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Greetings, we will discuss the Reciprocity theorem today. We did the optical theorem in our

previous class of course we have talked about the optical theorem earlier as well. And we

have seen its connection with the unitarity of the scattering operator the conservation of flux.

And we will go beyond the reciprocity theorem.

And pick up our discussion on the analysis of phase shift, scattering phase shifts. Because we

know that they are intimately connected to the target potential and they contain the physical

information about the target potential.
(Refer Slide Time: 00:57)

So, the expression for the scattering operator that we used in our previous class is this that the

scattering operator was defined as 1 + 2ki times the operator f where f was defined through

this relation. It operates on a function of a direction okay; n prime is a direction unit vector. It

picks a certain direction in space and you generate this integral from this operation so that is

the definition of the f operator. 
Now  in  terms  of  this  we  wrote  the  total  wave  function  to  the  scattering  problem  as  a

superposition of in going waves e to the -ikr and outgoing wave’s e to the ikr and you can

combine these two terms. To write it in this form in which the scattering operator appears

explicitly and its effect is what is included in the coefficient of the outgoing spherical waves.



And therefore it gives you information about scattering because that is where the scattering

amplitudes right. 
(Refer Slide Time: 02:20)

So, this is the expression that we have for the total wave function. Now let us play with this a

little bit do a complex conjugation first okay. We pick the scattering solution get its complex

conjugate and notice that –i here goes to +i, F goes to F star this +i goes to –i. The scattering

operator goes to S adjoint right and this F goes to F star okay. 

So, all we have done here is the complex conjugation of the scattering wave function. The

next thing, as some of you might anticipate is let t go to - t okay. So, you have got a plus

omega t here which goes to - omega t and there is a - omega t here which goes to + omega t.

So, this is this solution that you get on complex conjugation.
(Refer Slide Time: 03:30)

And time reversal and the time reverse function is what we have written over here. And we

now look at the space part of the time reversed function. This is the time reversal symmetry



that we have discussed earlier in other context right. And we know from our discussion in our

previous course and those lecture notes and even the video lecture is available you have the

reference. 

The,  whenever  you  deal  with  time  reversal  in  quantum  mechanics  you  need  to  engage

complex conjugation as well as t going to – t, the two things go together. So, that is exactly

what we have done and we now extract just the space part of the time reverse function. So, let

us study the space part of the time reverse function. So, this whole thing is a multiplied by e

to the -i omega t and if you leave that factor out the rest of it is over here in the space part.
(Refer Slide Time: 04:36)

So, this is the space part of the time reversed function and if you focus your attention on this

term here which is S star operating on F star okay. How did we get this S star it came from

the complex conjugation step right. So, you have the S star operating on F star and we now

introduce a new function Phi by using this definition of Phi function.

Phi function is so defined that S star Phi star = - Phi with an argument in which the direction

of the unit vector is reversed okay. This is the definition of Phi okay. So, now this is your F

star n star and you will preserve this relation if you pre operate on this by a unit operator

which I resolve as S star inverse S star okay.

S  star  is  the  complex  conjugate  operator. So,  I  pre  operate  on  this  function  by the  unit

operator resolved as such. And now we make use of this definition here because F star n

prime when you operate on this by S star you get - Phi times - Phi with the argument - n

prime. So, this is the one that you find from this part alone S star operating on F star. And

now you have got the S start inverse operating on it okay.



This is very simple operator algebra but it is going to give us some very exciting results. So,

what is this equal to S star inverse is what you have; you just have the minus sign brought out

okay. So, you got minus of S star inverse operating on Phi of - n prime but this is the inverse

of a certain operator coming out of the scattering operator. And you know that the scattering

operator is unitary.

So, this relation is completely equivalent to - S star adjoint operating on this right. What we

have used over here and going from this step to this step is the unitarity of the scattering

operator which we have established in the previous class. So, now we have got the unitary

operator you already have S star over here and in this adjoint, what does an adjoint do? It

does transposition and complex conjugation right.

