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Greetings, we began discussion on Fano Resonances and we have already come a significant

way in this discussion. We have discussed the Fano parameters related them to the general

formula coming from Collision Physics. And we began to discuss the Helium Atom Spectrum

as a prototype of a many Electron system. So, this is two electrons system; two electrons is

the smallest many electron system. So, it is best to develop the formalism in terms of a two

electrons system. 
(Refer Slide Time: 00:51)

And I will spend some time at the beginning of today's class, to discuss the Helium Atom

Spectrum. So, here you have two electrons  and these are the singly excited states of the

Helium Atom. So, you have got one electron in the 1s and then, the second can go into the 2s

or the 3s or the 4s or it can also go into the 2p, 3p, 4p or 3d, 4 d, 4 f and so on. 

So,  as  you go from left  to  right  in  this  diagram you are going to  higher  orbital  angular

momentum states so l = 0; l = 1, 2, 3 and so on okay. Now, this is part of the story because,

here you have in the two electrons; one electron in the 1s and the second in the 2s. But then,

there is, there are two possibilities; because the two electrons can pair into a singlet or triplet. 
So, this is the singlet panel. And there is a likewise a triplet panel, okay. 

So,  you  can  have  singlet  as  well  as  triplets.  So,  you  can  have  you  know  these  two

combinations of the of any two electron system. So, I am going to look at some of these



diagrams a little closely, magnify some parts. So that, you know, we can focus attention on

details. 
(Refer Slide Time: 2:18)

So, here are the possible configurations of the two electrons system. You can have the 1s to 2

s electrons in the 1s, then, you can have 1 in the 1s, the other in the 2s; 1 in the 1s, the second

in the 3s and then in the 4s and so on. And then, finally into the continuum which is indicated

by Ec. But then, it can go to l = 1 state so you have the 1s2p, 1s3p and so on. These are the

things that I showed in the previous diagram.

And I will strongly recommend this book by Massey and Burhop, Volume I, which is a very

good reference for these details. So, these are the different configurations based on the 1 s

state, but then, you can have, you know, these are the singly excited states. So, there is a

bound to bound transition and over here, there is a bound to continuum transition, okay. 

So,  these  are  the  singly  excited  states:  one  of  the  two  electrons  is  excited  to  the  other

electrons. But then, you can have excitations of both the electrons. And then, you have W

excited states. So, these W excited states, you can have both of them into 2s2; then, 1 in the

2s, the other in the 3s, 1 in the 2s, the other in the 4s; and then 1 in the 2s, the other in the

continuum s. 

But then, you can also have one in the 2s and the other in the 2 in the 3p this should be 3p and

not 2p. No, it can be 2p. And then you can have the 2s3p. That, and then, finally continuum p

as well, right. And then you can have 3s2s and so on. So, all of those I have not shown. So,

there are these several singly excited state configurations. And several doubly excited state

configurations.



And  here,  are  two  quantum  numbers  are  involved,  two  principal  quantum  numbers  are

involved; both are bound states. So, they have the principal quantum number. And one is

indicated by an uppercase N and the other by a lowercase n so is another. 
(Refer Slide Time: 4:21)

So here is a look at the same diagram. And here you have got the 1s2 and these are the singly

excited states of the Helium, okay. So, this has got an ionization threshold of 24.6 electron

volts. Then, you have the doubly excited states and these are based on the 2s2 2p2 and so on

possibilities right. And then, you have some more of these like the W excited states based on

the 3s2 and so on.

So, they have different Ionization threshold. So, this is 24.6, this one is 64.6 65.4, this is 79,

okay. So, these are the different thresholds for these limits. Then again, as I showed in the

previous diagram, you can have the Orbital Angular Quantum number, moving from left to

right, okay. So, you have the s states over here, the p states over here and then d over here and

so on.

So, as you move to the right you can go to higher Angular Momentum Quantum states. The

labelling as you notice is done in terms of independent electron picture okay. So, the quantum

numbers are the hydrogenic quantum numbers. Although this is the many electron system and

the hydrogenic quantum numbers, are not really good quantum numbers. 

So,  what gives you a good quantum number is  a configuration interaction between these

states, ok. So, the real wave function will be a superposition of these different states and some

of these could also include the continuum states. And it is this configuration interaction which

is of great interest to our discussion today. So, now, in these diagrams which I showed until

now, today, I have not shown the continuum.



(Refer Slide Time: 06:24)

But I will show it in the next slide which we had a glance at toward the end of the previous

class. And this is from far no in Cooper's Review of Modern Physics which is very awfully

cited literature in this. And here, this is the same spectrum except that energy is moving from,

energy increases from left to right in the previous diagrams. It was from bottom to the top,

okay. 
(Refer Slide Time: 6:56)

So, I have rotated this diagram through 90 degrees and here energy is going from left to right.

