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Greetings, we are very privileged to have today Professor S. T. Manson will give two guest

lectures  in  this  course  and today is  the first  one.  So,  today we will  review the  topic  of

Photoionization in which he has expertise for a very long time and anybody reading literature

in Atomic physics would have come across his papers for well over four decades now. 

So, what you see, thank you? And whether it is a privilege or not you will decide after the

lecture and you may not agree. Well, today what I am going to do is enlarged on what you

have  already  learned  about  photoionization  starting  perhaps  with  some  things  that  you

already know. It is a matter of fact the first invited talk I ever gave never mind, how long ago

it was. The gentleman who invited me gave me some very useful advice. 

What he told me was your audience is always grateful for anything that you tell them that

they already know and that is extremely good advice, because it connects with the audience.

If you start off too high you have lost them to begin with. Now, I am hoping that some of the

things that I say in the beginning you have already had in this course and know something

about. So, let us start. 

This is very you know from my point of view it is very low tech. There is piece of chalk a

blackboard  and  some  notes  scribbled  to  keep  myself  more  or  less  in  order,  okay.

Photoionization that is the interaction of ionizing radiation,  light ionizing electromagnetic

radiation with matter and we are going to talk specifically about photoionization and atoms

because that is what I know about. 
(Refer Slide Time: 2:37)



And to begin with light  and matter  the coupling goes something like this  the interaction

Hamiltonian is a bunch of constants here and then e to the ik mu dot rp dot epsilon and what

these things are this is the wave number of the light this is the momentum of the electron that

is the polarization of the light. This is hard. And so we simplify things.

And if the wave number of the light is small enough that is if the photo of photon energy is

low enough then for the typical size of an atom this is a small number. Now, what do we have

when we have e to a very small exponent you can make a Taylor series expansion, you know.

Like e to the x is 1 + x + x squared over 2 etc and okay. How far shall we go to truncate it,

you know. 

So, you know, you do not want to go to infinity; How about one? That makes it a lot easier.

This for historical reasons is known as the dipole approximation. Now, is another, there are

several  important  things  about  this  interaction:  Hamiltonian  aside  from,  this  dipole

approximation. Number one is that, it interacts with a single electron; does not interact with

two electrons; it does not interact with three electrons; it is a single particle interaction. 

That is very important. Secondly, this is small. A matter of fact it is of the order of alpha, the

fine structure constant. Now, the fine structure constant is what it is? It is roughly 1 over 137

or taken roughly it is one percent point 01. And so, when you get, remember, when you get a

probability or a cross-section, which is the absolute square of a matrix element, you get alpha

square in there. 
So, light really does not perturb the system very much. So, it is an excellent probe of the

proper of the properties of the target system. You see, When can use other probes electron or

proton? There in the coupling instead of being of the order of alpha, there is the order one.



So, when you use those as a probe you get a kind of a concatenation of the properties of the

target and the properties of the interaction. 

Here you can get rid of the properties of the interaction because they are really small. That is

a,  that  is  another  very  important  thing  about  photoionization  okay. Then,  using  angular

momentum rules, you get selection rules in photo ionizing transitions. 
(Refer Slide Time: 05:53)

In other words if you started if you are photo ionizing an nl electron of an atom or molecule

or anything actually you have certain selection rules namely that this can go to a final state. I

write epsilon meaning it is ionizes some energy in the continuum epsilon l + 1 and epsilon l -

1. In other words, you can have that is the selection rules l to l + or -1. And the cross section

or the probability is made up of the sum of the absolute squares. 
(Refer Slide Time: 6:50)

So, in a general sense, the cross section for photoionization is again a bunch of constants. We

do not worry about the constants from now. And M l - 1 absolute squared plus M l + 1



absolute square. And if you doing a calculation, this is what you have to do, Oh, in many

electron atoms it  gets Messier and if  you put in relativity it  gets Messier. But this is the

fundamental idea. 

It is the sum of the absolute squares of the various matrix elements we sometimes call them

amplitudes. Now, at this level of approximation I want you to understand the approximations

that we have made. This is first order perturbation theory. However with this alpha here, first

order is really very, very good because the next order is down by a factor another factor of

alpha and alpha is smaller than 1%. 

