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Fano Parameterization of Breit-Wigner formula

Greetings, this is the last unit of this course. And there are just a few classes in this. We

already got the expression for the  Breit Wigner formula. And today we will introduce the

Fano parameters  which  describe  the  complete  expression  for  the  scattering  cross  section

inclusive of the background and the resonance. 
(Refer Slide Time: 00:42)

So, let me quickly recapitulate the result we obtained in the previous class. So, this is the total

cross section. And we found that it had three terms, one coming from the background alone,

one coming from the resonance part  and the third part  which came from the interference

between the background and the resonance part right.

 So, these are the three terms. And then we have such terms for each partial wave l going

from 0 through infinity. And the expression for the lth partial  wave cross-section is  now

written in terms of these three parts right. 
(Refer Slide Time: 01:25)



So, let us look at this expression now. So you have got a real part of this complex number. So,

I look at this complex number and rewrite it in a slightly different way okay. So, I take this

complex number and I write it in terms of a and b okay. So, you have got in the complex

number a real part here and an imaginary part here. But then you also have got a real part

here and a imaginary part in the numerator which is cosine Psi and sine Psi.

So,  you  multiply  and  divide  by  the  complex  conjugate  of  the  denominator.  And  then

reconstruct this complex number, so that you will have an effective real part and an effective

imaginary part. So, having done that you write this complex number in terms of this real parts

which is now a cosine Psi - b sine Psi divided by a square + b square and the imaginary part

will be b cosine Psi plus a sine Psi divided by a square + b square okay.

So, we need the real part of this complex number the real part of z.  So, or zee as the young

people call it, my generation always called it as z but now it is or zee I think. So, this is the

real part of this complex number zee and what do we have here. So, this term will now go

over here okay. 

So, let us rewrite this scattering cross section for the lth partial wave in terms of this real part

of the complex number z and that is in this blue box okay, right. So, this is a fairly straight

forward substitution. Most of this is really very simple. There is no involved mathematics. It

is just a matter of rearrangement of terms but done very cleverly by Fano. And that is what

we are going to appreciate today.
(Refer Slide Time: 03:37)



So, we essentially find that these two forms of writing the lth wave partial, lth partial wave

cross section in these two forms these are necessarily equivalent forms. What we will do now

is to introduce the parameters which were defined by Fano in that famous paper. And we

rewrite this expression in terms of q and epsilon. 

So, that we express the effective cross section sigma l of the lth partial wave in terms of q and

epsilon rather than the terms that you see over here okay. So, this is just an effective rewriting

of the same expression. So, there is no new result okay. But the same expression when it is

written in terms of these new parameters it gives us a very convenient and a very powerful

tool to analyse the spectra, the collision spectra.
(Refer Slide Time: 04:40)

So, here is a result now. So, let us rewrite it. And we rewrite it by introducing two auxiliary

numbers a and b. And in terms of a and b, we rewrite this cross section in terms of a and b.



So, the middle terms become b square over a square + b square b is half gamma. So, you are

here you see you have got a quarter of a gamma square right. 

And then you have got a square + b square right. So, the middle term is here. So, the only

thing that is done is to rewrite it in terms of a and b over here. And then you rearrange the

terms because you have two terms coming from here one coming from the multiplication of

twice sine Psi b with a cosine Psi, and the other when you multiply this factor with b sine psi.

So, you get these one two three four terms.

And then you combine the terms in sine square Psi because you have got sine square Psi over

here  and a  sine square  Psi  also  in  the  fourth term.  So,  you combine  the two terms  and

rearrange these terms a little bit so that you get a square + b square in the denominator in

each of the three terms. So, that is the idea. 
(Refer Slide Time: 06:01)

Now  having  done  this,  you  rearrange  these  terms  one  more  time  okay. And  I  will  not

comment  so  much  on  these  rearrangements  they  are  quite  straightforward  but  a  very

effective. They are extremely effective. So, you rearrange these terms and I am going to use a

form. 