So, this is the first ionization threshold which I showed you in the previous figure which is

24.6 electron volts and then you have the second one at 65.4 and so on right. So, these are the

Ionization thresholds, which move from left to right as you go to higher ionization thresholds.

Furthermore, you have we have shown also in this, these discrete bound to bound states and

you will notice that they have an overlap with the ionization continuum of the single excited



states. So, there will be configuration interaction between the doubly excited states and the

singly excited continuum.
(Refer Slide Time: 7:36)

So, let us have some further look at this. Now, there are some more details coming up in this

diagram and that is the reason I am showing this diagram in pieces, you know; part by part

because if you put everything in the same figure, all at once, there is so much information

over there that we tend to miss out, some of the details.

 So, here we have in this diagram, we have shown the 1s to ground state of the Helium Atom.

So, these are the singly excited states as we have seen. So, this is the single excited state

continuum. This is the doubly excited n = 2 continuum, right. So, the 2s, 2p states and so on

are over here okay.

And then you have got the continuum for this. And then, likewise further n equal to 3 states.

So, these are the Ionization thresholds and you can have the, the Ionization threshold is of

course given by the usual Rydberg Bommer formula. So, you can just put it over here and

you will get the corresponding ionization thresholds.
(Refer Slide Time: 8:41)



Now for Helium, of course, that is equal to 2 so you get 4 over z square. And that is, what it

is. So, here is the Energy scale and this is not 2. So, these scales are different. So, you have

got 24.56 over here which comes here, okay. Then, you have the n = 2 limit which is here

shown on the scale of a ok. 

And then you have got the n = 3 and you have the W excited discreet bound states. All of

these are embedded in the continuum on the left side okay. So, all the W excited states on the

right are embedded in the continuum of what is on the left.
(Refer Slide Time: 9:26)

And  that  is  the  configuration  interaction  in  which,  you  will  have  a  bound  to  bound

configuration,  having  a  configuration  mixing  with  a  bound  to  continue.  So,  here  is  a

magnification  of  this  part  alone.  So,  this  is  the  singly  excited  state  configuration,  right

converging to the series limit at 24.58, okay. 



And it is this part which is magnified over here but now I show not only the 1s 2s and 1s2p

separately but I also show the singlet and the triplet. So, there are actually if you notice over

here, there are 4 red box series. But they are so tiny that one could miss out on that. And that

is the reason I have magnified this diagram. 

So, you have got the 1s, 2s, singlet and the triplet and then you have got the 1 s, 2 p again,

singlet  and triplet  combinations  as  I  mentioned  earlier,  okay. So,  you have  a  number  of

possibilities.  So,  all  of  these  are  built  on  the  1s  to  ground  state,  okay.  So,  this  is  the

magnification of this part which is the singly excited configuration.
(Refer Slide Time: 10:47)

Now, if you look at the w excited configuration. So, here is a magnification of this part of the

W excited configuration based on 2s, 2s, 2s, 2p, etc. But, then again, the 2s, 2s, you have a

singlet and triplet, okay. And likewise for the 2s, 2p also, you will have a singlet and triplet p,

okay. So, you will have a number of Rydberg series coming out of this. 

So, here is a, so, this is again, a magnification. So, there are actually 4 Rydberg series in the

double excitations. So, this is what leads to the configuration interaction between the bound

to bound and bound to continuum because all of these discrete states, doubly excited discreet

states, they are embedded in the continuum. 
(Refer Slide Time: 11:41)



So, here you will have a similar spectrum also for the negative hydrogen atom which is again

a two electron system so I am not going to discuss this in great length. But just to point out

that the hydrogen minus will also have similar, very similar Rydberg series. So, when you

work with photo detachment and so on, you will be using a spectrum of this kind, okay.
(Refer Slide Time: 12:06)

So, now, this is the main question of interest that you have these two electron configurations

and a many electron system, you can, you can discuss important correlations in terms of these

two electron configurations. So, when you have the energy of a doubly excited state in two

possible configurations. 

One of which is a bound and the other is bound continuum, then you will have resonances

and what is going to happen is that the electron may spend some time in the excited state

configuration before escaping into the continuum. So the electron can, of course, escape into

the continuum because energetically that is possible. So, it would happen.



But before it does so, there would be a little bit of time that it spends in the doubly excited

state and what this time delay will do is, to cause an additional phase shift, which will be a

resonant phase shift; because the double excitations belong to the discrete bound states. And

they are therefore at very sharp, not, not really sharp they have their lifetimes. 