So, first order perturbation theory is good. And if you are at low energy, this is very good. So,

while it is not absolutely exact it is pretty close to exact. And so, using this, for the hydrogen

atom, you can do the calculation. We say exactly. However, exactly it is kind of exactly ish

and what ish means is uh.. 
(Refer Slide Time: 08:16)

But anyway, at this level we can do hydrogen exactly, the hydrogen atom exactly. And we

find a cross-section or probability  with enter. This is the photon energy, this  is the cross

section and it looks something like this: whoops, is supposed to be a much straighter line. It

has some threshold energy and falls off monotonically. It was originally thought that for all

atoms, things behave this way. Not true. 

ah.  If  you do a  hydrogenic  model  of  an atom that  is  assuming ineffective  z  and do the

calculation, well, it is this thing scales would see. But everything looks like this. However,

with real atoms things are different experiment tells us that. You see, to do even approximate,

what happens in a real atom? You have to take the electron or the electrons of the atom, in

some realistic potential. 



(Refer Slide Time: 09:46) 

Now, a realistic potential, let us say, you have some many electron atom charge z. You kick

out an electron, that electron when it is out here, sees a singly ionized system. So, it sees as z

of 1 when it is all the way in here right next to nucleus it sees as e of capital Z. So, you need a

potential V of R which goes as capital Z over r, r goes to 0 and goes as 1 over r actually-

attractive, for r goes to infinity.

This, this too is really important. If you use a potential, which does not have those properties,

you can get complete nonsense. And if you look back in the literature, before people use this

and just use the effective Z's in the calculations, that is what they got and okay. So, in order to

calculate this, you have to calculate amplitude, a matrix element, as a word of this thing. 

I am not going to go into the tale about how you do it, but look the matrix element from some

state. I and some final state is just initial state the interaction, final state. Now, as I mentioned,

this  is  nearly  exact.  So,  if  you get  an  initial  state  wave function  and a  final  state  wave

function, that are close to exact, you get a very good answer. 

However, for real systems for multi electron systems getting initial state wave functions and

final state wave functions which are nearly exact is really difficult. So, one has to make some

approximations. You see the Schrodinger equation I am going to do essentially everything

non- relativistic.  Al1 we are going to talk about the Schrodinger equation rather than the

Dirac equation. 

Meanwhile,  the Schrodinger equation is  a  partial  differential  equation.  Fundamentally  we

know two ways of solving partial differential equations, exactly. One of them is separation of



variables;  the other one is guessing if you cannot do either of those two you have to use

approximations.

Now, sometimes we can get very good approximations. And but, let me mention that for more

than one electron. We know no way of separating of separation of variables. Maybe there is

some coordinate  system that  we have  not  figured  out  yet,  where  you can.  But  nobody's

figured that out. So, one has to use various kinds of approximations. Anyway, we will come

to that. Now, so, the electron moves in some potential like this. 

However, if you remember, if you make this approximation of a single particle potential, that

is  just  a  function  of  scalar  r  very  important.  Scalar  r  the  Schrodinger  equation  is  then

separable okay. However, you get kind of a funny equivalent one dimensional equation. Why

is it funny? Because you have an extra term in there you have a house oh I call it an effective

potential which is the actual potential plus the centrifugal potential. 

Any that is just like in classical physics, if you have a rotating coordinate system, this is the i

and you are just looking in the radial direction, they used to call them fictional forces. I do

not think they do anymore. I am very old and that is that's what they used to call them. 
(Refer Slide Time: 14:28)

And anyway, so, you have this V effective which is the V of r + l of l + 1 h bar squared over

2m r squared. No. this is just like in classical physics ,where the kinetic energy due to rotation

is the square of the angular momentum, over the yeah, with a one-half  the square of the

angular meant one-half l squared over the moment of inertia. 

What is the moment of inertia of a single particle one have? you know, m r it is just m r

squared; that is what this is, that is all. However, just considering this, you know, without



doing any detailed calculations. Just considering this, have some consequences, because this

V of r is attractive. This is repulsive anybody who has ever swung something around knows

that that force is repulsive because it tends to know.