So,  in  this  process  of  taking  the  adjoint  of  this  operator  you  will  have  the  complex

conjugation  as  well  as  transposition.  So,  the  complex  conjugation  will  sort  of  undo  the

complex  conjugation  indicated  by  this  asterisk  over  here  and  you  will  be  left  with  the

transposition alone which is indicated by this tilde on top of this operator okay. So, the tilde is

the complex conjugation, so S star adjoint is s tilde okay, tilda stands for transposition.

So, now consider the parity operator what does the parity do it will reverse the direction of

the argument okay. So, here if you have got a direction, this direction is reversed by parity

right. So, parity operating on F star n prime would give you F star - n Prime. So, what is F

star n prime, F star n prime is over here it is - Phi times Phi of - n prime. So, that is the term,

you right over here, fair enough. 

And if you now recognize that you have got - n prime that this is something that will result by

the  operation  of  the  parity  on  Phi  because  that  is  precisely  what  parity  will  do  to  this

direction, it will reverse it. So, now you have got another result here that F star - n prime is =

- PS tilde P operating on Phi. 
(Refer Slide Time: 09:31) 



So, let us carry this result to the top of the next slide here. So, this is the result which we have

recovered that F star - n prime = - P S tilde P operating on Phi. This is the space part of the

time reverse function in which you have got F star this term over here. But this we have

found to be equal to this. 

So, what we can do is replace this term by its equivalent term on the right hand side and write

this term, rewrite this term as - P S tilde P operating on Phi okay good. Now what about this S

star F star operating on n prime is using the definition, we already have this result which is -

Phi up with an argument - n prime okay. 

This is the original definition of the function phi. So, using this definition we can replace this

term in terms of Phi. So, replacing this term S star operating on F star using the definition of

Phi we replace this term by -Phi -n prime and what is this? This is the space part of the time

reversed function okay. 
(Refer Slide Time: 10:58)



So, the space part of the time reverse function is now written in terms of the function Phi we

started out with the function f. But now we have it in terms of the function Phi everything is

in terms of function phi. And I just write, just for convenience the ingoing wave terms first

and the outgoing above wave term next. 

So, there is nothing new in this relation which is not there in the previous one except that I

have written the second term first and the first term second. Because that makes it easy for

me to compare this form with how we had it in the original function. In the original function

we had the ingoing wave term first, so now if you look at this comparison okay. What have

we done? We have just done a little bit of you know simple mathematics.

We have not operated on the function by some other physical operators and change the state

of the system and so on. So, you are essentially talking about the same physical state of the

system but written differently now. It  is  exactly  the same thing that  you started out with

which means that these functions Phi and F these are this is only a matter of notation.

Because we have not done any operation any physical operation to change the state of the

system, is the same physical state. But now written in terms of a different notation and since

notation is not central to physics you can call a function as f, Phi, Psi, Xi whatever right.

What is important that it is a certain function of a direction right? So, here the direction is n

prime, here the direction is -n prime okay.

And these things you cannot tamper with. So, if you look at that here you have got a function

of n prime here you have got a function of -n prime it is exactly the same. And if you now see

the operator identity then the operator PSP must be exactly equal to this S but find you on this

middle S there is a tilde okay, there is a transposition.



So, you get an operator identity that PS tilde P = S where S is the scattering operator S tilde is

defined as its transposed operator okay.
(Refer Slide Time: 13:50)

So, this is an operator identity that you get and if you now look at these pictures they are

rather interesting. See that you have got a certain direction of incidence which is the unit

vector n. There is a certain direction of scattering which is n prime. And we take away the

polar axis which is the axis of reference to be the scattering direction okay. 

Earlier on we had the incident direction as the direction reference direction for the polar axis.

But when we consider the unitarity and the superposition coming in from the phenomenology

being  invariant  if  you  construct  a  super  position  with  respect  to  all  different  incident

directions right then the reference direction considered was the scatter direction.

So, now you have the scattered direction indicated by n prime it could be any direction in

space which is why I have drawn these arrows randomly it is some direction in space and

then  you  have  got  this  direction  over  here  which  is  the  direction  of  incidence.  Now

interchange the incidence direction and the scattered direction okay.