But, they are at specific energies at the resonance energies. So, there will be a resonant phase

shift coming from this.
(Refer Slide Time: 13:21)

And it is this that we are going to learn from Fano how to analyze this. So, we mentioned in

some  of  the  earlier  classes  that  there  are  these  two  kinds  of  resonances:  the  Feshbach

resonance or the Fano Feshbach resonance as I normally refer to it and the other is the Shape

resonance. 

So, the Feshbach resonances are because of configuration interaction between the bound to

Bound and bound to continuum configurations. The shape resonances are due to the form of

the potential, okay. So, this is when the electron can tunnel through a potential barrier and

then it finds itself to be exposed to two different alternative states: One which is trapped in

the inner well and the other after tunnelling through the barrier. 

So, these are the two possibilities and Feshbach resonances will therefore occur below the

Ionization thresholds, okay; where a shape resonance will be above the thresholds okay. So,

these in,  in  both cases,  you do undergo a  phase shift  through pi,  as  you go through the

resonance. So, the final Feshbach resonances are relatively narrow and this is just a gross

feature one has to get into the details.



Because within the family of far no Feshbach resonances, there are very many different kinds

of  shapes  and widths  that  we have  already  talked  about  in  our  previous  class,  so,  what

happens is that our interest  now is in studying the electron correlations, the configuration

interactions, which lead to the Fano Feshbach resonances. 
(Refer Slide Time: 15:07)

And  they  lead  to  authorization  these  resonances  that  we  are  talking  about  are  more

specifically  called as autoionization  resonances and what  happens is  because the discrete

bound state is embedded in the continuum at some energy, the energy difference between the

two  states  becomes  exact.  And  then  it  becomes  impossible  to  use  ordinary  perturbation

theory.

Because in perturbation theory, you often have the energy difference in the denominator and

then things blow up. So, you need special techniques and that is what Fano introduced in this

marvellous paper.
(Refer Slide Time: 15:47)



So, let us refer to this configuration interaction between discrete and discrete and continuum.

So, the discrete state, I will indicate by Phi d so get familiar with the notation. I am using the

continuum state by Psi E, okay, the discrete states r square integrable. So, I normalize them

using the using the usual integral normalization integral.

And the dimension of the discrete states are of course L to the -3 by 2 okay the continuum

states however, are not square integrable and these are then normalized on the delta function

like a delta function scale. You can normalize them on a k over 2 phi scale in which this is

how the normalization would go. Or we have discussed this normalization earlier as well, in

scattering theory. 

And you can also normalize them on the energy scale. And if you normalize them on the

energy scale then, the dimension of the ray of the functions would be e to the - half L to the -3

by 2. So, mind you, the dimensions of the discrete states at the dimension of the continuum

states  are  different  because  of  how  we  have  chosen  the  normalization  okay.  So,  these

dimensions are different and that is something that you must keep in mind. 
(Refer Slide Time: 17:08)



So, this will also be a similar case for the negative hydrogen ion. And you can think of this

two electron system whether it is a negative hydrogen ion or a helium atom okay, as a two

electron system. And if you ignore the interaction between these two electrons then, it is as if

you are having a Hamiltonian for one hydrogen atom and another hydrogen atom okay, right.

It is almost like that.

So, the two energies would add up if you ignore the interaction between the two electrons,

okay. So, you have got the kinetic energy operator for one electron and the kinetic energy

operator for the second electron and the potential energy of each of the electron in the field of

the nucleus. But you have ignored in H0. This is the unperturbed Hamiltonian, the interaction

between the two electrons. So, this is your unperturbed Schrodinger Equation.

And it gives you an energy which is just the sum of the two energies. Now, you can write the

two electron wave function as a product of these hydrogenic states and your product, then

becomes your, two electron wave function becomes a product of these two. And these are

obtained as solutions of these two independent Schrodinger equations. 
(Refer Slide Time: 18:45)



Now, this is the case when both the electrons are in the discrete,  ok. But, we considered

various possibilities you can have 1s, 2s, 1s, 3s and so on. But, both are in the discrete; but,

what if 1 is in the continuum? And this is the zero order energy for the two electron system

when, both are in the discrete. 
(Refer Slide Time: 19:14)

But then you can also have 1 in the continuum. And the first order correction, when you do

include the interaction if both the electrons were in the discrete would then be given by the

matrix  element  or  the  perturbation  Hamiltonian  in  the unperturbed states  which  is  Phi  d

which is just a product of those two one electron hydrogenic states. 

So, this would give you the first order correction. So, this goes into the energy matrix E Phi,

okay. So, we are going to construct the energy matrix for various possibilities. So, you have

now the perturbation H1 and E Phi will give you the energy correction due to the electron-

electron interaction, if both the electrons are in the discrete. 



