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Birth-and-Death Processes

Right so I said last time that we would look at some physical example, simple physical examples

of birth-and-death processes, so we will do that today. But to set the stage let me remind you of

what the basic equations were.
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So we have a random variable n which labels states for instance and takes on integer values and I

said there were 3 possibilities either n runs over all integers or over non-negative integers or over

a finite range of integers okay. We will look at these cases separately. But this n has a probability

P sub n at any time t such that the rate equation for this probability density for a probability is

governed by some gain terms and some loss terms.

And the gain terms were just for pictorial convenience we put this on a lattice and this was site n

for state n and you could move to the right with rate alpha n or to the left with a rate beta sub n

which are functions of n in general and then the rate equations for this probability were alpha n -

1 P n - 1 + beta n + 1 P n + 1 - alpha n + beta n times P n. Those were the rate equations okay.



Now of course if you have boundaries then you have special equations at the boundaries. For

instance suppose you have a case where this thing stops say at the point 0, the site 0, this is 1 etc.

and this is some state N. Then of course you do have a rate of jump up there which is alpha not

but there is no corresponding rate here. So this means that beta not is identically 0 on this side

and there is no - 1 site. Therefore formally this too is not there.

Alpha n - 1 is 0 also identically. Similarly out here it is clear that there is a rate beta N going to

the left. Of course there is a rate alpha N - 1 going to the right but there is no rate alpha N and

this is identically 0 and there is no rate coming in so beta N + 1 is identically 0 which means that

at the ends if you have 2 end points 0 and N you have to write special rate equations and these

equations are dP not of t equal to and in this case it is clear that sorry alpha - 1 is identically 0.

There is no state - 1 okay.

So this would be if I put n = 0, this would be a 0 here but this one is perfectly alright. So this is

beta 1 P 1 minus and since alpha since beta not is 0 this is alpha not P 0. That is the equation

when N = 0 on this side okay. Similarly at the other end if I put little n equal to capital N you

have dPN over dt of t this must be equal to well alpha n - 1 and that is perfectly alright.

So it is flowing in from N - 1 P N - 1 but then if I put capital N beta of n plus 1 that is identically

0, this term is absent and then correspondingly this term here alpha n is 0. So minus beta N P N.

These  are  the  special  equations  at  the  boundary  points  okay. So when you write  these  rate

equations down at the end points because of these boundary conditions, you have to put these 2

equations in and then solve the problem okay.

Of course one or the other boundary may be missing, may go all the way to infinity we do not

care in which case this would be the general equation okay. Now of great interest as I mentioned

would be the steady state or stationary solution to this. On the left hand sides the time derivative

is 0 identically and then you ask what is the stationary distribution out here?

That is of great interest but before that let me also recall to you something else that we deduced

which is that with given general functions alphas and betas you still can discover that d over dt of



the average value n of t, this quantity was equal to, we found a formula for this and if I recall

right it is equal to alpha n - beta n. Just check if that is correct. This is I believe what we found

the average value.

Similarly d over dt of n square of t was equal to twice the average value of n times alpha n - beta

n + alpha n + beta n okay. Those 2 equations are valid in general for arbitrary alpha n’s and beta

n’s. Now the statement I made was that in the special case in which alpha n is a linear function of

n and so is beta n then it is easy to see from here that this right hand side here involves the

average of n once again.

Nothing more than that and similarly this thing here involves the average of n and n square and

therefore you have a closed set of equations and you can solve them at whatever initial condition.

Suppose you start in the state n 0, n not for instance, you would say this P n is a delta function at

n equal to n not, that is your initial condition and then you can solve these equations. In that case

n of t would be just n 0 to start with and you can write down closed solutions for these equations

even if you cannot find the full distribution itself you can still solve for this.

Incidentally, if  alphas  and betas  are  linear  functions  in  n  it  is  not  very  hard  to  solve  these

equations explicitly. If they are constants then of course the solution is more or less on the lines

of what we had earlier, namely we had for n running over all the integers we had the random

walk, the biased random walk problem in general. But there are other variations of it depending

on whether you have finite range or infinite range and so on okay.