So, this  direction  is  what did I  now call  as n prime and this  is  what  I  call  as n.  I  have

interchanged change n and n prime which amounts to interchanging the direction of incidence

and the direction of scattering okay. Having done it the next thing we do is reverse the sign.

You reverse the sign of the scattered direction, reverse the sign of the incident direction as

well what have you done? You have reversed the motion right.

You have essentially  reversed the motion which is why the time reversal operator should

actually  be called  as  motion  reversal  operator  and that  is  the  correct  term.  But  the  time



reversal has come into vogue and we continue to use it. But essentially the process that we

are discussing at the time reversal operation is this motion reversal which is what we have

considered in these pictures.

And because of this motion reversal symmetry the time reversal symmetry that we talked

about this operation S n prime if you interchange you get n prime first and n next and when

you reverse the signs you get -n prime first and -n next and these must be exactly equal okay.

This  is  very  beautiful  argument  which  gives  you  some  insight  into  the  motion  reversal

symmetry.

And this is straight out of Landau Lifschitz book Quantum Mechanics, The Non Relativistic

Formulation and I strongly recommend that you refer to Landau Lipschitz book for this part.

So, this is the motion reversal of the scattering process.
(Refer Slide Time: 17:07)

What it essentially means that if you interchange the incidence and the scattered directions

and reverse the signs you get this expression for the scattering operator. And what it results

with  respect  to  the  scattering  amplitudes  that  when you express  the scattering  amplitude

defined in terms of what is the scattering amplitude a function of, it is a function of the angle.

And how do you measure this angle? You can measure it with reference to the direction of

incidence how much has the scattered direction changed okay. That is the original definition

of the angle that comes in the scattering amplitude. And now result is completely equivalent

because of this relationship that you recover the scattering amplitude in which the incidence

direction is - n prime and the scattered direction is - n right. 



So, that is the result that you get which is known as the reciprocity theorem that the scattering

amplitudes for two scattering processes which are time reversed processes of each other are

exactly the same okay. So, this is allowed in quantum theory that if a particle come this way

and  get  scattered  this  way  then  it  could  come  this  way  get  scattered  this  way  and  the

corresponding scattering amplitude will be the same okay. 

The scattering amplitude which is a measure of the probability of the process that is what you

are interested in. So, what is the probability that a particle comes this way and get scattered in

this way that probability is now exactly equal to the probability that it comes this way on the

scattered particle goes this way right. So, this is the reciprocity theorem and this is also a very

nice thing to learn it is an expression of motion reversal symmetry.
(Refer Slide time: 19:04)

And essentially  what  time reversal  does is  interchanges  the initial  in  the final  states  and

reverses the direction of motion of the particles  in those states okay. So, this  is  the time

reversal symmetry in scattering phenomenology. 
(Refer Slide Time: 19:26)



And we have considered this earlier in the discussion of recognizing photo ionization as half

scattering right. Which were also connected by time reversal symmetry the solutions were

connected were recognized as time reversed solutions of each other. 
(Refer Slide Time: 19:45)

And this we have discussed in a different unit in the previous course. So, I will not repeat that

part of the discussion.
(Refer Slide Time: 19:55)



And now we will consider the partial wave analysis in some further detail because we have

been saying repeatedly that the objects of central interest in scattering theory are the phase

shifts. The phase shifts are the one which contain information about the target potential right.

So, if you look at the partial wave analysis.
 
Let us begin to see how to extract information about the potential from the phase shifts okay.

We have only said that the phase shifts are generated by the target potential. But how do we

get information about the potential  from the phase shift.  So, we are now getting into the

details of phase shift analysis.

And we find that the total scattering cross section is now given by the sum of all these partial

wave contributions. And we have obtained this expression earlier, so let us use it okay. And

let us also use the fact that we used some semi classical arguments to show that you do not

have to consider all the infinite partial waves but a certain maximum number is sufficient

okay because of the centrifugal barrier effect.

Now consider  the  scattering  phenomenon in  which  you do not  have  to  consider  a  large

number of partial waves that depends on the details of the target potential right. So, there may

be a situation and indeed there are some situations I am going to give you an example of one

of those. 