So, this is the possibility we have considered over here. So, E Phi is the correction, okay. And

of this, H0 is nothing but the sum of the two energies that we got earlier. And H1 comes from

this correction over here. So, this is what gives you the E Phi which goes into the correction

right okay. 
(Refer Slide Time: 20:28)

So, this is when both the electrons are in the discrete. Now, what if one of the electrons is in

the continuum? Now if one of the electrons is in the continuum then one electron state is

represented by the bound state which is Chi and the other will have energy, which is E -

epsilon 0 with a position coordinate r1, okay. 

So, the product, so you still express the two electron wave function is a product of the two

wave functions; one for the discrete state and the other for the continuum. 
(Refer Slide Time: 21:09)



So, now you have this continuum and the discrete state is embedded in this continuum. So,

this  is now your energy matrix.  So, you have got the energy contribution when both the

electrons are in the discrete, that is Phi d which is what we indicated earlier when you have

one in the discrete and the other in the continuum, right? Then, you have VE and then here

this is just a matrix element of the Hamiltonian in the continuum states. 

So, this will have a delta function popping on, right, because both of these energies are in the

continuum. So, this is now the framework of the energy matrix. Now, the thing to remember

as I mentioned earlier is that, this has got a dimensions of L to the -3 by 2 and this will have a

dimension of E to the minus half and L to the -3 by 2.

 So, what is the dimension of VE dimension of V will be e to the half okay. So, this V has got

a dimension of root energy and this is to be remembered because when we take it square, you

get the energy width which has got the dimensions of energy okay. So that comes out as V

square in our analysis. 

So, just remember these dimensions. Now, the configuration interaction wave function will

be a superposition of the discrete state and the continuum state and the continuum you will

have integration over a range of energies right dE prime, right. So, this is your configuration

interaction wave function and now our task is to determine these coefficients a and b to go

from there okay.
(Refer Slide Time: 23:03)

So, here we are. So, this is our Schrodinger equation. Now, let us project this on a discrete

state because this is the Schrodinger equation for the two electron system and it will have

components on the two electron bound states, or one in the bound state and the other in the

continuum. So, in this case, we project it on the discrete state possibility.



 So, let us take the projection of this Schrodinger equation on the state Phi d. So, we have got

two terms: one coming from the discrete and the other coming from the continuum, right? So,

these  are  the  two  states.  Now, we  already  know  this  what  is  it  this?  We have  already

determined, because this is the E Phi, right? This is our E Phi which would go into the energy

matrix. So, this is E Phi so we put this over here. 

And now you have got the matrix element of H in this continuum and Phi d. So, this H over

here is nothing but, E Psi right. So, I pull E common and now you have got a projection of

Psi on Phi D.
(Refer Slide Time: 24:27)

Which you get from, from, from here which will give you aE. So, now just I have written this

Schrodinger equation, so that on the left you have got E Psi, on the right you have got H,

operating on the superposition of the discrete and the bound states. So, this is the projection

that we are considering right on Phi d. So, here you get the E Phi which is here. So, if E Phi

comes here.

This coefficient is aE coming from here and then, this factor is nothing but V which we have

written earlier, right. So, you get V over here. And this is the projection of Psi on Phi d. So,

the projection of Psi on Phi d is this coefficient aE which comes here right. So, you have got

E aE equal to aE E Phi + this integral, okay. 

Now, I  will  refer  to  this  equation  with this  green  star  because  I  am going to  need it  in

subsequent analysis  okay. So, whenever  we need to  refer  to  this  I  will  pull  it  up with a

reference to this green star. It is like giving it an equation number. 
(Refer Slide Time: 25:43)



So, here you have got this configuration interaction. Now, we will this time project it on the

continuum, okay. Now, this continuum state is a mix of, this is the configuration interaction

state okay. It is a mix of, a discrete and a continuum right. So, it has got both the components

and we now project this Schrodinger equation on such a state which is a mix of discrete and

continuum. 

So, this  is  our projection now. Look at  it  term by term.  So, this  is  the projection on the

discrete part and here is a projection on the continuum okay. So, now what do we get? We

look at each term separately aE, we can pull out as we can, as a factor, we can factor it out.

And then, you have got the matrix element of H , Psi and Phi d which is nothing but V okay.

So, from this term, we get aE VE and likewise from this term we will get a Dirac delta okay,

because these two states are in the continuum. So, you get a Dirac delta there. So, now you

have this relation and now we have the left hand side which is e and these two will of course

give you a Dirac delta. 