So this much we had earlier. Now let us look at some specific instances of this whole thing. One

problem we can do right away is to ask what happens if I have a semi-infinite range and I look at

the random walk problem and to make it interesting for instance you could say this is a charged

particle and there is an electric field in one direction which causes it preferentially to jump in one

direction than the other or to look at the problem of sedimentation, you have a column of fluid

and you have particles moving up and down like in the atmosphere here.

And then the question is how does the density distribute itself the actual physical density of

particles as a function of the height under gravity for instance. We know that the answer is if you



have a column of fluid which is in equilibrium and at constant temperature we know that the

density increases exponentially as you come downwards or decreases exponentially as you go

upwards. This is the famous barometric distribution. So let us see how that comes about here

directly. You can see that from the random walk problem.
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So if you like it  is the problem of sedimentation okay and in this  case let  us put the lattice

running upwards for instance. So here is n = 0 and then 1, 2, and so on upwards and I would like

to know what does this look like. Now of course if I make this lattice constant go to 0 and take

suitable limits I actually get a continuum diffusion model but we will try to see what the random

walk model itself says explicitly okay.

Before that, we can do something even more general and that is the following. Let us assume that

you have this n running from 0 to infinity say or 0 to capital N we do not care. So it is a either a

semi-infinite  or  a  finite  range and let  us  try  to find out  what  is  the equilibrium distribution

whether we can actually write this out explicitly or not. The question is can I take this set of

equations and write out an explicit formula for the stationary distribution. So let us do that first.
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Stationary, and we are going to consider the case n greater than equal to 0. Could be infinite,

could be finite, go up to some capital N, we do not care. For the stationary distribution we need

to put these all these time derivatives equal to 0. That is the stationary distribution. So let us look

at this last this equation here. This immediately says that P beta 1 t 1 stationary equal to alpha not

P not stationary because this is 0 okay.

So it immediately says P 1 stationary equal to alpha not over beta 1 P not stationary and then we

go to the next equation and what is that say. It says if I set n = 1 here, it says alpha not P not plus

beta 2 P 2 - alpha not + alpha 1 + beta 1 P 1 all of which are supposed to be stationary equal to 0

right. So we get P 2 stationary with a beta 2 here equal to alpha 1 + beta 1 P 1 stationary - alpha

not P not stationary.

And for P 1 let us just write alpha not over beta 1 P not stationary. So that comes out - 1 P not

stationary and what does that give us. The beta 1 cancels so it is alpha 1 over beta 1. This should

be an alpha not ah I took out an alpha not so there is an alpha not P not stationary. Therefore it is

this, alpha 1 alpha not over beta 1 beta 2 P not stationary. Now put that in the third one. In the

equation n = 2 and so on and so forth and it is easy to see what the pattern is going to be. It’s

going to be exactly what we got from this first this equation for P 2.
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And we end up with a statement that P n stationary equal to alpha not alpha 1 dot dot dot up to

alpha n - 1 over beta 1, beta 2, dot dot dot up to beta n P not stationary and this is true for n

greater than equal to 1. So we are done. We need to find P not stationary and what does one do

for that. Normalize,  normalize the probability. So we require that summation n equal to 0 to

whatever limit P n stationary should be equal to 1.

So this implies that P not stationary times 1 plus this guy so 1 plus summation n = 1 upwards

alpha not alpha 1 dot, dot, dot up to n - 1 over beta 1, beta 2 up to beta n equal to 1 and the

matter is over. So as long as this converges, as long as this converges remember that you have do

have conditions on these alphas for this to be finite. In the case when it goes up to capital N there

is no problem. This summation ends at capital N.

But in the case where it goes all the way to plus infinity, you need to have this converge. This

series is converged and then you have a finite P not stationary and therefore a finite value of P n

stationary immediately. Notice that this  is valid.  We have not made any assumption that the

alphas are linear function and are a constant in n. We have not done that at all. It is still valid

okay.

