have actually become constants here.

So the position in the case of biased diffusion, the position variable looks like it is the Markov

process with a base of Fokker-Planck equation with constant coefficients, both the drift and the

diffusion terms are constant, looks exactly like that right, agree?

This  kind of  equation  for  the  positional  probability  density  when you have  diffusion  in  the

presence of an external field, this fellow here looks like it is a drift caused by some external field

because you are saying systematically either alpha is bigger than beta or smaller than beta it

drifts to one side whichever is larger and that is exactly what happens when you have a constant

force on the particle.

So this looks like this equation is describing the diffusion of a position of a particle positional

probability density of a particle subject to diffusion but under a constant external force of some

kind and indeed it is so. It is indeed so because if you recall the problem of sedimentation that we

talked about this is exactly what happened. You had an extra term exactly of this kind. We even

saw the solution. We wrote the steady state solution I think in that case and what did we get in

that case?

(Refer Slide Time: 26:12)



The problem we looked at was I said j = 0 here 1 here 2 here and we looked at a case where this

part was bounded and then it turned out that P of j P stationary of j was proportional to the bias

alpha  over  beta.  So  you have  bias  such  that  these  rates  are  alpha  and  these  rates  are  beta

downwards and this was proportional to alpha over beta to the power j. This is what we had. We

imposed a boundary condition on this.

We said it cannot go below 0 out here. So the rate alpha - 1 to j = 0 was 0 and the rate from j to -

1 the beta 0 was also equal to 0. Then we immediately got this as a steady state solution and we

need to normalize this. We need to normalize this guy over j from 0 to infinity should be equal to

1 and that of course if you sum this geometric series is 1 over 1 - alpha over beta which is beta

over alpha – beta, correct.

So this whole thing is proportional to this guy so equal to whatever is normalization times this. In

this problem beta was greater than alpha right. This is the steady state solution we got but we will

now let us try and take the continuum limit of it here and see what you are going to get. So I

need to put all these guys in. I need to put in all these fellows here back again. So let us do that.

Alpha is going to go to beta but I can write this fellow here.

In this problem beta is bigger than alpha in this case. So we got to be a little careful here about

the sign. I define my drift velocity c as alpha - beta. So if c is positive it says alpha is bigger than



beta otherwise c is going to be negative. We have to remember that sign here. So let us write this

as e to the power j log alpha or beta or log beta over alpha with a minus sign and I am going to

take the limit in which alpha is equal to beta.

So this becomes the limit. That guy becomes 1 the log of 1 it is going to get. So what should I

write? I write this as log beta - alpha or alpha + alpha over alpha. You can write it like that surely

which is 1 + beta - alpha over alpha. I mean we can do this very rigorously but can see what is

happening and this is going to go to 0 beta - alpha. What is log 1 + z as z goes to 0 the leading

term?

Z itself right. So this is can be replaced as beta - alpha by alpha in this form apart from some

normalization. We will worry about that later and I want to make this j into x. So I multiply by an

a divide by an a but a times beta - alpha is going to c right. So let us multiply this by another a.

This is what I had and I multiply this by another a. So I got to put another a here and let us put a

lambda here and a lambda here.

We are all set to take this limit because what does this whole thing go to? This fellow goes to x,

that guy goes to c - c and this fellow goes to d. Where did the x come from? Alpha this was an

alpha which is the same as beta in the limit right. So you are going to get something like e to the

power cx over d where c is negative,  agree? I probably use the symbol c for the downward

velocity limiting velocity.

But I have defined this c as an upward positive in the upward direction so increasing j so that is

why I change the sign here for this okay. But this is exactly what we got earlier. We interpreted

this as the Peclet number and so on but that is exactly what this gives you, this equation gives

you because if you go back to this equation and ask what is the stationary solution what is it

going to be?
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P stationary satisfies the equation D d 2 p over d x 2 stationary - c dp stationary over dx = 0. That

is what this tells you right. But I can pull out a d,  d over dx from here and write this as d over dx

dp stationary over dx - e times p  c over D equal to 0 and c by the way is minus this is plus

modulus  okay. That  is  the  equation  and  what  is  the  solution?  What  is  the  solution  to  this

equation?
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Not quite, not quite because what you can what you can say from this is that this quantity is

independent of x so this guy must be equal to some constant independent of x whereas here we

did not have any such problem. We did the random walk problem and we immediately got the



answer  right  away. But  here  we  are  getting  an  equation  which  says  this  fellow  is  actually

independent of x. Nothing more than that.