In which you really do not have to consider a large number of partial  ways you need to

consider  only one of them. Which is  the lowest  one l  = 0,  which is  the case of s  wave

scattering okay, l = 0 is the s orbital right. So, these are the s wave’s s partial waves and if s

partial waves alone are involved in a certain scattering process you need to consider only one

term. 



So, the term that you are dealing with this sigma total is completely given by a single term on

the right hand side which is sigma 0. And what is that sigma 0 = sigma 0 = 4 PI over k

square, 2l will be equal to 0, because l = 0. So, 4pi by k squared times sine square delta is the

contribution of the s wave to scattering cross section right.

Now what happens if this phase shift goes to n pi, if for l = 0, if the phase shift goes to n pi,

sine of n pi vanishes. What does it do to the scattering cross section? 0, there will be no

scattering, so you have a target; you have an incident beam but only s wave scattering is of

interest in this case, you do see the scattering okay.

But what does the phase shift depend on? It also depends on k. So, only at a particular value

of k v delta of k become equal to n pi, for lower values or higher values of k it will not be so

right. So, there will be some energy and what is kh cross square k square by 2m is the energy,

so k is going to change with the energy of the incident beam. 

So, there will be some energies of the incident beam which will not be scattered by the target

at all, whatever comes in will be seen on the right hand side on the other side of the target as 
if the target was completely transparent to the incoming beam and scattering cross section

will vanish at those energies.

And this is what is called as a Ramsauer Townsend effect, so this is, if the electrons will come

they will just go through the target this is called as our Ramsauer Townsend effect. And if you

remember when we discuss some, one dimensional analogues of scattering I had mentioned

this  in  even  in  one  dimensional  problems,  you  have  this  transmission  coefficient  and

reflection coefficient and that shows some oscillations if you remember that.

But that is I do not want to get into one dimensional problem at this stage. So, the Ramsauer

Townsend effect is you can see in various experiments this is the probability of scattering and

it goes to a minimum it very nearly vanishes okay, does it quite go to zero because there may

be  some  residual  contribution  from  other  partial  waves  okay,  s  wave  scattering  is  the

dominant one but there may be a little bit of contribution from some of the other ones.

So, it does not quite go to zero but it does go through a minimum. And this is the low energy

scattering which was seen in rare gas atoms like Xenon, Krypton, Argon and so on. I would

like to refer you to this very nice paper in the American Journal of physics by Kukolich, I do

not know how exactly I should pronounce this name. But this is a very nice paper to read in

the American Journal of physics.



And you see that it  discusses the realization of Ramsauer Townsend effect in low energy

Xenon scattering okay. So, this is a very nice quantum effect and this will have no classical

analog at all because you have an incident beam which gets scattered. And then if you just

change the energy and somehow the scattering vanishes like magic okay. So, this is what

quantum mechanics does to physics.
(Refer Slide Time: 26:12)

And we will now discuss the phase shifts further. So, you already see that the phase shift

plays  a  very  magical  role  and  it  is  going  to  be  generated  by  the  potential.  So,  certain

potentials will be capable of causing such effects because this, the disappearance of the cross

section has come because of a particular property of the phase shifts. So, phase shifts play a

essential role in collision physics.

So, we will study these   phase shifts further and best way to study them will be to consider

phase shifts  caused by two different  scattering potentials  okay. To study how phase shift

depends on potential we will consider two potentials and ask what will be the phase shift

caused by one potential. 

How does it compare with the phase shift caused by the other potential, is it the same, is it

different. And if it is different, how do these two potentials differ from each other that is what

will give us knowledge about the two potentials right.
(Refer Slide Time: 27:29)



So, we will consider scattering by two potentials now and we are now dealing with a reduced

potential  which  is  just  scaling  by  this  2m over  h  cross  square  which  is  to  simplify  our

notation. We will also deal with the radial function written not as capital R but as y over r. So,

that we consider the differential equation for the little y okay. 

So, the radial equation for the Schrodinger equation you get by separating the angular part.

And the radial part if you multiply my little r you get the y function and the differential

equation that y must satisfy is this right. For the potential U and now if you are considering

two different potentials there are two such equations one for U and the other for the other

potential.