So we have a lot of information on this stationary distribution if it exists directly and it is some

algebraic function of all the rates the alphas to the right and the betas coming to the left alone



okay.  Now  let  us  look  at  what  happens  for  the  case  of  sedimentation  okay.  What  is  this

sedimentation problem. It is a random walk in which under gravity you have a preferred motion

to the left. So you have these molecules of air.

They are being buffeted around. We are only talking about the z coordinate now. There is a

probability that they get kicked up or down etc., but the fact is that the probability of a downward

transition is greater because of a constant force of gravity and in this case it is clear since the

force  of  gravity  is  constant  acceleration  due  to  gravity  is  independent  of  the  height  it  is

immediately clear that the bias towards the bottom, downward direction is constant. So the beta n

is actually independent of n and so is the alpha n. It comes from thermal fluctuations in general.
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So the sedimentation problem is modeled by saying that I take a lattice and let us call this state 0,

1, 2 site 0, 1, 2, 3, 4 etc. okay and in this case alpha n equal to some alpha, beta n equal to some

beta constant, independent of n such that beta is greater than alpha. There is a greater probability

of jumping downwards than upwards. So while this is alpha this is beta and we have taken the

boundary into account already in doing this.

We have said that there is no transition below 0. There is no site down there. So it corresponds to

what are called reflecting boundary conditions. You cannot go you cannot penetrate. There is no

current that is going from 0 to - 1 or anything like that. Then what does the solution look like.



What does the stationary solution look like? It says P n, now n naturally labels the site, the height

above ground, this P n stationary is equal to some P not stationary but the fact is that this is equal

to or we can equal to alpha not to alpha n - 1.

That  is  alpha  over  beta  to  the  power  n  P not  stationary  and that  is  it  okay. What  kind  of

distribution is that? It is a geometric distribution. There is a constant alpha over beta and beta is

greater than alpha okay and the normalization is trivial. Here is the normalization. This is the

summation from n equal to 1 to infinity of alpha over beta to the n. So what is the normalization

like?.
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In this case P not stationary 1 + 1 to infinity of alpha over beta to the power n. 1 equal to this

equal to P not stationary 1 + alpha over beta - alpha which is beta over beta - alpha. So this

immediately tells  us that  P n stationary equal  to is  a geometric  distribution okay. So this  is

actually telling you that the probability of finding yourself at a greater height is exponentially

decaying as the height  increase which is  the same as saying that  in  thermal  equilibrium the

density is going to be an exponentially decaying function of the height okay.

That is exactly what it is because this fellow here can be written as e to the power n log alpha

over beta but remember alpha is smaller than beta so the log is negative and you can write this as

- n log beta over alpha and that is an exponentially decaying function of the height, n labels the



height now okay, on a regular lattice. What would happen if I go to a continue what would be the

parameters involved. What would what do you think would be the parameters involved.

In a physical problem where I have continuum diffusion and we will do this explicitly, write the

diffusion equation down; but what do you think would be the parameters involved? These are

imagine these molecules to be spheres or something like that dropping under gravity. There has

to be a characteristic drift velocity due to this gravity. What would that be governed and there is a

diffusion constant. That is what is kicking the molecules up and down.
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So there is certainly a diffusion constant d and what is the physical dimensions of this d? What is

the physical  dimensions  of  this  diffusion constant  um? Ya, remember  that  obeys a  diffusion

equation of the form delta P over delta t equal to D del square p is the diffusion equation of that

kind  for  either  the  probability  of  density  of  finding  a  particle  at  some  point  or  for  the

concentration in a macroscopic picture right.

Whatever  it  is  that  P cancels  out  on  both  sides.  That  does  not  play  a  role  in  the  physical

dimensionality of d. So what are the physical dimensions of D? Length square over time. So this

guy here equal to L square t inverse.  There also has to be a drift  velocity. What would that

depend on? It would depend on the size of the particle on the radius. What else would it depend

on? There is gravity. So it will certainly depend on gravity.



