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Quantum Theory of collisions- Differential Scattering Cross Section

Greetings, we are, we will resume our discussion on the differential scattering cross section

and we had considered a plane incident wave, mono energetic pure plane incident wave. For

which we know that the differential cross section goes as the square modulus square of the

scattering amplitude.
(Refer Slide Time: 00:40)

And what we had employed to arrive at this expression was a strictly mono energetic wave

which we resolved into partial waves right. So, this was the resolution which we employed

and then we got the scattering phase shifts and so on. And then we got the expression that the

differential scattering cross section per unit solid angle d sigma by d omega is given by the

modular square of the scattering amplitude.

Now this is clearly an idealization okay, in a real situation you will have not just a pure single

momentum vector. But you will have a collection of momentum vectors and they will all be

in the neighbourhood of a given energy but not exactly at that energy. And they will not be

exactly at the same momentum vector because momentum is h cross k. So, there will be a

little bit of spread.
(Refer Slide Time: 01:43)



So,  this  idealization  is  not  the  real  situation  that  you  expect  to  meet  in  a  scattering

experiment. A real incident wave will then be a superposition of plane waves of this kind

okay. Because there will be several of them and this omega which is frequency will in fact

depend on k according to whatever is that dispersion relation. So, there will be a little bit of k

dependence of omega. 

So, you will have to take that into account and ask the question if this expression d sigma by

d omega equal to squared of modulus of the scattering amplitude. Is this expression valid also

for a realistic incident wave packet as it is for a strict ideal mono energetic wave? So, that is

the  question  that  we  began  to  discuss  in  our  previous  class.  And  we  will  continue  our

discussion of this particular point.
(Refer Slide Time: 02:49)

So, this is the incident wave which is a superposition of waves of the previous kind. This

amplitude in general is complex so it will have a real part and a phase part okay. So, complex



number you can always write as Rho e to the i theta, where Rho is the size of that particular

complex number right and alpha will be the phase. So, you can write this in terms of this Rho

e to the i theta kind of structure. 

And with this structure you have the phase which consists of this k dot r -omega t, this phase

must be expanded to include this k dependence of alpha which is coming from the phase of

this complex amplitude A. And you have a net phase which is k dot r -omega + alpha okay, so

this is the total phase of this particular term. 

Now the question is if you have the incident wave packet which is reaching the target and so

that you know there is an encounter and scattering takes place. Now you do know that when

you have a number of waves when they reach a certain destination like if you have waves

coming in from a source, there is a screen it may have some holes even if it is an incident

optical wave, if you like right.

There is this incident you know if there are holes in the screen and then you have got a

detector screen then the intensity that you find on any point on the detector screen is just a

superposition of what you get from all of these holes right. So essentially all of these waves

have to have a superposition principle which they must observe, waves do observe. 

Now this is the fundamental principle of linear superposition which is applicable to all wave

phenomena. And we also know from the superposition formalism that if waves with equal

amplitudes reach a particular point of the detector in opposite phases they can kill each other

or else they can augment each other right.

 So, there will be some sort of interference and they could actually in principle kill each other

and since you are performing a scattering experiment  in which the incident  wave packet

reaches the target. You ask the question what is the condition under which, this incident wave

will be the largest. So that these phase factors because this is oscillatory beta k and depending

on k beta will change.

So, for different values of k it is possible that these oscillations cancel each other and you will

not have a net resulting, resultant intensity. So, the condition that this Phi is the largest is that

these oscillations should not kill each other. In other words this particular condition which is

leading to the cancellation, cancellation is taking place because beta is a function of k.

And this condition should not be satisfied in other words because the cancellation coming is

coming because the different components in the superposition have got a net phase which



depends on k. The condition for non cancellation is that these oscillations should not happen

and therefore beta should not change very much with k.

And if beta is not to change very much with k what it means is that the gradient of beta with

respect to k must vanish. So, that is the mathematical condition that must be satisfied so that

you have a net wave packet right. So, this is the condition that you are looking for and let us

ask if this condition is satisfied. 
(Refer Slide Time: 07:32)

So, this is the condition for the incident wave packet to be the largest. This condition is that

the beta gradient must vanish gradient with respect to k must vanish. Beta is given by this k

dot r -omega t +alpha, as we have seen k dot r is let us say kz that is by the choice of the z

axis of the Cartesian coordinate system or cosine theta is what we call as z okay.