You can  see  it  coming.  And  then,  on  the  right  hand  side,  you have  this  Delta  function

integration over E prime. So, only the term in E prime = E double prime will survive. So, you

get a coefficient b with E E double Prime and this E becomes double prime, that is because of

the Dirac delta integration, okay.
(Refer Slide Time: 27:43)



So, here are the relations we have. Now, this is the result that we got on the previous slide and

in this, I now put this superposition on the right side. So, now I get 2 terms, okay. And from

the first term E and aE are scalars, they will come out. And you will get a projection of the

continuum state on the discrete. But though they are orthogonal, so, that will vanish, right.

And then from here you will get the note, of the scalar product of these two which will give

you a Dirac delta okay. So, let us put both of these over here. And now, you get from the first

term you get 0, from the second you get a delta function. You carry out the integration, you

get the term in E prime = E double prime. 

So, you get this equation here. And this is the one which I will refer to as a red star. So, now

you have got two equations that I am going to be referring to; one with the grease green star

and the other with the red star. 
(Refer Slide Time: 29:00)



So, these are the two relations; one with the green, one with the red. So, these are the two

relations that we are now going to analyze, okay. Now, VE is real and here we have used two

primes so there is no need to use two primes we will use only one prime. So, I will rewrite

them without the double prime and writing them as real numbers okay. 
(Refer Slide Time: 29:30)

So, what do we get from this relation red star. From here, V = aE VE divided by E - E prime,

which is fine as long as E is not equal to E prime okay. So, all this will work as long as E is

not exactly equal to E prime. But that is just the case we really want to handle, okay. That is

precisely what we want to handle. 

So, to be able to include the E equal to E prime Fano used a very beautiful technique which

was devised originally by Dirac and this is the Fano Dirac technique okay. So, they make use

of principle value integration to address this situation, so I will show you how it is done. So,

the purpose is to address this particular case of E = E prime.
(Refer Slide Time: 30:31)



And this is the Dirac Fano technique and what this technique does is following Dirac. And

this is really beautiful device to handle such situations. That instead of writing b like this, you

write it as 1 over E - E prime. So, the aE VE prime is here, which is here. So, this is the aE

VE prime, okay. That factor is here and then over here, you add a function Z multiplied by

the Dirac delta.

Because you are going to use it in some integral so that will leave a value only when E prime

= E, which is just what you want, okay. So, that is the trick, okay. So, this is to be used in

Principal Value Integration. So, this is the Dirac Fano trick and you will see that, it really

does wonders for us. And the function z is so chosen that it meets the appropriate boundary

conditions; because the boundary conditions are known to us, okay.

So, by putting appropriate boundary conditions, you can determine the function z. And now,

whenever you have bE in the integrand, then, you can use this Dirac Fano, substitute. So, this

is the brilliant mathematical device which Fano used in this context. So, this is to be done

using the principal value integration, whenever b appears in the integrand and the principal

value of integral which I am sure all of you would have worked with.

In your mathematical physics courses or some other courses and Collision theory and so on.

So, whenever you evaluate an integral from E1 to E2, and then, you have a problem over

here, when E prime goes to E, then you go close enough and then, hop over that point and

then do the rest of the integration, okay. So, that is the Principal value integral. That is how it

is defined.
(Refer Slide Time: 32:47)



So, this is our Dirac, Dirac Fano proposal and what is understood is that, whenever you have

this type of an integral to be determined, then, you should carry out a principal value of this

integration and use z appropriate to boundary condition. So, these are the two things which

go into this technique.  So, it is the idea is very simple; but extremely beautiful and very

powerful, okay. 
(Refer Slide Time: 33:23)

So, let us see what it does for us in this particular case. So, here, we have the principal value

integral defined. And our interest is in this relation here, which we have identified as a green

star, and over here,  this  integral  will  be replaced by the principal  value integral.  So, this

integral  this  bE  is  to  be  replaced  by  this  factor  here  coming  from  the  principal  value

integration trick of Dirac Fano. And we will work with this relation instead of this, okay.
(Refer Slide Time: 34:09)



So, here we are. So, now, this is the relation that we have agreed to work with this in this. We

have already employed the Dirac Fano trick. Now, first we cancel out aE which is common in

all the terms, okay. So, aE is cancelled out. We need not carry it any further. The rest of the

equation is here after cancelling aE. Now, in this we have got three terms, one is EPhi which

is here, then you have this term which is here. 

And then you have got the third term, which is integration over E prime z VE square and the

Dirac delta okay. So, there are these three terms in this expression, okay are we all together,

okay. So, now, here what do we get? We make use of the principal value integration. From

this term you have got a Dirac delta integral okay. So, this is the Dirac delta integrator and

this will give you a value which is appropriate only for E prime = E.