What determines this drift velocity? I take a very light ball bearings or something like that and

put it in oil and it drops down at terminal velocity. What determines the terminal velocity? When

the viscous drag is balanced by the gravity, that is it and what is the viscous drag. There is a

Stoke’s formula  for  the  viscous  drag  right.  So clearly  you have  a  formula  which  says  6 pi

assuming that these guys are all spheres etc. of some radius a, a times eta that is the viscosity

times the velocity right. Let us call that c the limiting velocity or the drift velocity.

That is equal to mg on this side okay. So when these 2 are balanced, you have the drift velocity c

the terminal velocity c. So it depends on m, g, a, and eta the viscosity right but there is a quantity

of dimensions velocity. This is your drift velocity. So what do you think the probability density is

going to go like? We have got thing here in the continuum in the discrete case but now I am

going to ask for P of height z and this is stationary, a height above ground.

So instead of the variable n running from 0, 1, 2, 3 upwards I have a height from the ground

levels equal to 0 going upwards. What is this going to be proportional to? Where you can read it

off from here? This n is going to be replaced by x or z the vertical coordinate and it is got to be a

dimensionless quantity whatever is sitting in the exponent. So it has to go like e to the power

minus something times z.

It has got to do that and that something cannot be time dependent and it must be a quantity of

dimensions1 over length and what is the quantity of dimensions; c over d right. This famous

Peclet  number  or  whatever  you call  it.  So cz over  D. That  is  the barometric  distribution  of

density  in  the atmosphere assuming that  the whole thing is  at  constant temperature.  But  we

already see that in this random walk model.

We already get an exponential decay as you go upwards and there is a boundary in the floor and

you can’t  go below that.  By the  way if  that  is  the  equilibrium distribution  of  the  height  it

immediately tells you here is a case where the mean is not equal to where the probability peaks.

The mean height of the atmosphere the mean height is certainly not equal to the ground because

we would all choke otherwise if everything is concentrated at 0 right.



So you do have an atmosphere. All the molecules do not come and sit down there. What is that

due to, thermal fluctuations. It is due to fluctuations about the about the most probable value or

the mean or whatever. So it tells immediately that fluctuations play a huge role, a very important.

Otherwise, this density is monotonically decreasing with z as z increases and the most probable

value is z = 0 okay but everything is not sitting there.

There is a finite value at which the mean exist. What would that depend on? What do you think

that depends on? Well it looks like c has a viscosity sitting here but there is another relation

called  the  fluctuation  dissipation  relation  which  also  depends on  the  viscosity, the  diffusion

coefficient  also  depends  on the  viscosity  and the  viscosity  cancels  out  there  and what  does

equilibrium thermodynamics tell you.

It says that if you have an energy level epsilon, the relative probability of finding that epsilon is

proportional to e to the minus epsilon over k t right. What is epsilon for a particle that is at a

height z above ground, mgz. So the whole thing goes like e to the - mgz over k Boltzmann T

okay  right.  So  the  characteristic,  the  characteristic  length  scale  in  this  problem  for  our

atmosphere is kT over mg and let us see how big that is to see if this is coming out roughly right

or not. Otherwise the whole calculation is meaningless.
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So kT over mg  how big is kT? What is how big is k? 10 to the - 23. So let us work in those

units. So 10 to the - 23. This is 10 to the 2 say; T in absolute temperature of the order of 300

Kelvin. So 10 to the 2/m what is m? Mass of a molecule, nitrogen molecule for instance. How

big is that? Well the mass of an electron is 10 to the - 30 kilograms. The mass of a proton is 10 to

the - 27 kilograms.

And we got in a nitrogen molecule you have whatever be the molecular weight. How much is

that 28 or something like that. So multiply by another 10. So 10 to the - 26 and then gravity 10,

of the order of 10. So this is 10 to the - 25. This is 10 to the - 21, 10 to the 4; 10 to the 4 what,

meters, 10 kilometers. Absolutely right. Bang on. That is indeed the more or less the extent of the

atmosphere okay.