The second potential I am denoting by U bar, so there is a bar put on top of this U. So, there

are two potentials one is U the other is U bar, these are the two potentials and their solutions

are respectively y and y bar. So, these are the two functions which are solutions to the radial y

equations. So, you can normalize them each potential will be responsible to generate a phase

shift right which is why you get a phase shift delta from the first function.

And phase shift delta bar from the second function. So, we have used these relations earlier

except that now we are using two of them okay. So, each of these equations we have seen

earlier  but  now we  are  considering  them as  a  pair,  so  that  we  see  what  is  the  relative

difference between the phase shift caused by the potential U in comparison with the potential

U bar. 

So, this is the normalization you have got the phase shift because of the potential U and the

phase shift delta bar caused by the potential U bar.
(Refer Slide Time: 29:30)



And these are the differential equations we are dealing with. And now let us do a little bit of

simple mathematics  with this  take the first equation multiplied by y bar, take the second

equation  and  multiply  it  by  y  call  them  as  equations  A  and  equation  B  after  this

multiplication.

And then subtract equation B from equation A okay. So, the product terms like k square y y

bar and k square y bar y will cancel right. And the remaining terms will give you y double

bar, y double prime, y double prime. Prime denotes derivative with respect to r okay. So, y

double prime is d2y by dr2, so that is the result of this operation d2 by dr2 right. 

So, you get y double prime y bar - y bar double prime y the term in which you have got

multiplication by k square and this - l into l - 1 the centrifugal term they will cancel each

other right. And then you will have these terms U - U bar and then y bar y make sure that you

keep track of the sign correctly  because you are doing a  subtraction  and there are  some

intrinsic minus signs okay.

So, if you just do it carefully this is an easy result to obtain and this result you can write in

turn terms of the Wronskain okay. When you have two solutions y and y bar of a differential

equation, the Wronskain is defined for these pair of functions y comma y bar as yy prime - y

y bar prime - y bar y prime right. This is the usual definition of Wronskain in differential

equations, differential calculus that you would have learned.

So, we will use this Wronskain, here again I am denoting by prime the derivative with respect

to r. So, this is the definition of Wronskain and this relation you can now write in terms of

Wronskain because these two terms are coming by taking the derivative of Wronskain. If you



take the derivative of the Wronskain, if you take the derivative of the right hand side you get

the first two terms as you can see very easily right.

You take the derivative of these two terms on the right hand side you get these two terms and

this box in this red loop is now written over here okay. We are all together very good, so let

us write it for dw by dr which is the derivative of Wronskain and you move this term to the

right take care of the signs this is written for + dw by dr. So, this is - of U - U bar okay. So, all

the signs are taken appropriately care of right.
(Refer Slide Time: 32:41)

So, this is the relation that you are now working with what happens if you integrate this, left

hand side is  the total  derivative  of  the  Wronskain  and integration  and differentiation  are

inverse operations right. So, if you integrate the left hand side you will get Wronskain. So, let

us integrate it between limits r = a to r = b. So, each term is integrated okay, the left hand side

as well as the right hand side right.

Here I have only written this symmetrically it does not matter in what order you write these

three terms okay. They are all multiplicative terms, so you have got U - U bar sandwich

between these two just then it looks a little nicer and symmetric. And the integral of the left

hand side which is the integration of a total derivative gives you the Wronskain itself. 

And you have to subtract the value of the Wronskain at the lower limit which is a from the

value of their own scale at the upper limit which is b. So, that is the result for the left hand

side on the right hand side you have got this integral with a minus sign are going from a to b

of this y bar U - U bar y dr. So, let us write this Wronskain this is the definition of the

Wronskain. 



Then we will have to consider the value of the difference of these two terms at the lower limit

and subtract it from the corresponding value at the upper limit and this will be equal to the

right hand side okay. And now a and b are any two values of r, so let us take r = 0 and let the

upper limit go to infinity and let us see what we get from this. 
(Refer Slide Time: 34:54)

So, let us consider this relationship here bring it to the top of the slide. And now we need to

consider the difference between these two but what we do know is at r = 0, the function is y

as well as y bar go is r to the power l + 1 right. The radial function goes as r to the power l

this is the radial function multiplied by little r. So, it goes as r to the power l + 1, so no matter

what the value of l is including 0, this function y as r tends to 0 will go to 0.

