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We have seen that the function is analytical some region, then the ((Refer Time: 00:15)) 

condition are satisfied the derivative is uniquely defined at every point the derivative 

itself is an analytical function, and the function has infinite all possible derivatives, and 

they are all analytical functions. Now what about integrating this function? We turns out 

that if your function is analytic in some region R, say some function f of z analytic here, 

then the integral of this function from a point z 1 to a point z 2 along some given line 

along some given contour c integral from z 1 z 2 f of z d z turns out to be independent of 

the actual part you choose between z 1, and z 2 as long as it is a connected path from z 1 

to z 2 that never ((Refer Time: 01:10)) the region of analyticity. So, this thing here is 

independent of the actual path from z 1 to z 2, its independent of that. This should 

remind you immediately of a similar thing that happens in physical application when you 

are looking at the conservative vector field for instance, which can be written as a 

gradient of a scalar field. 
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Then if you have a vector field of u which is a gradient of some phi of r say, and 

integrate this field from some point r 1 to r 2 like this, from point one to point two along 

some path, then grad five dot d r, this thing here is equal to phi at r 2 minus phi at a r 1. 

That is the whole point about using potential when you want to describe a conservative 

force for instance, then you can deal with this potential, because it is scalar as a portion 

of vector, and the field itself is founding taking the gradient of the scalar, but the 

integration along any path is independent of the actual path, and it depends only on the 

end points ((Refer Time: 02:39)). And immediate consequence of this is the an integral, 

then phi dot d r over a close path of some kind is equal to 0, and the same thing is true 

here, because if this thing here is a same as that integral. Then this integral plus that 

integral is equal to 0, and it immediately implies that the integral of an analytic function 

over a close contour is identically 0.  

A consequence of the Cauchy’s conditions, this is called Cauchy’s theorem integral, and 

I will denote a closed oriental contour by this symbol, I have to tell you the directions in 

which I go always whenever I ((Refer Time: 03:32)) contour could be the direction, it 

does not matter f of z d z equal to 0. For any close contours equivalently from any point 

to on it any other point on it, the integral is independent of the path itself. So, you can 

actually deform this path like a rubber band, you can shift this all over the places as long 



as you do not cross the region of analyticity, you do not cross any singularities, and so 

on; this thing remains 0. And the so power full a statement as a very powerful statement, 

and we are going to use that exploit this all the time, this idea that you can deform or dis 

taught the contour of integration without changing the value of integrate, that is going to 

be a sort of central ((Refer Time: 04:19)) in very large number of things that I am going 

to say that this definition of the contour does not change the value of the integral, that is 

going to be exploited to that most. Now before we go on with this I want to show you 

how this can be exploited, we need to finely come to terms with the idea of a singularity 

of analytic functions. And let us do that I just reminds you, since many of you already 

come across simple examples of singularities. So, let us start with that them, the first and 

simplest class of singularity which I am not going to pay attention to all the one the 

really should in a regular scores is so called removable singularity. 
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But will get over the simply strategy, and as well see these are the removable 

singularities for instance would be those singularities, which look like the function as 

singular, but if you define the function appropriately is not singular at all. For instance 

suppose you had sin z over z this, as z tends to 0 this thing becomes in determinate this 

quantity becomes in determinate. But it has a finite limit, it has a limiting value, and the 

limiting value as z tends to 0 is equal to 1. 



So, I could actually define this function as f of z equal to sin z over z for z not equal to 0, 

and equal to 1 was z equal to 0, then I ensure continuity by doing that, and then this 

singularity that z equal to 0 does not exist at all its remove its gone. So, by this trivial 

example make this little more ((Refer Time: 06:09)) I am going to get rid of removable 

singularities of this kind, assuming that the function is defined appropriately by limiting 

value, so that continuity is preserved and so on so forth. So, we want to any more 

attention to this kind of thing, look at really actual singularities. Now analytic functions 

themselves, we call that non singulars once, we wrote in the form n equal to 0 infinity 

some coefficient c n z minus z not to the power n by the way.  