So very simple considerations where it tells you that is all it can be with this gravity and this kind

of atmosphere these kind of gas and so on and these ambient temperature property this is all it

can be right. It’s the right ballpark magnitude. So this is how the barometric distribution arises. A

little bit later we will solve the diffusion equation with the boundary at the floor, on the floor

okay and you will see that is exactly the stationary solution. Okay let us look at a slightly more

complicated exercise and this would be when you have some dependence on n.
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So let us look at a chemical reaction in which a species A goes to B and let us suppose B also

comes back to A with some rates and I don’t know what notation used for rates but the standard

one is k and this  is k prime. So you have molecule A going to B and B coming back to A and the

product you are interested in the product B and let us suppose this reactions, an extremely simple

reaction.

We will assume there are some enzymes or whatever it is promoting catalyst  promoting this

reaction and let us assume in the simplest case that you have a situation where you got a huge

reservoir of A and you are trying to extract B from it okay and that the reaction, the depletion of

A is insignificant. So we have such a large reservoir of A that the number A practically remains

constant okay.

Then the rate equation for the population of this guy, number of molecules is n. It’s a random

variable, a function of t and we’d like to know what the stationary distribution is, what is the

average number etc. etc., in this case. You already can compute the average number but we need

a model for this whole business. So in this case let us assume that each molecule, each molecule

B there is a certain rate at which it is being formed.

So this problem alpha n which increases the value of n is proportional to k times that is the

reaction rate times the population of A but that is some huge number. So let us write it this is

equal to k times N A equal to some constant say. It’s not changing significantly. On the other

hand beta n is k prime and proportional to the number B. Each of them has a probability or rate k

prime of decaying so this is beta sub n okay. What happens now?

We can write down the rate equation for the change probability P n. But let us look at what the

stationary  state  looks  like  in  this  case.  So  P  stationary  P  n  stationary  apart  from  some

normalization factor is going to be proportional to alpha not alpha 1 etc., etc. up to alpha sub n -

1. That is just equal to K raised to the power n because there are n of these factors divided by

beta 1, beta 2 up to beta n.



That is equal to k prime to the power n, n! sorry k prime to the n because each of them is there

times n!. So this whole thing is proportional to K over k prime to the power n 1 over n! What

kind of distribution is that? It’s a Poisson distribution. In the steady state therefore the population

of n satisfies a Poisson distribution where the average value depends on these constants, the rate

constants okay.

So here is an instance where you can actually get a very powerful result  from fairly simple

considerations in this fashion. let us look at a case where there is dependence on both variables.

Let us look at the example I talked about earlier which has got to do with radiation.
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So the assumption is that you have a quantum harmonic oscillator n = 0, 1, 2, etc., etc. and you

have it in a radiation field, interacting with the radiation field with exactly the right frequency. So

there is this distance is h nu in energy let us say. Then the questions is what are the rates? Now,

the phenomenon is as follows. You shine light on it, if an oscillator is in this state it can absorb a

quantum of light and go up there.

On the other hand if it is in this state on in any exited state it can emit a photon and come down

here. But there is 2 kinds of emission. There’s spontaneous emission and stimulated emission.

You have to include both these guys. So the model that does it is to say that alpha n - 1 is

proportional to some A times n and when you actually compute the quantum mechanical process



by which this absorption takes place you have what is called a dipole approximation, a matrix

element which gives you the probability for this process to occur.

And that leads to a rate of jump which goes like this, a transition rate which is proportion to n,

alpha n - 1. Similarly, it turns out that beta n equal to some B n on this side okay and now we ask

what is the stationary distribution going to be like in this case. So what is P stationary going to

look like P n stationary is proportional to or equal to in this case. It is alpha not, alpha 1, etc., etc.

all the way up to n minus 1 alpha n - 1.