So, that is the orientation of the polar axis. And if this were just a one dimensional problem

our condition for Phi incident to be the largest would be that the derivative of beta with k

vanishes in one dimension right. So, what is the derivative of beta with k, you get a term from

here then you get -d omega by dk and then you get d alpha by dk.

And these derivatives you evaluate as at a certain incident momentum okay. So, this is the

condition that you would get in one dimension and you can rewrite this as z = d omega by dk

times t minus the derivative of alpha with respect to k. So, that is your condition which must

be satisfied.

And you can easily generalize it to three dimensions by writing instead of this Cartesian

components z, you write the full position vector instead of this derivative, this derivative and

the  second  derivative,  the  derivative  of  alpha  you  use  the  corresponding  gradients  with



respect  to  k.  So,  that  is  the  automatic  you  know mathematical  generalization  from one

dimension to three dimensions.

So, this is your condition that the position vector is given by the, this term which you will

recognize. This is the gradient of the circular frequency omega and you know that this is the

velocity of the packet right. So, you have the velocity of the packet which is appearing here is

the gradient of omega with respect to k. And this is vi you can shift the time origin to t0,

whatever it is. So, instead of t you have got t - t0.

So, you have the position vector equal to velocity times instead of just time t, you have t - t0.

And this minus gradient of alpha is what you call as r0 that is obviously a position vector it

has got the dimensions of length. And this is how you define a certain r0, this r0 is related to

the gradient of this phase alpha. So, this is defined along with a minus sign which is why you

get a plus sign here. So, let us use this result in our expression.
(Refer Slide Time: 10:31)

And these are our, this is the complete phase and we now look at how omega appends on k

because the gradient of omega has already appeared in our expression right. So, the gradient

of  omega  the  group  velocity  will  depend  on  what  kind  of  k  dependence  the  circle  of

frequency omega has okay. So let us write this expression, so let us expand omega k about a

certain incident direction ki momentum vector.

And this is the first term, leading term plus the gradient of omega with respect to k at that

particular  value of the momentum which is  ki  times the difference from that  momentum

vector that is the first term. And then you will get higher order terms coming from second

derivative, third derivative and so on right. So for the time being let us ignore those higher

order terms.



And we are going to of course ask the question, if we can neglect the higher order terms. So,

we will discuss that question in a little while. In the meantime let us see what form this takes.

So, the gradient of omega is the velocity so you have got the dot product of this velocity with

this difference in momentum vector in units of h cross. And you get two terms one is vi dot k,

the other is - of vi dot ki, which is here.

So, you have three terms over here for omega and we do know in fact that omega, what

depends, how it depends on k omega is e over h cross. So, it is h cross square k square over

2m, so if you take the gradient of this quantity okay h cross square k square over 2m into 1

over h cross which is 1 omega is. So, what do you get, you get the product of h cross over m

and the k vector right. This is just the particle velocity.

So, that is the group velocity and the particle velocity they are the same. So, we know what

omega is in terms of k. So, we get this group velocity which is equal to the particle velocity

and you can use this form h cross ki by m to get this term, what is this vi dot ki, but vi is a

along ki. So, you get a ki square multiplied by h cross over m. So, you have this term h cross

ki square over em and what is h cross k square by m.

It is twice this value this is h cross k squared over 2m, this is h cross k square over m. So, this

is twice omega so that is what you get right. So, you can put twice omega instead of vi dot ki

and that gives you an expression for omega in terms of the momentum vector k which is

omega as a function of k is given by this first term omega ki. Then you have got the second

term which is vi dot k.

You got the third term which we know is with this minus sign, it because minus twice omega

ki and there is a minus twice omega here, there is a plus omega ki over here. So, these two

will give you a minus omega and that is the net result that we get of course assuming that

higher order terms are neglected and we will come back to this question okay. 
(Refer Slide Time: 14:44)



So, this is your expression for the k dependence of the circular frequency. And now you put

this omega into t in terms of these two terms - omega into t + vi dot k into t. So, vi dot k into

t, but there is a minus sign here, so you get + omega into t - vi dot k into t right. So, that is a

mere substitution of these two terms over here. 