What would you have to do to match that to this and make sure that that constant is 0. You have

to put a boundary condition somewhere. We already put a boundary condition on the floor. We

said it cannot go below the floor. We already did that here in this case. We have not yet imposed

that condition there. We need to impose that condition which will be precisely that this quantity

is 0 at x = 0 because this is the flux.

Remember that this equation can be written in the form of an equation of continuity because I

can write this as equal to - delta j over delta x where j of x equal to d times dp over dx, in this

case + mod c p. So it is in the form of a continuity equation in this case and that is the flux at any

point because it is precisely a continuity equation for this probability density. And then it says

you cannot go through the floor.

So it means this quantity this current here must vanish at x = 0 but in the stationary case and only

in the stationary case this quantity is independent of x completely and since it vanishes at x = 0 it

must vanish for all x because it is independent of x okay. So I emphasize again. This quantity is

not 0 for x not equal to 0 in general. There is a current otherwise you would have you would not

have any dynamics at all certainly.

P of x, t in general is a function of t okay but when you go to the stationary distribution there is

no t dependence any more okay. So the statement is that the boundary condition says that the

current as a function of t vanishes at x = 0 for all t. You got a partial differential equation. I have

to give you an initial  condition and I have to give you a boundary condition.  The boundary

condition must be valid for all t.

The initial condition is valid for all x for a given t right where t = 0. So in this case this acts as a

boundary condition and it says this quantity here vanishes at  x = 0 and that same boundary

condition  applies  even  in  this  stationary  distribution.  But  in  the  stationary  distribution  you

discover that this quantity must be independent of x and since it is 0 at x = 0 it is 0 everywhere



identically and once you put that in, this is the solution. So you see our discrete model went

exactly into that.

This is just a verification that these limits are all right that all these factors were right, just right

and it gives you this equation here. In the special case in which you have this particle diffusing

under  a constant  force field  here you can apply to other  cases.  It  could be an electric  field

causing a steady drift or whatever but this is the exact continuum limit. So the lesson is that the

biased random walk with a constant bias the same bias at all sites is equivalent to the diffusion of

a particle under a constant force field in the continuum limit okay.

But now we are approaching the whole thing from the continuous Markov process angle okay.

So we are  going to  write  down although we did  not  have  any differential  equation  for  the

position  of  the  particle  in  the  random  walk  problem  but  only  difference  equations  for  the

probability density not that we have a continuous Markov process we could go back and ask one

more thing which is to ask okay it is a random variable but does the variable itself satisfy a

differential equation or not.

This is not a differential equation for the variable, it is a differential equation for the probability

density of this variable and that is a nice object. But the variable itself will be very irregular, will

be random, because it is being driven by some fluctuations in this case. We are going to find out

that  this  will  satisfy  a  differential  equation  but  it  is  what  is  called  a  stochastic  differential

equation, a random differential equation and it should correspond and be consistent with the fact

that the probability density satisfies this master equation here.

The general  name for  a  particle  which  is  for  the positional  probability  density  of a  particle

diffusing under an external force field it is called a Smoluchowski equation.
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So this is an example of the Smoluchowski equation. I will call it  a Smoluchowski equation

because it is much more general than this. You already saw that this has the effect of constant

force field. What would you say happens would happen if there was a force here explicit force

which was position dependent. How do you think this equation would change? It would not be a

constant. This a 1 of x would not be a constant right.

A 1 of x in some sense would be the force. So if the force were due to a potential v of x I would

expect that something like - v prime of x appears in this drift term okay and then the diffusion,

the scattering would come from the D part here. So this is something to keep in mind that the

first term will be a drift due to deterministic forces and the second term would be the diffusion

due to random forces okay. We will systematize that.
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So let us go back to this Fokker-Planck equation and ask is there a correspondence between an

equation of the form delta p over delta t, I will continue to use the variable x which does not have

necessarily the connotation of a position but a random, continuous random variable,  Markov

process; so delta p over delta t equal to - delta over delta x A 1 of x p + one half. This is the

Fokker-Planck equation okay.

And it turns out that this Fokker-Planck equation is entirely equivalent to a certain stochastic

differential  equation  for  this  variable  x,  random variable  x  which  is  now called  a  diffusion

process in the mathematical sense and that equation is the following. I will write it down but I

am not going to prove this and this is entirely equivalent to a certain differential equation for x

itself which reads in sort of physics notation it is not the most rigorous notation.

It reads x dot equal to some function of x, perhaps even a function of t if this is a function of t but

we are looking at stationary processes. So let us just call it f of x times + g of x times a white

noise and let me call it by eta t and explain what this eta is and this is a stochastic differential

equation where f and g are prescribed functions and they are related to A 1 and A 2 as I will write

it down in an instant.