So it is a times a to the power n 1 into 2 up to n/beta 1, beta 2 up to n. So this is also equal to B to

the n 1 into 2 up to n is A over B to the power n proportional. Now, if the oscillator is in the state

n okay it is energy is n times h nu and what is the relative probability. In thermal equilibrium,

when the system is in thermal equilibrium the radiation field as well as the oscillator what is P n

proportion to then, the stationary distribution proportion to.

This fellow has to be proportional to e to the minus beta  h nu n h nu over k Boltzmann T. That is

the canonical ensemble right. So A over B has to be proportional to has to be e to the - n a, h nu

over kt. This is the starting point of Einstein’s derivation of Planck’s law nearly okay. So you put

in all the other factors etc. and you end up with Planck distribution out here. But notice in this

case it was not constants and yet because of this special feature here this factor is canceled out

and you still got this geometric distribution.

We have  already  seen  that  the  number  distribution  in  thermal  light  is  indeed  a  geometric

distribution. We already saw that using both statistics etc. I wrote it down explicitly okay. This

essentially is the same thing. Now let us look at a case where you have a genuine birth or death

problem model. So let us look at, so we looked at this radiation, let us look at population model,

the simplest population model and a genuine birth or death problem.
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So again n starts from 0 and goes upwards okay. The rate equation is something we wrote down

already but we need to make a model for the growth of this population. So let us say that alpha n

this is going to be the rate at which n increases to n plus 1. So let us suppose that each make the

simplest  model that is all births are independent events of each other and we make a model

which is completely trivial in a sense the 0th order if you like to say that each individual has a

certain rate in which the individual can give rise to one more project okay, some constant rate.

So alpha n is obviously proportional to n where a is some constant and similarly each individual

has a rate at which the person dies the probability of dying the rate transition probability so beta

n equal to b times n. That is the total death rate and this is the total birth date here okay and using

this we can now write down what the stationary distribution will look like etc. if it exist but let us

look at what the average does.

Remember that the equation for the average was d over dt n of t equal to alpha n minus beta n

okay. So this is equal to a minus b n of t. What does that tell you? It says this is going to be

exponential growth of population if the birth rate is greater than the death rate finished. This was

the famous Malthusian prediction of the exploding population okay in this simplest of models,

exponentially fast.



One could of course hope that the variation that the variance will do something, will help us a

little bit let us try and see what happens to the variance in this case. So let us look at the equation

for d over dt n square. This was equal to twice the expectation value of n times alpha n - beta n +

alpha n + beta n and what does that give us twice and again this is a minus b. So the prediction

here is exponential growth if a is greater than b. So let us see what this tells us.

Oh incidentally, keeping track of the average value of the population only tells you the difference

between the death rate and the birth rate or the birth rate and the death rate. It does not tell you

individually what is the death rate and the birth rate that is important okay. So this is a - b and

then expectation n square plus a + b expectation n in this side. So let  us compute what the

variance does.
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D over dt  let us put n square of t - n of t whole square equal to this is the variance of n  let us

give it some symbol sigma square a standard symbol okay. So d over dt sigma square equal to

this fellow 2 into a - b n square plus a + b n  d n square over dt and then we got to subtract the

time derivative of this so that is equal to minus twice n times dn over dt but dn over dt is a minus

b n of t n itself. And this factor comes out.

So this equal to twice a - b n square - n average square that is sigma square once again. So sigma

square plus a + b n. That too is increasing exponentially because this guy already is if a is bigger



than b and this is a positive term here and this guy is sitting on the right hand side so this two

will explode immediately. So this is not helping us any this simplest of models.

It is clear there is a huge scatter but at the same time the whole thing is the average is going

exponentially fast. Now we can put in all kinds of various mitigating factors and improve this

model and so on and so forth but the basic problem of exponential growth happens as soon as the

birth rate is increasing greater than the death rate for whatever reason okay. One can look at other

models which have competition which have different competing species etc., etc.