And then you can combine the terms r - vi dot k, so you have got the vi dot k is coming in the

second term and this is multiplied by t. So, you have got a k dot r - vi t, you have got omega

ki t coming from here and the alpha k coming from here right.
(Refer Slide Time: 15:48)

So, we bring it up to the top of the next slide and you also now have to consider in as much as

you  considered  the  momentum dependence  of  the  circle  of  frequency, you  also  had the

gradient of alpha okay. Now what is the gradient of alpha, so this alpha also depends on k.

So, you can expand it about the initial a particular momentum vector ki which is the incident

momentum vector, i is the subscript corresponding to the incident momentum vector.



And if  you expand it  about  this  you get  a  leading term plus  the gradient  with its  scalar

product with the difference in the two momentum vectors in units of h cross plus higher order

terms and again you will ask if the higher order terms can be neglected. So, it is the same

question but we will answer the two questions together. 

So, we already have identified this as our -r0, the gradient of alpha we introduce r0, it has got

the dimensions of length and we have defined our r0 with a negative sign here. So, we will

write this as negative ro. And along with this you have these two terms over here; this alpha k

is replaced by these two terms first term and this r0 dot k – ki, with a negative sign.So, these

are the two terms that you should put in, in your complete wave packet for the incident beam

of particles. 

So, there are a number of terms which go into the phase all of these together constitute the

phase and they have only been separated over here. So, these two terms r0 dot k is here and

then r0 dot ki is here, with a plus sign okay. Because there is a minus sign here is also a

minus sign here so it comes with a plus sign here. So, this is your complete expression for the

incident wave packet.
(Refer Slide Time: 18:21)

We bring it to the top of this right now and what do we, have we have the sum of these terms

which is nothing but alpha k and we can rewrite in an equivalent form in a slightly compact

notation. We first separated it, now we recombine it just to write it in a more compact form.

But we separate it to recognize how the gradient of alpha is coming into the picture okay. 

So this  is  an equivalent  form of the incident  wave packet  and we recombine  this  in  the

original term because this modulus of A into e to the i alpha is what you had for the complex



amplitude  which  scaled  the  different  momentum dependent  plane  waves.  So,  it  is  just  a

recombination of these terms to see keep track of what the phases are. 
(Refer Slide Time: 19:32)

Having done this you factor out e to the i omega t - t0 from the integrand because ki is a

particular unique incident vector it is not changing so it is not a variable in the integrand, it is

a constant under the integrand. So, you can take it out of the integration okay. So, this phase

corresponding to the incident momentum vector is pulled out and this is t - t0.

There is already an omega t here and because there is a -t0 which is pulled out you must

compensate for it by inserting it in the integral okay. Now if you put t = 0, in this you get the

incident wave corresponding to t =0 okay and notice that these two are of the same form, they

are exactly the same form. So, what you have in this red loop is something very similar to this

with the difference that the time is shifted to t0.

And the position vector is also shifted because instead of e to the ik dot r you have got to the

ik dot r - vi times t. So, depending on how much time has elapsed, the position has elapsed

and except for that it is exactly the same way packet. There is no difference except for a shift

in the time and a corresponding shift related to the position of the wave packet. 

So, it is exactly the same form which means that you can write this incident wave packet at

an arbitrary time in terms of an incident wave packet at time t0 by recognizing this r0 + vi t -

t0 to be equal to r of t, because you have got r - vi t here, so this r – vi t is what you call as r0.

And with this r0 you have got exactly the same wave packet it is only shifted.
(Refer Slide Time: 22:24)



So, this is the realistic incident wave packet that we are working with that is the one that we

started  our  discussion  with.  We factored  out  this  term and we look at  the  value  at  t=0,

recognize the identity in the two forms. And our essential conclusion from this is that you

have got a freeway packet which is centered around r0 at time t0. It will have this exactly the

same shape as a wave packet which was centered around a different point in space.

And where it is located depends on how much time has elapsed from the reference time t0.

So, it will be the group velocity times t - t0, so it will be displaced by that and at a later time t.