But this eta of t is called a Gaussian white noise, a stationary Gaussian white noise and I will

explain what that is separately where f of x is essentially A 1 of x and g of x g square of x is A 2



of x and eta of t is a stationary Gaussian white noise. I have to say what this means okay. Eta of t

is a random process in time such that all its probability distributions multiple time probability

distributions are all Gaussian in shape. So that is why it is called a Gaussian noise.

It  is  stationary.  So  all  its  statistical  its  statistical  average  and  higher  moments  are  all  time

independent. Correlation functions are functions only of the time difference etc. and it is a white

noise. In other words it is delta correlated in the following sense. Equal to 0, 0 mean and it has

got a delta correlation delta correlated delta function as an autocorrelation.

It  is  clearly the limit,  the mathematical  limit  of some physical  noise whose correlation time

would not  be 0 because this  implies  the correlation time is  0 whereas  I  would expect  for a

stationary process if t is bigger than t prime I would expect this correlation to look like this as a

function of mod t - t prime I would expect this correlation to come down in this fashion and this

characteristic time scale would be the correlation time of this noise.

But that is now going to 0 and the amplitude is going to infinity such that in the limit it becomes

a delta function, this guy okay. So it is a mathematical idealization clearly. It would have to be

justified on physical grounds each time okay. For instance in the problem of the collisions of in a

gas of particles in a fluid for instance, this noise would be caused by all the other molecules

colliding against some particular tagged particle molecule.

Then this eta of t would be the correlation time of that force the random force caused by the

collisions, all these other guys and the scale on which the particle’s motion itself is tracked, the

time scale would be much longer. It would remember its memory for much longer than what the

noise does. So the correlation time of the noise typically would be of the order of nanosecond or

a picosecond for instance whereas the correlation time of the velocity of the particle that is being

tracked that could be of the order of microseconds.

So as far as the microsecond is concerned a nanosecond or smaller intervals are essentially 0

intervals. So in that sense one can justify this approximation okay. But each time in any problem

when you model this you have to ask whether there is a clear separation of time scales of this



kind or not. But at the moment from a mathematical point of view, the formal point of view this

is what this equivalence is. So the statement is that a stochastic differential equation of this kind

is entirely equivalent to this Fokker-Planck equation for the probability density of this random

variable.

So please take this as a theorem. I’m not going to prove it here. But take this as a theorem. We

are going to exploit it over and over again. Now you can see why I call this a drift term because

if you did not have this noise at all this is deterministic evolution of this variable under some

prescribed function f of x here. It may be - dv over dx. We do not care what it is or anything else.

So this term is indeed describing deterministic dynamics and the noise is entirely here in this

thing here and that showing up in the second term here okay. What is interesting in this problem

as supposed to even simpler problems is that this g has x dependence in general. So it says given

a current value of x of this random variable the way the noise affects it the amplitude of that

noise depends on this random variable on this x.

On the other hand and that that is why it shows up here inside here but in the example we looked

at in the diffusion problem as a diffusion equation remember this A 2 turned out to be a constant.

So in that case this would have been square root of 2 d and that is it.
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So now we can kind of identify what would be the stochastic equation corresponding to delta p

over delta t equal to D D 2p over delta x 2. This would be equivalent to a stochastic differential

equation for x which would be of the form x dot equal to in this case there is no A 1. So clearly

there is no external force or anything of that kind, no drift at all. A 1 is 0 identically and A 2, well

this d half D is a 2.

So a 2 is square root of is 2D and therefore g is square root of 2D and that is it. This is the

stochastic  differential  equation corresponding to for the position corresponding to the simple

diffusion equation in one dimension okay. One can write a formal solution for this guy and that

formal solution would be x of t, you have to define these integrals - x of 0 equal to square root of

2D times integral 0 to t dt prime eta of t prime, agree?

We can call this x of p not if you like and integrate from t not to t. So in that sense a plain

diffusing particle doing free diffusion the x variable corresponds to the integral of white noise.

This guy corresponds to the integral of white noise and it is called a Wiener process. Is it  a

stationary random process. It is Markov because we wrote the master equation down. I said it

satisfies the Fokker-Planck equation and so on. So it is clearly a Markov process.