 If you have ever seen in the Olympics the Hammer throw, would they go like this, we are

just using this okay. Clearly at small distances, since V goes as 1 over r and this goes is 1 of r

squared, that dominates. At large values of r 1 of r, 1 of r squared, this dominates. 
(Refer Slide Time: 16:08)

So, what do we know? If I draw the V effective versus r we just show at least four nonzero l,

talk about that for a moment, you get something at small or which goes like this, because it is

just this behaviour. Something a large r. On the other hand, this behaviour dominates and you

notice that minus sign a. I wrote it small but it is really minus it is attractive. So, it looks like

this. And how they meet in the middle, is of importance. 

So, you know it might be it might be something like this. Say just to give an idea. So, the

electron moves in the field and makes a potential, effective potential, something like this. As l

gets larger and larger, this gets bigger and bigger. And so, what this means is, that it is some

given energy. It is like this, the wave function. 

Let us talk about the final state to the moment wave function, of the final state; this is the

classical turning point. It does not mean that there is no wave function inside it. Of course,

however, what it does mean is that in the classically forbidden region, the amplitude of the

wave function  is  small.  In  other  words,  this  angular  momentum barrier  pushes  the wave

function amplitude out. What is the consequence of that? 
(Refer Slide Time: 18:34)



Let us consider a particular transition one that I happen to know about and we are going to

talk about Argon 3p. Now an Argon 3p the major transition is going to be 2 epsilon d. It turns

out that, in almost all cases, the major transition is l to l + 1 as opposed to l to l -1. Both are

allowed, you need to have both. But that is the major transition. Now, what happens on a

graph?
(Refer Slide Time: 18:59)

Something like this: This is the following 3p wave function looks. Maybe something like

this: However, the d potential and so at say right at threshold the d epsilon V might look like

this. And what you see here is a very, very little overlap here. Remember, this is what we got.

If the initial and final state have no region of overlap, the matrix element is going to be zero.

If they have a small region of overlap it will be small. 
And what happens as the energy goes up, well, if the energy goes up like, if it is up here, it

will look more like this. Ooh! A big overlap here, what does that mean? It means this matrix



element  is  going to  increase  with energy. Remember  well  I  have erased it  but  the  cross

section, the sum of the absolute squares. 

So, what that means, as far as across the cross sectional probability is concerned, it is going to

be smaller at this. This is as a function of e let's say this is the threshold energy this is hnu it is

going to look something like this and then eventually as it moves is energy gets higher moves

in further it starts to oscillate in this region it is kind of oscillates itself to death. 

So, rather than this kind of behaviour we get this, this thing is known as a delayed maximum.

It was first discovered, Oh about 45 years ago. I am old enough to remember when it was

discovered.  And  and  explained  and  you  can  have  much  more  dramatic  cases,  a  really

dramatic case is the 4f state of mercury, because the main transition is 4Hfg and in that case

the cross section looks something like this:
(Refer Slide Time: 21:30) 

This is then Hg 4f it actually drops off a little from threshold but that is due to the f 2d the l to

l -1. But you see the h that is l equal four, that is really large. And it pushes the wave all the

way out. And it looks something like this: And this maximum rather than being at threshold

is. I think it is about 140 eV above threshold. That is a lot. I remember when people first saw

this.

You know, they did the cross section was so small here that when they looked around here at

this  energy,  they  could  not  see  anything.  But  when  they  got  up  here  they  saw  the  4f

photoelectrons.  Their  explanation  was  these  were  experimentalists  you understand.  Their

explanation was that the threshold energy, was photon energy dependent.  That is obvious

nonsense. It does not. 



Oh,  they  were  very  well  known  people  who  have  that  in  their  papers.  It  was  obvious

nonsense. And it did not fit with quantum mechanics. As I say these were just people who

measured it and they said, you know, how can you because you know for measuring around

here, remember, the Einstein relation. If you know the photon energy and you measure the

photoelectron energy then you know the binding energy.

But they measured it above the binding energy here and I could not see anything. Is yeah the

binding energy must have changed. What a slap, I mean, it was just elementary quantum

mechanics  shows that that could not possibly be.  Anyway, so,  this  business of a delayed

maximum is ubiquitous. It is all over the periodic table. I am, the only case you do not see it,

is for a wave that like a s transition because s l = 0 you do not have this. 

And so what is interesting here is that with a very, very simple model, you can explain this

phenomenology, some phenomenology. There is another interesting thing that we find. It is

actually  first  found  experimentally.  I  think  it  was  in  1928.  Now, that  I  do  not  actually

remember, I was not around in 1928. And and that is, some cross sections were found to

behave like this. 