So, it will be exactly an identical so there is a shape function that you can expect to factor out

from this analysis.
(Refer Slide Time: 23:35)

So, let  us go back to the question that we had raised that  we considered the momentum

dependence of omega and there were additional terms that we could have considered coming



from  the  second,  third  derivative  etcetera  which  we  neglected.  We did  the  same  with

reference to the phase alpha which also had a momentum dependence. 

And in both cases we have thrown out the higher order terms. We have ignored the higher

order terms and we asked under what conditions can we ignore the higher order terms okay.

This question we had raised and we need to answer this. So, let us take up this question and

ask under what conditions can we ignore the higher order terms.
(Refer Slide Time: 24:26)

So, let us look at this expansion the condition to ignore the higher order term is that this, the

first of the remaining terms which is ignored is the second order term. And if the second order

term itself is small then by induction you can argue that the remaining terms can also be

ignored. So let us be satisfied at just asking this question that under what condition can you

ignore this second order term.

So let us look at the second order term the second order term which is the second derivative

of omega with respect to k multiplied by the square of the difference k – ki, this is the second

order term this must be small right. This is our condition, is this condition satisfied, that is

whatever question amounts to. So, let us look at how omega depends on k, we know that it

depends quadratically on k h cross k squared over 2m.

So, the first derivative goes with k and the second derivative is a constant which is h cross

over m. So, instead of this second order term you can replace the second order term by h

cross over m and you get h cross over m multiplied by this, this must be small  and this

multiplied by the time will give you a dimensionless number. That number must be equal to

or it must be much smaller than unity. 



So, that you can ignore its powers okay. Now what is the time scale we have in mind because

this term obviously becomes large as t increases? And if t increases to 10 hours, 20 hours, 20

days, 20 months and 20 years, 20 million years and so on, it is going to grow right. And you

cannot expect this to be less than 1. But what kinds of time scales are involved. 

The kind of time scales that are involved depend on the velocities of these packets because

the only time which is of interest to us is the time it would take for this packet to reach the

detector okay. Once it reaches the detector you are done with the experiment okay and any

further time is of no interest to you okay.

So, the time that  you are really  dealing with is  how much time it  will  take to reach the

detector. So, that depends on the kind of geometry you have set up for your apparatus in your

laboratory  and  those  are  the  physical  time  scales  which  are  of  importance  in  this

mathematical relationship. 

So, the mathematical relationship is that this product of h cross over m multiplied by the

square of the difference in momentum in units of h cross times time must be less than 1. And

this time will depend on how much time it takes to reach the detector and that distance in our

geometry is capital D okay. But since the phase velocity is half the group velocity all you

have to consider twice that distance right.

And if this t is less than or equal to twice distance by velocity then you are okay and this is

what it amounts to. So, if this condition is satisfied that h cross over k this is delta as k

squared and instead of this time we have this 2D over vi if this product is less than 1 then we

are okay.
(Refer Slide Time: 28:49)



So, this is the condition depending on the distance okay, now this distance d is a laboratory

parameter this is the distance from the target to the detector. So, now you notice that you have

got an h cross square over m and an m over h cross here. So, these two terms cancel it cross

over m into m over h cross or these two terms cancel. 

And your condition now is delta k square over k into twice the distance should be much less

than 1 that is what your condition boils down to. And this is the basic uncertainty that you are

aware of the delta k times the uncertainty in the position that depends on how much the wave

packet is delocalized. So this is of the order of 1, this product is of the order of 1.

So, we will just do an order of magnitude analysis. So, delta k is of the order of 1 over delta r,

so this is delta k square, so this is 1 over delta r square right. It is 1 over delta r square. So, 1

over delta r square, I take to the right, so it becomes the square of delta r and here I have got

one over k which is of the order of the wavelength okay, k is whole k is essentially 1 over

lambda. So, you get from this delta k square on the left you get delta r square on the right.

And from this one over k you get a lambda. So, this condition is that lambda into twice D

should be less than the square of delta r or the corresponding square roots should have the

same inequality okay. And this is what sets the time scale because in a laboratory you have

typically delta r which is of the order of one tenth of a centimetre. And this is of the order of

one thousandth of a centimetre okay. Both are length scales.