So, the value of these terms at r = 0 vanishes right and you have to subscribe 0 from the value

at the upper limit, so you really have to deal with only the value at the upper limit that is it

which is in the asymptotic region which is good because we know the asymptotic solutions

right. We certainly already know the solutions in the asymptotic region. So, let us write this

expression for the asymptotic region.

And from the asymptotic region we know that the solutions are sum of the sine and cosine

functions. And the cosine term is weighted by the tangent of the phase shift but the phase

shift is delta for y, it is delta bar for y bar. So, you have got y and y bar in terms of delta and

delta bar and you take this difference and you only need to consider the value at the upper

limit which is r tending to infinity. 

The value at 0 which you have to subtract is itself going to 0. So, you just have to subtract 0

from whatever you have at the upper limit in the asymptotic region.
(Refer Slide Time: 36:37)



So, you now have to evaluate the value of this difference in the asymptotic region. So, you

must write the wave function y in the asymptotic region and given the function y you can

take its derivative and get y prime. So, you need y prime over here and you need y bar prime

to put over here.

But you have both y as well as y bar okay they differ only the respective phase shifts which

are delta and delta bar. So, this is y and this is y bar both the solutions are known. This has

got phase shift delta, this has got phase shift Delta bar. Then you need the derivatives, so you

have the first derivative y bar you take the derivative of the sine function.

You will get k times cosine kr right, but there is a 1 over k sitting over here, so that will

cancel the k, so this is the y bar and you have got a similar expression for y bar prime which

is the derivative of y bar okay, quite easy. So, you have got the functions as well  as the

derivatives, so you multiply y by d by dr of y bar to get this and then you multiply y bar by

this d by dr of y which is this.

So, you just have to cross multiply all of these terms to get the left hand side. So, what do you

get you cross multiply, so all the terms have been written explicitly over here? This is y, this y

is  multiplied  by y bar and from this  you subtract  y bar  which  is  this  which is  going to

multiply the derivative of y which is this okay. 
(Refer Slide Time: 38:39)



So let us bring this to the top of the next slide this is what we have got right and we can

simplify this a little bit I think in this I have not done much of simplification except that this 1

over k which multiplies this term as well as this term I have written outside this bracket. So,

that I can extract it as a common factor okay, so this is a very minor rearrangement on this

slide. So, with this minor rearrangement you have got 1 over k outside this bracket.
(Refer Slide time: 39:22)

And these are the terms that you get seems messy but it is not it is exceptionally simple

because if you look at the terms notice that this one cancels this because this one is with a

plus 1 over k. This one is multiplied by - 1 over k okay. So, these are equal and opposite

terms they will cancel each other right. 

Then what do you have these terms cancel each other they are the same, you got the product

of the sine and the cosine function and you have got the product of the two phase shifts tan

delta and tan delta bar. You have got the same over here the sine function and the cosine



function the tan delta and the tan bar. But then this one is with a minus sign multiplied by +1

over k. This one is with a minus sign but it is multiplied by -1 over K.

So,  they have relatively  opposite  signs,  so they cancel;  now it  is  getting  simpler. But  it

becomes even simpler. What do you have in the remaining terms, look at these two terms

what do you have? Both have tan delta bar this is a minus sign right. This is also a minus

sign. And in one you are multiplied by sine square of this angle. In the other you multiplied

by cos square of the other angle.

So, you have tan delta bar multiplied by sine square theta + cos square theta which = 1 right.

So, that becomes simple and you have the same thing happening with the remaining term if

you look at these terms this tan delta cos square delta. And then this is the term which has got

the phase shift delta without the bar. 

So, if you combine these two terms you have got a similar simplification. So all this mess

reduces to a very simple expression which is 1 over k times tan delta - tan delta bar okay this

is tan delta - sine delta bar.
(Refer Slide Time: 41:32)

And now you can write your result that for the asymptotic region the tan delta - tan delta bar

divided k is equal to this integral or you can take k to the right hand side okay. Now y bar is a

potential U bar which can be anything I can choose it to be whatever potential I want, I can

choose it to be zero.