Because the integration is over E prime, so you get a value which is appropriate only for E

prime = E. So, you get  zVE square from this term. And here,  you will  now carry out a

principal value integration, because the value for E = E prime is already taken care of over

here,  okay. That  is  already taken care of.  So,  your problem is  done actually. It  is  really

brilliant idea. 

So, now, it also tells us what z should be because z is now a solution of this. So, this principal

value  integral,  you represent  for  compactness  by  a  function  E.  This  is  a  function,  some

function of E. There is no difficulty in evaluating it. There is no singularity in that, right. So,

you evaluate this integral and you represent it by some function of E. And that tells us what z

should be it is given by this okay. 
(Refer Slide Time: 36:39)



So,  now  we  have  almost  all  the  pieces  that  we  need.  And  now, it  is  just  a  matter  of

rearrangement  of  these  terms  to  extract  our  final  state  configuration  interaction  wave

function. So, here, the z is given by the Dirac Fano trick. The configuration interaction is this,

as we know. So, what we are going to see, is that this, this particular state which is in the

continuum. 

This  will  look  very  similar  to  a  continuum state  solution  that  we  have  worked  with  in

scattering theory all along. You will remember that this goes a sine kr + delta, right. So, you

have got the sine kr, k depends on energy. So, it is sine kr + delta which is the background

phase  shift.  But  then,  there  is  an  additional  phase  shift  which  is  coming  from  the

configuration interaction. This is the resonant part, okay. 

So, there is this additional phase shift which is coming because of the time delay that the

electron may get bound into the doubly excited bound state for some time before it escapes

into the continuum. So, you have got a background phase shift and then a resonant phase shift

due to the configuration interaction.
The resonant phase shift it will turn out and you will see this coming in the next, you know,

as we go further, in this class. That this resonant part of the phase shift will turn out to be

given by negative tran inverse Phi over z, okay. That is what it will turn out to be but that is a

result which you will see coming.
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So, now we have to determine this coefficient a according to normalization. And this is our

normalization here, okay. Your Configuration Interaction state is you have a combination of

the discrete state and the continuum state. The discrete state is weighted by this coefficient a,

okay. This is what we want to determine.

These states are, of course, Dirac delta normalized. So, if you take this Dirac delta on the left,

ok then, on the right side, you have got a projection of this on itself, right. So, you will get a

E star aE from the first term, right. Phi and Psi are orthogonal. And then, you will get the bE

star bE times this, right okay. So, we have used these orthogonality is earlier as well. 

So, this is the left-hand side is nothing but the Dirac delta and then, the right hand side, you

have got the aE bar aE. There are two different energies I am considering, mind you, both are

in the continuum E and E bar, ok. So, you have got two coefficients aE and a E bar and over

here, because you carry out this delta function integration over E double prime.

So, that the only term that survives is the one for which a double prime is equal to E single

prime. So, you have got the E bar, E single prime. And then, the bE and the subscript here is

again E single prime, okay. That is the Dirac delta integration, okay. 
(Refer Slide Time: 40:27)



Now, here is a relation which we have obtained earlier which is from the previous slide which

I indicate by this diamond here the only thing I have done in moving this to the next slide is I

take this aE bar on one side. So, I have delta E bar minus E over here, okay. So, this is the

relation I get from the previous slide. This is the Dirac Fano trick. So, we have putting all our

pieces together. 

Now in this relation, which is indicated by this diamond relation, here, this over here, I use

the Dirac Fano inclusion of, E equal to for E equal to E prime because both are here. You

have got E prime over here. So, you have one for E bar and the other one for E, right. So, you

have two substitutions over here; one coming from this relation and the other coming from

the corresponding relation for E bar. So, this is our E and this is for E bar. 

So, these two go into these two pieces, okay. So, I substitute this and now I have got an

equation which looks slightly large. But we can handle it on the screen. So, remember that

you will get quadratic terms when you multiply you will get z over here and another zover

here. You have V over here and another V over here, so, you will get quadratic terms z and V.

So, let us write all of these terms. 

So, you have the aE VE and aE VE prime over here. So, there is an aE bar and aE, So aE bar

comes here; the aE comes here, the VE bar, the VE prime is inside, okay. The VE prime is

inside because it is under integration. So, it does not come out, ok. And then, you have two

terms over here. So, the VE prime remains under the integrand. 
So, you get VE prime over E bar - E prime here. Then, you have got the second function.