These are the numbers that you deal with in most experiments or in some other experiments

this may change but notice that 10 to the -3 is much smaller than 10 to the -1, it is a hundred

times  smaller.  And  this  condition  is  therefore  satisfied  in  an  experimental  scenario  and

therefore the condition that we needed to be satisfied. So, that we can grow the higher order

terms is in fact satisfied in under laboratory conditions.

And we can ignore those terms, we can ignore the higher order terms happily this is satisfied

and whatever expressions we had we can continue to employ them in our subsequent analysis

okay. 
(Refer Slide Time: 32:10)



What have we got so this is the capital D that I was referring to, this is the length scale. Now

this is the transfer’s width of the wave packet, this is the longitudinal bit okay, that is the kind

of scales which are involved. And it is this distance, if this distance is farther that is when the

t will keep increasing. But how much D does it have to cover anyway okay. 

So, it has to get to the detector and if it did that that depends on what is the longitudinal

width. And these are the; this is the kind of geometry we have in picture you have got an

incident wave which has got a certain spread which is the longitudinal width which is of the

size of l. And then you have got a target which has got a certain tiny dimension of a.

And this length is of the; this is about the size of the uncertainty spread for our order of

magnitude analysis. On the length scale which gives you the corresponding spread in the

momentum  which  is  inverse  of  this  right.  So,  this  is  the  picture  that  we  have  under

consideration. The other thing you have to recognize is that depending on how it is set up you

may not have the incident beam meet this target head on.

But there may be a little bit of you know distance because where it impacts the scattering

region may not be exactly head on. There may be a little bit of displacement over there. So,

there is a certain impact parameter that you may have to consider. And all particles described

by the same b will have a similar shape.

So, the wave packet you know the exact detailed wave packet shape will really not matter.

Because  these  distance  is  quite  larger  than  the  target  okay. So,  our  analysis  is  quite  on

comfortable ground
(Refer Slide Time: 34:23)



And  detailed  shape  of  the  wave  packet  does  not  matter.  So,  you  will  have  a  scattered

spherical outgoing wave and the incident wave. This net scattering solution as we know is a

sum  of  the  incident  plane  wave  and  a  scattered  outgoing  wave.  This  diagram  is  from

Joachain’s book.

And you have got the net scattering solution which is a superposition of the incident wave

plus the scattered waves okay as we had even for a mono energetic beam. So, that is what we

considered already in details in some of our earlier discussions. But now we are trying to see

how it gets modified, if it all is it gets modified.

Does it  change your primary results when you are dealing with a realistic  incident  wave

packet  which is  a superposition of plane waves around different  momentum vectors? All

momentum vectors which are very nearly the same but slightly different from a pure value of

the incident momentum vector. So, there is a little bit of spread which is what generates this

wave packet.
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So, this is the free particle wave packet it is a superposition of free particles okay e to the ik

dot r - omega t, is a plane wave, it is a free particle, if it is not to meet head on. But there is a

displacement because of an impact parameter b, this r must be displaced by r - b okay. So,

this  is  the  same  expression  for  a  free  particle  wave  packet.  But  it  respects  the  impact

parameter be right.

So, I have written this Phi with a subscript b and change this r to r - b other than that is the

same thing. So, it is the incident free particle wave packet taking into account the impact

parameter b. The phases then consist of e to the - ik dot b, e to the ik dot r and e to the -

omega t. So, these are the three contributors to the phase okay. 

This omega is depends on k so if you consider this dispersion because it is k-dependent you

can write this omega in terms of these two terms which we have already found. So, this is the

free particle incident wave packet.
(Refer Slide Time: 37:25)



Now let us multiply the integrands by unity it never hurts right. And you can resolve this

unity into these two factors okay. They are phase factors they are the same factors phase

factors with a plus sign here and a minus sign here, is a minus sign here and a plus sign here,

the same terms okay. 

So, you multiply the integrand by 1 and then you factor out these three terms e to the i omega

ki everything which does not depend on ki can be tabled out of the integration. Because the

integration is over the variable k, so ki under that integration is a constant. And anything and

everything  that  has  got  ki  alone  can  be  factored  out  the  remaining  term stay  inside  the

integral.