So, this expression for the lth partial wave cross-section is very much the same as we got in

the previous class except that it has been rewritten in terms of these auxiliary parameters a

and b which are respectively just the energy difference from the resonance energy and the

half width of the resonance okay. So, they are rewritten in terms of a and b. So, these are like

intermediate auxiliary parameters.
(Refer Slide Time: 06:57)



So, here we are. We have a and b. Then we do know that the tangent of the phase shift at

resonance is given by gamma over twice the difference of this energy and this is in fact how

we had defined the resonance with. This was the definition of gamma as you will remember.

So, now we have this expression and what we do is to define these two parameters epsilon

and q following Fano.  

So, this is how Fano defined the two parameters epsilon and q. So, epsilon is nothing but the 

negative of the cotangent of the resonant phase shift. And q is nothing but the negative of the 

cotangent of the background phase shift okay. So, these are two parameters and notice that 

this epsilon is nothing but a ratio of a over b with a negative sign okay. 

So, epsilon is just minus a over b and q is this q come comes from the background phase shift

comes from the cotangent of the background phase shift or the negative of the cotangent of

the background phase shift. So, we will rewrite these terms. So, instead of a and b we will

now rewrite it in terms of the Fano parameters epsilon and q. Now how do we do that.  

So, we notice that if you take the reciprocal of q, reciprocal of E you get b over a okay. And

then you have the partial  wave cross-section which is  2l  + 1 sine square is Psi.  So,  you

combine these two terms using just the usual properties of the cotangent functions okay. And

notice that you already get the q parameter appearing over here. But the epsilon is yet to

arrive in our expression. 

So, we again reorganize these terms okay. So, this is a straightforward rearrangement of the

terms. So, you have you rewrite this term with a square + b square as common. You have got

three terms and these are the three terms. So, now you have b square you factor out from this.



So, you get only q square in this term and then a square over b square and then since b square

has been factored out you get 1 over b. 

So, this becomes minus twice a over b q and what is this, this is nothing but the square of q

minus a over b but a over b is nothing but the negative of epsilon okay. So, now we can write

the lth partial  wave cross section which contains all  the three contributions one from the

background then, from the resonance part and then, from the interference part. 

So, all the three together because that is what an experiment is going to see the experiment

does not distinguish you know when it when you have a detector it is not going to sense

which part is coming from which term. So, you will get a net effect and that net effect is now

written in terms of these two parameters. 

So, the a over b is here, the q is here. And that allows us to write the scattering cross section

for the lth partial wave in terms of the Fano parameters q and epsilon. So, the numerator here

is just the square of q + epsilon and the denominator is just 1 + epsilon square okay. So, this

is effectively just the same expression. 

There is nothing new in this that we have found today except that we have rewritten the

scattering cross section for the lth partial wave in terms of two parameters, one related to the

phase shift from the background and the other coming from the phase shift at resonance okay.
Thus, net scattering phase shift we had written as the sum of two parts in our previous classes

in the last unit.

But we did was to express the total scattering phase shift as the sum of two parts so we have

separated  out  the  dynamics  resulting  from the  background and  the  dynamics  which  was

coming from the resonance structure. 
(Refer Slide Time: 11:57)



So, these are the three terms that we begin with okay. The background part, the resonance

part and the interference part okay. Labelled by b, r and i respectively and now we have these

Fano parameters q and epsilon. And in terms of this we have the same cross-section, the same

scattering  cross  section  which  contains  information  about  all  of  these  three  together  but

written in this single term but in terms of two parameters which are q and epsilon.
(Refer Slide Time: 12:35)

So,  this  is  our  effective  expression  for  the  scattering  cross  section  in  terms  of  the  Fano

parameters. Notice that when the background phase shift is small, when sigma goes to 0 then

you have only the resonant part of the scattering cross section right. And when q is minus

epsilon the cross section can actually vanish okay. 
So, there is nothing. No stopping from the scattering cross section to disappear and it is not 

always that when you have resonance effects the scattering cross section must only increase 

because it can also decrease, it can even vanish, it can even go to zero. 
(Refer Slide Time: 13:23)



So, here is a figure from Bransden Joachain’s book which I would like to discuss. And this is

figure 12.4 in Bransden and Joachain’s book and it has got four panels a, b, c and d. And they

represent different cases which are described in the caption for the figure. So, here you notice

that the background cross-section this is for S waves so which is why the quantum number l

is equal to zero which is the  subscript of  Psi.