Let us we can leave this z not as it is for the movement, but since I am going to use z not 

for the other purpose, let me use the symbol a here. In other words, I am describing the 

function near the points z equal to a, and the claim means if it is analytical z equal to a, 

then I have a power series, Taylor series convergent in sites some circle of convergents 

about the point a. To this nonsingular or regular part I could add portions which have 

specific singularities, and simplest of these is when the function looks like f of z equal to 

some coefficient c divided by z minus a. So, an addition to non negative powers of z 

minus a, there is a negative power to power one into remind myself that this is z minus a 

inverse minus one. Let us call this co efficient c minus one plus ((Refer Time: 07:46)). 

So, if in the neighbour hood of z equal to a some point a of function has this kind of 

behaviour namely most of it is Taylor series, which is analytic at z equal to a, but there is 

a portion which diverges becomes infinite, and z equal to a, and it has a behaviour which 

goes like one over z minus a. Then this function is set to have a simple pole at z equal to 

a, and the residue at this pole equal to the co efficient c minus 1, and we will see little 

later why this residue so crucial. In fact, the whole of the complex integration is 

sometimes called the calculation of the residues, because we are going to be evaluating 

the residue the various functions. And this part is a singular part, and this part is a regular 

part. Now this singularity may not be overt may not be always obvious, may have to 

work little bit in order to extract this residue. 

For instance, suppose we have the this function sin z over z square, what sort of 

singularity does it have near z equal to 0, it is clear this function is blowing up z equal to 



0, because it is in extra power of z in the denominator, but what kind of singularity does 

it have. What we should do? We should take the sin z which we know as entire function, 

and expanded in a power series in z, and then divide by this one over the z square, and 

see what happens? This of course, is equal to z minus z cube over three factorial plus dot 

dot dot divided by z square. So, gives your one over z minus z square over three factorial 

plus regular dot, this function. And it precisely of this form, these are non negative 

powers in the form the regular part happens to converge for all finite z in this case. But 

this portion is singular at z equal to 0, and what is a residue? It is the co efficient of one 

over z minus a, that is the residue at the point, and what is the residue on this skills? Is 

just one uniquely in this case.  

So, in more general circumstances, if we had f of z equal to say g of z over h of z ratio of 

two smooth functions say, and a little function say, let say at g of a is not equal to 0, and 

h of z has a simple 0 at that point. So, this means that h of z is a form h of a which 0 plus 

z minus a h prime of a plus higher orders, and g of z is the analytical source at g of a plus 

other terms of conditions g of a 0, and that say. Then what can we say about f of z at z 

equal to a, what sort of singularity ((Refer Time: 11:40)). Well in the neighbour hood of 

z equal to a, this goes like g of a plus z minus a g prime of a plus dot dot dot. And this 

kind of here in the denominator goes like z minus a h prime of a plus higher order terms. 

So, it is clear that limit us he go to a, this term dominate this comes out, and it has a co 

efficient, which is g of a over h prime of a. 
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So, what sort of singularity does it have simple pole, but what is the residue g of a over 

((Refer Time: 12:26)), that is the very useful think to reminder. So, one could ask what is 

a general formula for this function, suppose I say f of z has a pole, simple pole at z equal 

to a, residue what is the residue at this point? How do do this? Well remember it is of the 

form c minus one over z minus say plus regular part. Now extract that c minus 1, the 

obvious think to do multiplied by c minus a, and then let z go to a. So, it is immediate 

obvious the residue is equal to their limit as z tends to a z minus a times efforts. 

Because this fellow will have c minus 1 over the z minus a which will cancel this, and 

the next term will be a regular part, but if put z equal to a after multiplying by z minus a 

vanishes. So, that is the quick way extracting the residue. All you have to do these to do 

this, where does this function one over sin by z where it is does it has singularities sin pi 

z itself is an entire function we know this. And it vanishes sin pi z vanishes whenever z 

equal to any integer 0 plus minus 1 plus minus 2 and so on. So, where this function has 

singularities, this is cosine by z, where does it have singularity at all integers at every 

integer its singular blouse up, what sort of singularity is it? And only one ((Refer Time: 

14:27)) simple pole. So, the singularity is a simple pole, but everyone of these point. 

Because sin pi z as a simple 0 at that point, simple zero and z equal to a means, it is half 

the form z minus a, and not z minus a squared or cubed or anything which are higher 



orders zero. 

So, this function has simple pole that is all the integer values, and what is the residue? 