So, as a matter of fact was, it was the outer shell of the, of the alkalis sodium etc. And the

cross section is behave something like this:
(Refer Slide Time: 25:02)

It was a minimum. A very, it was not quite 0, but awfully close. It was first discovered by a

British experimentalist by the name of Ditch Burn, 1928. He went back to it in the 40’s and it

was explained in the later 40’s, by very well known British atomic theorists, by the name of

David Bates. The explanation was the following. 
(Refer Slide Time: 25:45) 



And in me, this was the outer shell of sodium the sodium 3s which looks something like this.

Remember 3s has two nodes and that is kind of thing. They at threshold board zero energy.

The continuum wave function it is kept out a little bit because you have centrifugal repulsion.

But it is only l =1, so it is not tremendous; but it looks something like this.

So, and what happens out here does not matter, because but the important thing is: the major

overlap is this region, right. You have a positive initial state; a negative final state wave fun in

that region, the product is negative. If you go to higher and higher energy this moves in and

eventually you get something like this, where the main overlap is positive. 

You go from negative to positive somewhere if it is continuous, somewhere in the middle, it

goes through a zero. And this was the explanation. And this remains an isolated curiosity for a

number of years. I mean, we were in the late 40’s, when Bates explained it, there were other

developments  about  why  it  did  not  actually  go  to  zero  and  that  is  because  they  were

relativistic split. 

Splitting, that was explained by a man by the way Mike Seaton in 1952. But then in the early

60’s, some calculations by a man by the name of John Cooper, found that this was not an

isolated curiosity. It happened for almost every valence level in atom as long as the valence

wave function had a node. So, it did not happen for 1s2 p3d 4d but it happened for all the

higher ones. When they were avail as when they were out of shells.

And since and then it became to be called a Cooper minimum. Sort of an interesting story

because John Cooper did not have a PhD in physics. He had a master's degree in music and

an undergraduate degree in physics. He was hired as a programmer to work with a very well-



known scientist at the National Bureau standards in the United States. By name Ugo Fano

and when Fano found out he do a little physics he gave him real physics to do. 

And he was the one who found all these minima and it got named after him. Anyway, so, this

is a something which is found all over the periodic table and simply an overlap effect. There

was no classical analogue of this it is not a resonance effect, it is just an overlap between

wave functions and this shows that they really are wave functions. They are not a figment of

our imagination and not just a mathematical construct. 

They really exist. I agree and their phases and overlaps really do have consequences okay. All

of this can be learned from a model like that. I mean you can do better and get things more

exactly but qualitatively you got it. However real wave functions are not simply some single

particle wave functions, they are more complicated than that. And this too is important in the

following sense. 
That when you know that one of the postulates of quantum mechanics actually says that you

can always expand the wave functions in any complete set. And sometimes we should be pick

a set and we try to do that. We right away function as a sum of terms. There is a name for

this. This is called Configuration interaction for historical reasons. 

But it merely is expanding a wave function in a complete set, of course, complete sets are

generally infinite. We can never do an infinite set C to a finite one, you truncate it. And this

can be done for the initial state. And it can also be done for the final stage. For the final state

it is a little bit messy, because remember, in the final stage you are dealing with an unbound

electron, a continuum electron.

As opposed the initial state, when you are dealing with a bound electron or discrete electron,
now, discrete wave functions are normalized to unity. Continuum wave functions are not they

are normalized to the delta. You know delta function normalization, delta functions in turn in.

So, it mathematically is a lot messier. The ideas are exactly the same. But mathematically it is

a lot Messier and we call that Inter Channel Coupling. Nice, fancy phrase. 

But it really is the same thing as we have in the discrete but it is in the continuum and again

the mathematical methods are different. The fact that you can write wave functions like that

and need to, is important; because remember, the interaction of a photon with an electron, it is

just  a  single  particle  interaction;  However,  experimentally  it  is  found  that  you  can  get

ionization plus excitation. 



In other words, one electron ionized and the other excited with a single photon. Or you can

get two electrons out with a single photon. A matter of fact a about a decade or two decades

ago, there was a big flurry of activity in the double photoionization of Helium. Since it only

has two electrons that is a and b trying to calculate that and do things about that. However,

how can that happen? 