But the fact is that in the most elementary instance this is what is going to happen here. It is

worth noting that if you want to measure the birth rate and death rate separately you need to

measure both the variance as well as the average number because this is going to depend on this

guy here and so you can get information on both a and b separately once you do this okay. There

are lot of other models. There are a huge number of models which we can write down.

In general as I said if the system is linear in n then the problem is actually solvable explicitly and

in the we have restricted  ourselves  to  these one-step processes in  which case this  transition

matrix is a tridiagonal matrix and there are lots of special tricks to take take care of this system

the tridiagonal matrix. For one thing it is not symmetric to start with but you can actually make it

symmetric by a simple trick.

And then you can go some distance in writing down approximate solutions etc. but again I want

to emphasize that when it  is  linear  the problem can actually  be explicitly  solved completely

although the coefficients are not constants but depend on n you can still solve these matrixes

okay. Now there are further delicate questions as to the kind of boundary conditions you put the

nature of the boundary conditions whether they are absorbing or reflecting and so on.

We will come back to this but not in the context of a birth or death model but in the context of

continue model of diffusion. We write the diffusion equation and look at it in the context in that

context we look at absorbing boundaries reflecting boundaries and so on. So when you have



extinction for example you would have what is called an absorbing boundary and that leads to its

own interesting features.

So we will look at that by and by very shortly when we talk about continue. So I am not going to

go further  with these discrete  models  random walks but  we will  now talk  about  continuous

Markov processes where we are going to define once again  probability densities and conditional

probability densities and use some physical examples to illustrate what happens in such cases.
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So  we  start  off  by  saying  that  the  processes  we  are  going  to  look  at  Continuous  Markov

processes and as usual I will denote by X the random variable and by x curly x  the set of values

in a sample space assumed with a for the most general case to run from minus infinity to infinity.

We will look a little later at cases where this x is a vector for instance position and velocity or

position and momentum etc. but for the moment it is just a scalar variable here.

Then exactly as we said in the case of Markov processes in which the variable was discrete we

are going to define a probability density functions of this joint probability density functions and

in the case of a Markov process the most important one is going to be the probability density that

you have x at time t given that you had some x not at time 0 and if you look at a stationary at

some time t 0 for example.



If this is stationary then this becomes p of x, t - t not x not the conditional density and we look at

the one time probability which is this should really have been a P 2 but I am going to omit this

subscript. It will become clear from the context which one I am talking about and then you have

a P 1 of x, t and of course if it is stationary it just goes to a p(x).

And exactly as in the case of the discrete variable I said if there is sufficient degree of mixing in

the system then this tends when t - t not tends to infinity this conditional density tends to this

density here. Depends only on x. Does not depend on the time argument okay. As before we

write a chain equation down.
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The chain equation in this case is once again a p of x, t  x not equal to a summation which

becomes an integration now over all intermediate values dx prime p of x t - t prime from x prime

p of x prime t prime x not where and the time axis here is 0  here is t prime and here is t; any t

prime in between okay. This is the Chapman Kolmogorov equation or chain equation. As before,

we try to convert this into a master equation which is an integro-differential equation by defining

a transition probability W of x x prime from any value x prime to a value x okay.

And then what does this equation go to? This leads to this master equation delta p over delta t of

x t x not. This is equal to an integral over dx prime and then inside here you have a w of x x

prime p of x prime t x not minus the lost term which in this case is x prime x  t of x t x not. This



is our master equation okay and the task is to try and solve this equation okay and the task is to

try and solve this equation okay. We have assumed stationarity.

Otherwise  this  equation  will  have  t  dependences  here  in  these  transition  rates  even  if  it  is

Markov. We have assumed the whole thing to be stationary and if you specify these quantities

now you got to specify functions here, then in principle I have an integro-differential equation

which however is linear in this unknown quantity in the conditional density okay and the idea is

to solve this. So we will take it from this point.

We are going to start here and see what are the possible ways in which we can solve this in

various cases and then we will look at some physical examples. Let me stop here.

.