When the certainly has a singularity at z equal to 0 right that immediately obvious. What 

is the sin phi z do as z tends to 0 tends to zero, but always you have to tell me, not to 

limiting value, but what is the leading behavior? What is the leading behaviour of sin pi z 

as z goes to 0 pi z, pi z itself.  

Now I have one over sin pi z, so what is the leading behavior, one over pi z right, what is 

the residue? 1 over pi. What is the residue of the other, other points what is the residue of 

this at z equal to n, you have to do this, you have to do this. So you have to find the limit 

z tends to n. 

Student: ((Refer Time: 16:05)) 

((Refer Time: 16:07)) So, z minus n over sign by z. Find the limit of this, reason I am 

doing this, because these studies this ((Refer Time: 16:29)) rules for finding the limits of 

ratio which became indeterminate in high school, and after the got through entrance 

exam they ((Refer Time: 16:37)). What this equal to differentiate this, differentiate this, 

and said z equal to n in what happens? If differentiate this, we get one, you differentiate 

this pi cos pi z, and what cos pi n minus 1 to the power n. So, this thing is equal to minus 

1 to the power n. 

So, we are guarantee the cosec pi z in the neighbour hood or any z equal to n any integer 

n goes like minus 1 to the power pi plus a part plus regular, and z equal to n. The part 

that regular and z equal to two for instance will lead to a singularity at z equal to 3 at a 

contribute to the singularity elsewhere. So, you have to be careful at each pi the residue 

((Refer Time: 17:48)) quite different as it is in this case. So, we will use the idea of 

residues finding residues of functions co extensively, but it should be very quick at 

finding this limits these points, but this is a very simple ((Refer Time: 18:06)) residue at 

the point.  
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But now could ask we talked about simple poles. What happens if this function f of z has 

what a call multiple poles multiple of higher order poles, multiple poles. So, f of z is a 

form thus a regular part, n equal to 0 to infinite c n z minus a to the power of n which 

may or may not terminate at some point. We do not care, but its convergent certainly in 

some region some circle about z equal to a plus a portion, which is c minus one over z 

minus a plus, let say there are however, higher order terms here more negative parts, and 

its starts at some c minus m over z minus a to the power m plus dot dot dot, where n is a 

integer bigger than one h m, then this function is set to have the pole of order n, and z 

equal to a. 

So, if it turns out that in the neighborhood such a point, the point a this function has a lot 

of negative powers of z minus a terminating at highest power some nth power z minus a 

to the power minus n, and then less singular terms and then a regular part here, then this 

function has an nth order pole at z equal to a. And for a region ((Refer Time: 20:00)) to 

become clear, here interested always in the residue, but remember in the residue was 

defined as the coefficient z minus a to the power minus 1, this term is important part this 

thing here, and be need to find this term. Now the question is how we gone to extract this 

term. Earlier we extracted the quite simply, because this thing had c minus 1 over the z 

minus a plus a regular part all I did goes to multiplied by z minus a, and then said keep 



limits z goes to a got c minus 1. 

You cannot do that now because these things will block. So, how do I 0 in on this 

coefficient c minus 1, this is the residue. It is still the residue at the pole. How do a find 

that? ((Refer Time: 20:54)) what limiting procedure would a suggest do this? It is clear, I 

am multiplied z minus a to some power, and then I am said z equal to a, but any power 

less then n is going to ((Refer Time: 21:09)) trouble. 
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So, I multiplied by z minus a to the power of m f of z into a, and this series this regular 

part converges inside here, let call this radius r 1, the regular part converges inside, this is 

circle of convergences of radius r 1. Since this is an infinite series with negative powers, 

you should also ask what is the radius of convergences of this thing, otherwise it does not 

make sense it should converge right. Now this radius of convergences is specified region 

outside which the series convergences, because if put one over z minus a equal to w for 

instances, some other complex variable. Then it’s a power series in w, and this see in 

positive non negative power of w, and that converge for mod w less than some number r 

2 or if you like mod z minus a greater than these one over then one over r 2.  

So, it is clear that this series actually converges outside some neighborhood or z is equal 



to a. So, perhaps it converges ((Refer Time: 22:28)) outside. So, we are said now you 

cannot write representation like this, because this portion requires you to be inside here, 

but this portion to make sense requires you to be outside there. The only way that we 

make sense out of such a representation is if this regular series converges inside some r 

1, and other series converges outside some r 2, and everywhere else it converges outside. 