Which  is  also  a  spherically  symmetric  potential  right  as  a  special  case  of  a  spherically

symmetric potential I take v = 0, so U bar becomes equal to 0 and that gives me an expression

for tangent delta because tan delta bar now goes to 0 right, U bar being zero. So, tan delta is



now equal to -k times this integral 0 through infinity. What is y bar, this is the Bessel function

that is the solution to the free electron case right.

Which we know is the spherical Bessel function multiplied by r right. And then you have got

Ur U bar is 0 and this y is a solution to the problem in which v is not equal to 0. So, this is the

expression for tan delta and you find that this expression is telling you explicitly how the

phase shift delta depends on the potential U okay. This is what we have always been saying

that the phase shift is determined by the potential.

And now you see exactly how, so this there is no approximation in this, this is exact but it is

not terribly useful because you also need the solution r for v not equal to 0 and that solution

also has the phase shift okay. So, this result is exact is not terribly useful but you can develop

some approximations. So, this is the expression you get for the phase shift okay. And you

have a little r over here; you have got a little r over here.

So, these two little r’s give me an r square here, so the same integral I have rewritten but r

square is now written over here okay that is for certain convenience and you know what the

delta is coming from. It is coming from the fact that this potential  is now not 0. So, the

corresponding radial function will be a sum of the Bessel function and the Neumann function.

The Neumann function will be weighted by the tangent of the phase shift okay.
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So, here is this result and for v =0 you know the solution it is the Bessel function. You know

that  this  Bessel  function  in  the  asymptotic  region  goes  as  a  sine  function  in  which  the

argument kr is reduced by pi by 2l times depending on what the value of l is. And now I

suggest that you now consider a comparison of the two solutions. These are the two solutions

this is for v= 0 this is for v not equal to 0 that is our problem of interest.



How does the potential generate the phase shift and how do we get information about the

potential  from the  phase  shifts.  So,  you compare  it  with  the  situation  when there  is  no

potential. So, here there is no phase shift kr - l pi by 2, here you have got the same kind of

solution with the phase shift delta. And ask where are the nodes of these functions when does

this function go to 0 okay.
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So, these nodes when v is not equal to 0 are when this argument of the sine function kr - l pi

by 2 + delta well this argument is equal 2m pi, you will have the nodes. In this case you will

have the nodes when kr - l pi by 2 = n pi right. What does it tell you with reference to r

because if this is the relation that must be satisfied? 

Then there is a corresponding if you write this equation for r, then r must be equal to 1 over k

times n pi + l pi by 2 - delta right. This is the location of the node on the radial r axis okay.

That tells you exactly where on the radial distance, how far away from the center will the

node occur. And this for the case when you have a potential which is not equal to 0 these

nodes will occur at these values of r.

For the free electron these nodes occur at n pi + l pi by 2. So, this is the position of the nodes

and notice that the nodes do not occur at the same distance. The nodes are either pulled or

pushed depending on whether the phase shift delta is positive or negative. If the phase shift is

push, if the phase shift is positive the position of the node will be pulled okay. That is what an

attractive potential will do okay. See how the information about the potential is now coming

okay.
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And if you have an attractive potential it will generate a positive phase shift and the node will

be pulled in. So, this really depends on the phase shifts being positive or negative and if you

have a attractive potential you have got a positive phase shift. If you have got a repulsive

potential you have got a negative phase shift right.

Because that is going to determine whether the nodes are pulled or pushed. And if you look at

the wave functions the radial functions themselves.
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Notice that in this case this is pushed in a repulsive potential in which you have a positive

phase shift. It is pulled by an attractive phase shift when you have a negative potential okay. 
So this  is  how you get  information  about  the  target  potential  but  of  course  much more

detailed information is contained in that expression that we wrote earlier for tangent of delta

in terms of that integral which is exact and if we can figure out how to deal with that how to

develop approximations and so on.



We can get a lot of valuable information about the target potential from the phase shifts. So,

that is what phase shift analysis is them out I will stop your for this class and continue from

here in the next one. 