There is a Dirac delta here. And then, you have got a VE prime sitting on top of this E -E

prime and then, this function z and then this Dirac delta which is young, okay. 
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So, now you have got 1, 2, 3, 4, 4 terms 2. So, 2 terms of multiplying 2 terms over here. So

you will get 4 terms. So, they are here. 1, 2, 3 and 4, we have just multiplied them out. And I

think, this is when I was preparing these slides, I realized that it is really nice to be able to use

in this Technology Enhanced Learning Program that we have the provision to flash these

slides at the click of a mouse.

So, that we can concentrate focus of a discussion on the physics and not get lost in carrying

out mere substitutions that itself takes such a long time on a blackboard if you were to write it

using a chalk. So, this comes at the click of a mouse and we can actually concentrate on the

physics on how the analysis is done. So, here we have these 4 terms, right.

And you can of course, look at the PDF at leisure and make sure that everything is done,

right. So, here you have 4 terms: 1, 2, 3 and 4. Out of these 4 terms, these 3 have got Dirac

delta. And you are carrying out integration over E primes, so, they will give you terms in

which only E prime = E will survive, right. And then, there will be a 4th integral which will

be left coming from this quadratic term in V, right. 

So, those are the 4 terms. So, here is the result of those 4 terms. So, here you have got the

first one. You have got this integral over E prime or this is quadratic in V. So, here it is, okay.

And from the remaining 3 terms, you carry out the Dirac delta integration. And you are left

with only those terms corresponding to which E prime is equal to E bar in this time, over

here. E prime must be equal to E and over here E prime must be equal to E bar, okay. 

So, those are the three terms which are left with. But remember that in the last integral you

have carried out integration over E prime, so E prime must be equal to E bar. So, when you



write this Dirac delta E prime has been written as E bar, okay. So, that is something that you

have to keep track off.
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So, now we have got all the terms and I have now, I have got these 4 terms. But I rewrite

them. So, this first term which is indicated by this four point green star which comes here. So,

it is just a rearrangement of terms. But the colour code will show you which term is where.

Then I have this term coming over here with the difference that here I had E - E bar. But now,

I have E bar - E. So, I have plugged in a minus sign to compensate for that, okay. 

And then, I have this term which comes here as it is. And then, I have this term with the Dirac

delta E bar - E coming here, which is a quadratic term z and V, okay. Good. So, now we have

a double singularity here okay. So, what do we do? We use a identity which is well known in

mathematics. So, when you have a double singularity of this kind you use this identity that

which lets you take advantage of the Dirac delta integrations.

So, I will not prove this identity I will use it. So, this is the identity that we will use and this

was used by Fano in this work. So, instead of this 1 over E bar - E prime multiplied by E - E

prime, you use the right hand side of this and this will give you the Dirac delta or product of

Dirac delta in the numerator and then the rest of the terms.
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So, we will use this identity over here and using this identity this integral now takes this

form. So, instead of this integral you have the dE prime VE prime square coming here; the dE

prime, VE prime square. And here this one over double singularity is now written in this

beautiful  bracket which is this entire right hand side of this identity okay. So, this is the

relation that we now have to work with okay. 
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So, I brought it to the top of this slide now. Now, here again, if you play with the Dirac delta’s

is you can show that the product of these 2 direct delta's is completely equivalent to this. So,

we will use that. And using this combination instead of this, we simplify this further, okay.

And let us now analyze this relation. 
 (Refer Slide Time: 49:22)



So, this  is  the relation that  we are going to analyze  and I  will,  I  have used most of the

discussion is from Fano’s paper. There is some from Cowan’s paper and some from some

other sources. So, I will cite all the references and it is good to use them in combination. So,

in addition to Fano’s paper, I recommend Cowan’s Book, Theory of Atomic Structure and

Spectra. 

And the notation is slightly different which is why I am alerting you to that, that the principal

value function this integral has is, has the same notation in both Fano and Cowan. But the

difference is Xia that what Fano calls as z instead of that, Cowan uses Eeta. But his function

differs from Fano’s by a factor of Phi, okay. So that is the only difference and if you are using

a combination of these two sources. 

Then you have to be careful with the literature okay. So, here what we will do is, we have this

relation here, in which, you have an integral over E prime of a quadratic term in VE bar - E.

And this  is  where  you  can  use  the  principal  value  integral  which  is  represented  by  the

function f, okay. So we will use F of E instead of this term over here, okay; because the E = E

prime or E = E bar we have already taken care of using the Fano Dirac trick.

So, now by using this F instead of this, we now get all of these terms are now, over here. So,

first I write these 2 terms which come here, okay. So these 2 terms come here. Then you have

this term, these terms in which you have got V square over E bar- E. So these are replaced by

the Principal value integration FE - FE bar, right. These are the two which are coming here

okay, right.