When in this overlap region between the two which is an angular region both series 

converge, and this series representation for this function make sense.  

So, typically series of this kind they call by the way Laurent series, and they would 

typically converge in some angular region all these. So, you require that r 2 less than 

mod z minus a less than r 1, typically in region of this kind, it could be that r 2 ((Refer 

Time: 23:54)) to a point 0 alone, and could be that r 1 extend all the way to infinity, that 

is possible. Here is an example consider this function.  
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Consider the function e to the power of one over z, this function is of is of the form one 

plus one over z times one factorial plus one over two factorial z square plus etcetera. So, 

it can be written in the form summation n equal to one to infinity one over n factorial z to 

the power n, that is the singular part here plus one in this case, that is the regular part, 

and z is equal to zero. So, all negative parts negative integer parts of z appearance in 



series, and the series converges as long as well e to the power of z converges as long as 

mod z is finite, which means mod z is not 0 that is it. So, this series converges in mod z 

greater than 0, outside the origin, where does this series converge? It is a constant it 

converges everywhere including the point at infinity. So, this whole thing converges 

from mod z greater than 0. So, this representation of this function is valid in the region 

((Refer Time: 25:49)) essential singularity at the origin, and isolated essential singularity 

as z is equal to 0, and this Laurent series converges everywhere outside the origin 

including the point at infinity. So, in this ((Refer Time: 26:09)), plane it converges 

everywhere. What is the residue of this function at z is equal to 0, it is the co efficient of 

one over z always what is residue? It just one.  
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Suppose I added to this, suppose I added e to the power one over z plus e to the z. Now, 

what is the Laurent series look like. Well as before I would write this as summation n is 

equal one infinity one over n factorial z power to n plus n is equal 0 term here, n is equal 

to 0 term is one plus one plus summation n is equal to 0 to infinite, if you write it as one 

to infinity z to the power of n by n factorial, and then that is two. Now what does this 

converge for, where does this converge mod z is greater than zero. So, this requires the 

mod z is greater than zero. So, in complex plane it say everywhere except the origin at 

converges, and where does this converge or finite mod z. So, mod z is less than infinity 



mod z less than infinite. So, where does the whole thing converge? In an angular region 

of although you do not see the angular, angular region 0 less than mod z less than 

infinity.  

So, on Riemann surface on the Riemann sphere, it converges everywhere except the 

south pole, and the north pole; except those two points south pole remember is the origin 

on the complex plane, and the north pole is point of projection is the point of infinitely. 

So, on that sphere becomes is easier to visualize, it converges except for the two pole, 

except those two point it converges infinitely this function. Now what about this 

function? What about e to 1 over z square, what sort of singularities does it have and 

where, at the origin yeah, it is in the origin what sort of singularities is it? It is a pole of 

finite order or it is an essential singularities, it is an essential singularity. What is the 

residue at origin?  

Student: zero. 

Zero, the residue of origin is zero in this case. There is no one over z 1 over z. 

(Refer Slide Time: 29:19) 

 

What about this? What sort of similarity does it have? Essential singularities exactly 



equal to 2, and the residue is 0, there is no co efficient one over z minus 2. So, the 

residue is 0, what about this?  

It is got an essential singularity at z equal to 2, because those negative powers can be 

finished by this single power of z minus two, and what is the residue? Minus one minus 

one, because you got leading term here one minus one over z minus two whole square, 

and that gives you minus one over z minus two. What sort of singularities does that have 

essential, it is residue 0, there is no one over z minus two term possible in this case, and 

so on. So, you can compute residues in varies cases, let us come to why this residue so 

important? Why I am making such big deal about this residue, the reason is following the 

reason is ((Refer Time: 31:00)) in a property of integral which is very, very simple to 

state, but extremely powerful. Let me state this, I think here.  
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So, consider this integral, integral z to the power of n is d z over a circle which inside 

over a close contour which encircles the origin. By the way this function z to the power n 

is an entire function, it is for positive integer value of n, non negative integer value is n, 

it is an analytic function everywhere except at z is equal to infinity. So, it is clear that if 

you encircle the origin once in this passion in a close contour c, this is equal to 0 for n is 

equal to 0, 1, 2, etcetera, it is clearly equal to zero.  