If the photon only interacts  with a single electron,  well.  Obviously then, if it  really does

happen and it does we measure that experimentally, remember, ultimately the only arbiter of

whether or not we are doing a good job, whether or not we are right is experiment. What we

do has to agree with the experiment at least qualitatively. If we are if it is to have any validity

at all, okay.

So, we say it is a double ionization and we know, the photon interacts with only a single

electron. There is only one conclusion that the electrons have to talk to each other in some

general sense. Or the emotion has to be correlated. We call this correlation, there is lots of

other  names,  for  it  multi  particle  interactions  electron-electron  correlation;  it  is  called  in

number of different things. 

But that is what it is think of it as electrons talking to one another. In electronease whatever

that happens to be. So, what we try to do is, understand this electron, these understand the

language of electrons. ah, again one of the ways to put this into the calculation, not the only

way is, by expanding in a complete set. Or again you can never expand in a complete set so a

truncated complete set.

And that is the way you can get ionization plus excitation; because then let us say, here sure a

simple case, How can you get ionization plus excitation in Helium? Well,  helium as you

know ground state can be written 1s squared. However, it is not exactly that. If you just take

two 1s type wave functions, however, however you pick them, and take the product, you can

get reasonable results of many things but not for everything.
(Refer Slide Time: 35:37)



And if you try to expand that in a complete set, you might have something a wave function,

which is at the initial state alpha 1s squared plus beta 2s squared plus gamma 2p squared. So,

say  alpha  beta  and  gamma  are  some  coefficients  and  you  see  these  are  different

configurations. And that is why this expansion is sometimes called configuration intraction.

And typically for the helium atom, this is close to 1 and these two are small. 
(Refer Slide Time: 36:23)

Now, let me show you why you need to do this, if you are going to consider ionization plus

excitation, because ordinarily what you get is just from this. You get a final state 1s epsilon P

in other words the photon comes in it is one of like but you can also get to s epsilon P and 2p

epsilon s and 2p epsilon d. How do you do that? Well. From here to here, it is a one electron

matrix element from 1s to 2p; 

From here to here either those two one electron matrix element, so, expansion of the wave

function like this to be a more exact wave function, gives you the possibility of multi particle.



And so,  these  beta  and gamma are  small  alpha  is  close  to  1;  but  this  beta  and  gamma

somehow result, from the electrons talking to each other. And exactly how you get this wave

these wave functions is a whole lecture in itself.

We are not going to do that today. So, this and also you can put the continuum in here, so,

you can get double ionization. So, electron correlation is part and parcel of multi electron

transitions  without  electrons  talking  to  each  other;  without  electron  correlation  it  is  not

possible and so, looking at experimentally, at multi particle transitions in with a single photon

in.

Is in effect measuring this correlation; or giving a measure of this correlation. Parenthetically

there is another process which can give you multi electron ionization having to do with the

inner shell. And it is called now getting the outer shell there is another process which we call

autoionization. This is what it is not exactly the same thing but it is related. In other words,

let us say we start off with this.
(Refer Slide Time: 38:44)

This can not only be depending on the photon energy knocked into the continuum, but could

also be just excited. So, instead of like this, you can go to a state say 2s 2p. You can get there

from here with the right energy. But the 2s remains the same and then and the two p2s the

other two s goes to 2p. It is a perfectly valid dipole transition and this actually happens as one

as the first was one of the first ones discovered. 
(Refer Slide Time: 39:45)



But what happens when you have this. You see, show you here, the, this is a photon energy

scale and here is the cross section, what you get is Helium. It is binding energy is of the order

of 25 eV and it goes dropping down and all of a sudden let at about 60 eV you find something

like this, a resonant. And what that is, is that, discreet like state, which lies well above the

Ionization threshold. 

Well this lies were well above the threshold of 1s epsilon P. So what happens is, at the same

energy, get a transition between them the 2s goes down to the 1s and the two P takes it the

energy of  that  and goes we radiate  it  without  any radiation  and goes  out.  That  is  called

Autoionization. And again and this is only possible if you have, if you allow the possibility of

a more complicated wave function, more complicated than a single than a single particle.