And the net value of the integrand must be preserved which is guaranteed by factoring unity

into these two factors. So, you factor out these three terms e to the i omega ki, e to the i ki dot

r - b and e to the - i ki dot vi t. So, notice that what is pulled out of the integration has only ki

and nothing else.

And having pull this out whatever remains inside is what will compensate for these factors so

that  you  regenerate  the  original  phase.  So,  it  is  just  a  little  bit  of  very  straightforward

manipulation of the phase okay. Just r writing the phase in this particular fashion which is

what will give us a very useful result.
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So,  this  is  the same expression you have pulled  out  these ki  dependent  terms which are

constants in k outside the integration the rest of the integral is here. And there is a k - ki in

both of these terms so you combine them. So you k, have k - ki times r - b from this and vi t

from this. So, you combine these two terms okay that makes it a little easy. So it is just a

rearrangement of terms that we are doing here nothing very fancy.

And essentially  what  you find is  that  this  is  the factor  this  integration  is  what  will  have

complete information about the shape of the wave packet. The remaining term is just a phase

factor so this is the shape function okay. The entire shape is determined by this integral which

is defined as 1 over 2pi to the power 3 by 2; this factor is absorbed in the definition of Chi.

And then you have got this triple integral in the momentum space of modulus of Ak and this

phase factor which is a reconstruct of the original phase by factoring out appropriate pieces

okay. So, what this rearrangement of the terms has allowed us to do is to introduce a shape

function which is given by this Chi.
(Refer Slide Time: 41:02)



And if you notice that this Chi which is it completely defines the shape of the wave packet.

Now you remember that we had an original normalization which we agreed to that we have

this normalization. And this normalization is going to be valid for this particular expression

out of this, this is just e to the i theta kind of term. 

So, the same normalization because what is factored out of the Chi, what multiplies this Chi,

is just an e to the i theta kind of term. So obviously you will get the integral of the shape

function modular square also equal to 1 okay. So this is a very simple property of the shape

function which emerges from this analysis.
(Refer Slide Time: 41:55)

Now this is the free particle wave packet with an impact parameter. Let us write it explicitly

we have seen the phase factor to be e to the ik dot r coming from here, e to the - ik dot b

coming because of the impact parameter. And this is the omega t factor. This e to the ik dot r

is because you are dealing with a free particle case.



And we know how it  will  get affected if  you have scattering right.  Because if  you now

consider the solution to the complete scattering problem now. So, this is the free particle case

if you have a complete scattering problem then this factor e to the ik dot r must be replaced

by the scattering solution with the outgoing wave boundary condition.

So this e to the ik dot r must be replaced by this solution to the scattering problem with an

appropriate outgoing wave boundary condition. But then this is obviously different from the

previous case of strict mono energetic beam of incident particles this is a realistic incident

beam which consists  of a  large number of waves which have slightly different  momenta

corresponding to a slight difference energy spread. 

Also the directions could be slightly different and you have got a superposition of all of these

different momenta.
(Refer Slide Time: 43:44)

So this is the geometry that you have been considering and the wave packet over this distance

okay, it will not overlap with the target when it is far from the target okay. When it reaches

the detector it will not have any with the detector. So, this is the geometry you have under

consideration.
(Refer Slide Time: 44:16)



And with this the complete solution to the sketching problem which for pure strict incident

waves is given by this outgoing wave boundary condition. Now for the wave packet you have

got  a  similar  expression  as  you  had  for  the  free  particle  incident  wave packet  with  the

difference  then  the term over here which was e  to  the ik  dot r  must  be replaced by the

outgoing wave boundary condition which is this.

Which will not be just the incident wave but the incident wave plus the scattered wave, so we

will have to take that into account and since we are out of time I will stop here and in our

next class I will complete the proof that with this wave packet which takes into account the

impact parameter for the complete scattering solution.

The relationship d sigma by d omega equal to the square of the modulus of the scattering

amplitude this is still valid okay. This is the relationship that we set out to prove which we

started in our previous class we are almost there. But in the next class we will complete the

proof. If there is any question I will be happy to take otherwise goodbye for now. 