But is it a stationary Markov. By the way it is Gaussian. That is something else you have to

recognize because we know by hindsight we know the solution of this guy although we did not

derive it here explicitly. We know the fundamental solution of this is that Gaussian e to the - x

square over 4dt which I will come back to talk about. So what it is telling us is you are going to

hit the particle with a Gaussian white noise that means the distribution of this eta is Gaussian and

it is delta correlated stationary and Markov.

Then what is the output variable the driven variable x after this integration. What properties does

it  have? Well,  it  remains  Gaussian because its  probability  density  is  Gaussian.  So the shape

remains Gaussian, that is robust. What else happens? It is Markov. It is certainly Markov. It

obeys this Fokker-Planck equation but is it  stationary. Well the stationarity remain. Does this

look like, if I had x of p not here and this is t not to t does this guy look like a function of t - t not

in general, no. No, certainly not.



It is not stationary and you already know this because given this diffusion equation what does it

imply for this quantity x of t - plus x of 0 whole square. What does this become? It is the mean

square  displacement  from some  given  origin  and  what  is  that  equal  to.  It  is  diffusing  and

therefore what is it equal to 2Dt exactly, exactly it is 2Dt. It is a function of t.

So it cannot be stationary. Because if it is a stationary random process all these moment should

be independent of t but here right away it tells you it is not stationary immediately. We have not

computed what the correlation function of x is. We have not found what is x of t prime, x of t

double x of t x of t prime average. We have not found that yet. But certainly we found what is x

of t x square of t average and that is 2Dt just a Gaussian integral. So it is not stationary.

It has stationary increments because you can write this guy obviously as dx equal to square root

of 2D eta of t  dt.  You can write it  like that and then of course this  is  stationary. These are

stationary increments but it is not a stationary random process by itself or more less rigorously its

derivative is stationary but this function is not, the variable itself is not and that you can see

directly when you take something which has got stationarity but you integrate it in this fashion,

integration makes it nonlocal in some sense so it is not stationary.

So  in  general  that  is  a  lesson that  when  you  integrate  white  noise  you may  not  retain  the

stationarity property but we are going to see that if you put a proper drift you will be able to do

this. That is what the velocity would do and then it would attain an equilibrium distribution and

so on. There is  another way of saying that  this  guy is  not stationary because its  probability

density P of x, t given an x not this fellow is decreasing as a function of time and it does not tend

to any stationary distribution. As t tends to infinity it goes to 0.

This Gaussian broadens out over an infinite range. The total area under the curve remains 1 but

the value at any point is turning to 0. So there is no stationary distribution in this problem. The

variable is not a stationary random variable either okay. So we will get back to all these things.

But at the moment I want you to simply remember the fact that the most general definition of

diffusion process could be either this or this it does not matter either way.



Now mathematicians do not like to work with these delta correlated noises. They would rather

work with the differential something which smoothes it out by integrating. So Wiener process

can be handled more rigorously than this singular object here. So you integrate it once to make it

smooth and so on but we are not going to pay attention to these niceties. We will be careful not to

make any mistakes but at the same time we will do this rather heuristically here provided we

know there are certain rules which we have to obey.

And one of them is this that there is this equivalence between the Fokker-Planck equation on the

one hand and this on the other and we will see what happens with this. Now already you can

begin to see whether there is going to be a stationary distribution or not by saying if so this thing

must have a solution when you make this an ordinary differential with respect to x and if this guy

has a solution which is normalizable and so on then you know there is a stationary distribution

okay.

And if  you do not  have  this,  if  you do not  have this  and A is  constant  then  the  stationary

distribution is triviality itself.
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In this case if at all there is p stationary it must satisfy d 2 p stationary over dx 2 = 0 but what

does that say about p stationary. It must be a linear function. That is certainly not normalizable.

Right away you are wrong. It is finished; in an infinite range, in an infinite range or even in a

semi-infinite range it is still not normalizable. What would happen if you had a finite range. Yes,

then indeed it can be. So then you have you do not require integration up to infinity.

Then yes, indeed it is true. Suppose you are told that p stationary is between these 2 points and

nothing more than that. I put a diffusing particle here. It is like putting a drop of ink inside a

beaker of water. The ink does not go anywhere but it becomes uniform everywhere intuitively

you know this by diffusion. So that is what will happen. This particle’s probability density will

be uniform, will be constant in this boundary provided there is no escape from the ends. There is

no leakage from the ends.

So in that case yes indeed because then I would say p stationary equal to Ax + b and I would put

boundary conditions at the ends and you discover finally that A is 0 and you have just b which is

normalized okay. So the boundary conditions also play a crucial role in the whole thing okay. We

will talk about these aspects next time. We will start with the Fokker-Planck equation and see

where we can go from there.