All right. Well, moving right along, there are a couple of other things I would have liked to,

have  talked  about  but  I  do  not  have  that  much  time.  So  let  us  talk  a  little  bit  about

Photoelectron  Angular  Distributions,  because  when  you  do  a  photoionization  you  can

measure the probability or the cross section. But you can also measure the angles at which the

electrons come out and it turns out. 
(Refer Slide Time: 41:50)



That you probably know this formula that the differential cross section Sigma over 4pi 1 +

beta P2 of cosine theta  where P2 is just  the second order Legendre polynomial  3 cosine

squared minus 1 over 2, I believe, and beta is the so-called asymmetry parameter. And you

can  work  out  an  expression  for  this  babe  which  tells  you  something  about  the  angular

distribution. 
(Refer Slide Time: 42:34)

Now the interesting thing about this beta is that remembering, that you get l to l +1 and l to l -

1 transition, you get interference between these two amplitudes. And so if I call the amplitude

for this m plus and the amplitude for this and minus you get an expression for beta that looks

something like this. Again this just means some coefficients over something of mine, okay.

This part we already know about is like the cross section.
(Refer Slide Time: 43:40)



But look at this is the magnitude of matrix elements, times the cosine of the difference in the

phases of these matrix elements, basis. We did not learn anything about them from the actual

cross  sections.  But  they  appear  in  the  angular  distribution.  In  other  words,  there  is

interference between these two amplitudes. Now wait a second, though time out, for a second

we have an l to l +1 transition, l to l to l -1 transition. 
This angular momentum, angular momentums are good quantum numbers. So, how can you

mix them? And you have to think about what you are measuring? To measure the angular

distribution, what do you do? You look at the angle and the energy of the photoelectron. By

the way the angle the way I have written it here this is assuming linearly polarized electrons

and photons, I mean. 

And this is the angle with the, that it makes with the polarization vector. So, the symmetry is

not around the photon direction, but the photon polarization vector. And so what do you so

you  measure  the  energy  and  the  angle  effectively,  what  that  means?  The  angle  is  the

direction, you are measuring the momentum, okay. What are the Eigen and now you'll recall

from elementary quantum mechanics.

The Eigen function of a system if you measure a particular quantity, at the moment you make

the measurement, you force it into an Eigen function of that quantity, particular one, all right.

I  mean  you  change  the  wave  function,  yeah,  exactly  what  it  means.  What  is  the  Eigen

function of momentum? You know that. It is a plane wave. 

This plane wave look like let us say one of the z direction because it is easiest it is not a

special case I just take my coordinate system and put it so whatever direction of the electron

is moving. I call that the Z direction and what is that equal to you may have seen this in



scattering theory it  is I to the l to l + 1 j of k r, p l of cosine theta,  a very well  known

expansion.

If you have not learned about this, you will. In any case notice when it is assumed. So if you

measure momentum, no longer are in a fix angular momentum state. Why momentum and

angular  momentum do not  commute?  I  mean,  quantum mechanics  does  work and so by

measuring this you are measuring a mixture. You are forcing the wave function into a mixture

of different l states.

And that  is  how this  interference  arises.  Now the  study of  beta  is  very useful  from the

following point of view. From the cross section itself, you learn only about the magnitude of

matrix elements or amplitudes. And fundamentally the most fundamental information you can

get  about  a  process  is  the  matrix  element.  And  a  matrix  element  has  two  attributes  its

magnitude and its phase. 

The angular distribution allows you to get information about the phase. There are very few

processes which gives you information about this. This is one of them and so this is a really

interesting one to study. And a great deal of work has really gone into over the years studying

angular distributions. 

And unfortunately my time is limited to a last minute and so, what happens is this beta, since

the matrix elements are energy dependent and the phases are energy-dependent. These betas

are energy dependent and they can by measuring them you learn particularly if you measure

them and the cross-sections you know something about some of these and about the phases. 

And so, this can give you ultimately, as a matter of fact, there are some experiments, that are

called  complete  experiments.  Where  they  measure  all  of  the  magnitudes  of  the  matrix

elements and all of the relative phases, you only get phase shift differences here. So, you get

the relative phases and this is known as a complete experiment. 

And I guess since my time is pretty much up I will stop here and well I feel it has been a

privilege to talk to you, whether you feel it is a privilege, I have no idea. Thank you. 