Now we can prove this in many, many ways; one of them is to say well as long as you 

are in region of analyticity you can distort this contour, so you can actually sink to a 

point, and then it disappears altogether or you can if you like say that it is a same as an 

integral over the unit circle, this thing here is equal to an integral over the unit circle, and 

on the unit circle on this circle z is equal to e to the power i theta, because r is one on this 

circle, and then d z is equal to e to the i theta i d , and this integral d z to the power of n is 

equal to integral 0 to 2 pi e to the n plus 1 i theta, and is equal to 0, because you cosine 

and sin from 0 to 0 to pi, and everything vanishes.  

So, for all non negative integer value is n, this integral is 0, What happens, if we have 

negative powers. So, consider d z divided by z to the n plus one, where n is 0, 1, 2, 3, 

etcetera. What happens to this integral? I play the same trick, but here now this is a pole 

at z is equal to 0, what is the order of pole? n plus one order the pole the order n plus one 

whatever with this n. And now write that integral down which is perfectly all right, 

because singularities are at this point, and the is not passing through this singularities. 

So, it perfectly well defined in that region. And then what happens? you get equal 

integral 0 to2 pi d theta, and then there is in e to the i theta i d theta the z divided by e to 

the n plus 1 i theta, and theta which is equal to integral 0 to 2 pi d theta e to the minus n i, 

and then i. What is the value of that integral, but the input n equal to 1, 2, 3, etcetera is 

certainly. What happens if you put any n equal to 0 then its 2 pi then its two pi clearly. 

So, this integral is also 0 except one n equal to 0, and then the answer is 2 pi i. 
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So, it follows that this integral 1 over two pi i integral over a closed contour encycling 

the origin once in the positive sense, that is why you run from 0 to two pi not the other 

way above d z over z to the power n plus 1, whenever n the 0 the answer is one, and 

when is n any other integer positive or negative the answer is 0, this is equal to ((Refer 

Time: 35:30)) delta of n is 0 is a curial result. So, vanishes except when it is one over z 

in this form. And of course, you can immediately generalize this, and say this contour we 

look at point a, and look at close contour which I am circles in the singularities at a 

alone, and you could replace this z minus a to the power n plus 1, and this contours c 

include the c. And then for except for terms which goes like except is in goes like one 

over z minus a, the answer is zero.  

So, now it immediately follows that you have a function with poles, and z is equal to a 

some poles, and you integrate f of z d z around contour, simple contour which encloses 

the pole once in the counter clockwise sense, what will be equal to because it is called of 

poles or may be a essential singularities that point, you expand this in Laurent series of 

about the points are equal to a. And then as long as you remains in the this contours, 

remains in the region, the regular part this till regular, it is immediately clear that all the 

terms are going to be 0 in then singular part, and definitely in the positive regular part, 

there already 0, because of Cauchy’s integral theorem. The only term that will contribute 



on the negative side is the one that is coefficient one over the z minus a. And what’s the 

coefficient of one over z minus a, the residue. So, this is equal to one over two pi i equal 

to z the residue equal to a. So, this is ((Refer Time: 37:44)) integral formula, that is going 

to help us evaluate the large number of integral. 

So, what it is does, it is reduce the evaluation of line integral, contour integral to 

algebraic operational, just finding the residue of the integrant at the point. We will see 

how powerful this statement is, you have do is do evaluate this, Suppose this contour 

((Refer Time: 38:22)) around twice, what would happened the answer would twice. If it 

went around twice in the negative sense what would happen minus two times this. So, it 

would has the winding number of r around this point, there r is the positive or negative 

depending on the sense in the ((Refer Time: 38:42)) then the answer is minus two pi 

times the residue at the point. 

What this equal to e to the power 1 over z integral around the origin d z, So, this is an 

essential singularity here, and this contour looks like this. What this equal to this is called 

back singularities at z equal to 0, the essential singularity, we do not care. All that your 

interested in is a residue at that point. What is the residue at that point? One. So, what 

this answer equal to 2 pi r, the guarantee it that. What this equal to 0, the guarantee it that 

((Refer Time: 39:36)) is equal to 0. We look at the large number of many more 

complicate that example, but this is a very, very simple way of ((Refer Time: 39:49)), 

always do is find the residue at that point. And they going to the large number tricks for 

changing this contour to other contour and so on, all ((Refer Time: 39:57)) that it is 

deform of this function.  