 And then you have this term which comes here under and what you are left with? You left

with one term of here which has got the pi square V square. So, the V square is here, aE bar a



E is here and the pi square is here. And then you have got the E prime = E. So, instead of E

bar - E prime, you have got E bar - E; because E Prime has to be equal to E. So, that is what

you get here, okay. 

So, now, I think we are getting it in a mathematical form which is becoming compact and we

can address it,  in  a tractable  form. So, notice  that  these terms,  both have got  this  factor

common. This is aE bar aE or E bar - E. This is aE bar aE over E bar - E. So, you can

combine these two terms. You can factor this out and write it,  write the remaining terms

separately, okay, right.

Yes (Question time 53:04 not audible) yeah. Oh E prime is here. It goes into the z that is

taken  care  of  already, okay. So,  when  you  take  the  principal  value  integration,  you  are

hopping over the singularity, okay. You go as far as the singularity and then pick up the

integration from the point next to it. 

And the point of singularity is taken care of by the functions z, okay. So, here, here you are.

And now, you have got this term as common in this factor. So, we can factor it out.
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And I have factored it out and written the remaining 4 terms. So, they are now in terms of F

and FE bar. So, here I have, here I have F and FE bar. And here I have zEV square and here I

have ZE bar VE bar square, right. So, these are the 4 terms which will be in the remaining

factor. So, those are the 4 terms in the remaining fold. In the second factor this has been

factored out and this is the residual part which we had written here.

Which had this z square + Phi square and the Dirac delta, so here it is. So, you have the aE

bar aE VE bar VE z square, plus Phi square, the Dirac delta, right. So, you got all the terms, z



if we know, we already have seen that z is given by this relation and we are now able to

anticipate a very important, very nice result.

So, this is the value of the function z at E but we have 2 energy indices, one is without the bar

and the other is with the bar. So, this is Eddie bar and you put both of them. So, you have got

two expressions because you have got z VE square and then z E bar VE bar square. So, you

have to use the one with appropriate  notation and the difference between these 4 is then

nothing but E - E bar, because of this cancellation. 

Because when you cancel this, ok the E Phi drops out, right. And then you have only the E-,

E bar, okay. So, now we have got a simpler relation. So, this is the left hand side which comes

here the right hand side. You have got aE bar aE or E bar - E which is here. What is under this

red underlining is now just the difference between E and E bar which is here. 

And then you have got these 2 terms over here, which is z square + Phi square, Dirac delta

multiplied by a E bar aE and VE bar VE. So here we are. Now I rewrite this by moving this

term to the left, so I have got on the left hand side this term minus this; but I have it with a

plus sign because I have E - E bar in the numerator and it is negative in the denominator. 

So, I have got aE bar aE with a plus sign on the left. So this is the relation that I will bring to

the top of the next slide. 
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So, here we are. So, we have got these 2 terms on the left. Now, this is the relation that we

have referred to earlier from slide 68, okay which I had indexed by a diamond okay. And now

if you look at these two relations it is obvious that this factor over here must be equal to unity

okay. 



The left-hand sides of both the equations are the same; the right-hand sides are very nearly

the  same  except  for  this  factor  which  must  be  equal  to1.  And  that  tells  you  what  the

coefficient aE must be. This is what we were looking for, okay. We wanted to know, what is

the weight factor in the Configuration Interaction mixing? 

So, this is the weight factor. And this now comes out as a square root of 1 over V square z

square + pi square okay. So, here you can write z because we know what z is. That is E - E

Phi - F over VE square. So, you can rewrite in terms of this function of E instead of z. So,

this is your weight factor a.
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So, we now have this. And now we have taken care of the E = E prime and now we get the

Configuration interaction. We have got all the terms. We have the b, this mixing we got this

coefficient.  So,  we now get  the complete  wave function and in this  we make use of the

principal value integration as we have done, right. 

So, you have the complete configuration interaction wave function in which you have the aE,

Phi d which is here. And then, you have this piece over here. But because of this Dirac delta

integration, you have got only the term corresponding to E prime = E which is why you get

this zE, VE, Psi okay. 

So, this is the configuration interaction wave function that we have now reduced and we will

use this  in our next class when I will  discuss the resonance phase shift,  okay. Because I

mentioned that what happens as a result  of the configuration interaction that the electron

which  has  the  possibility  of  escaping  into  the  continuum,  because  one  of  the  two

configurations belongs to the continuum. 



It has a possibility of spending some time in the doubly excited bound state. So, this is the

bound to bound and bound to continuum configuration interaction. And because it spends

some time over here, that time delay manifests as an additional phase shift that is the resident

phase shift which I had anticipated a little bit toward the beginning of this class. But we will

see it more explicitly in the next class. Any question?