So, this is for l equal to 0 S wave scattering. So, that is the example which is discussed over 

here. And for this case, here the background cross background phase shift which is Psi is 0. 

So, Psi 0 is 0 and this would correspond to q being either plus infinity or minus infinity. So, 

you will see how it is related it is very straightforward. 

Then here the background cross section phase shift is higher than over here. So, it is about

halfway between 0 and pi by 2. So, this background phase shift is about pi by 2. And then, in

panel c the background phase shift is about pi by 2, this is pi by 4 in panel b. In panel c the

background phase shift is pi by 2 and in panel d it is 3pi by 4. 

So, this is pi by 2, this is pi , this is about three fourth. So, this background phase shift is

about three fourth of pi. And these are the corresponding cross sections and they come in all

kinds of shapes. And that is the reason it becomes very fruitful to analyse them in terms of

what we call as a shape parameter which is the q because they all have different q values. So,

let us look at these figures carefully panel by panel. 

So, I will discuss each panel separately. So, in each of these you have got a dashed curve

which is just what the maximum cross-section at that energy which would be possible but

then because of resonances the cross-section changes sometimes widely, sometimes it also



goes to zero. So the dash curve only represents the maximum cross-section which can occur

at that particular energy or momentum. 
(Refer Slide Time: 16:03)

So, let us look at these parameters carefully. So, we are discussing l = 0 the s wave scattering

in terms of the Fano shape parameters. And notice that when this background cross phase

shift is 0 look at this when would when Psi0 is 0, what do you get for cotangent of Psi, it will

be either plus infinity or minus infinity right. 

So, that is how the parameters are related okay. So, when about the background phase shift is

0, the Fano q parameter would be plus or minus infinity. So, the value of q is essentially

determined by the phase shift of the background scattering okay. When the background phase

shift is pi by 4 which is what we see saw in the second panel right. When the background

phase shift is pi by 4 what is the negative cotangent of pi by 4, it is -1 okay. 

What when the background phase shift is pi by 2, when the background phase shift is pi by 2

the cotangent would go to 0 and q = 0. And in the fourth panel the background phase shift

was 3pi by 4 and the Fano q parameter would be plus 1. So, these are simply coming from the

values of the background phase shift okay. 

But they give you a range of q values which can be anything from plus infinity to minus

infinity at the background phase shift can be anything from 0 to pi or modular pi right. So, the

background phase shift can be anything which means that the q parameter can be just about

anything and as you see from these figures they determine the shape of the resonance.
(Refer Slide Time: 18:02)



So, here is the case which was in panel a. And in this case the background phase shift is 0, q

is plus infinity or minus infinity and what do you get, you get a cross-section. If you put these

values q equal to plus infinity or minus infinity in the expression for the scattering cross

section.

You get essentially the pure Breit-Wigner resonance which we have discussed at length in our

previous unit in our previous classes. So, you get the pure Breit-Wigner resonance in this case

when q is either plus infinity or minus infinity. So, that can always be a special case that you

have just a pure resonance. 
(Refer Slide Time: 18:51)

But then you may have as in case b, a background phase shift which is pi by 4 and in this case

q is minus 1. And notice that this would give you a net cross-section which is given by this

formula here and what does it turns out to have an asymmetric line shape. So, typically the

resonance profiles have asymmetric line shapes but not necessarily. 



They  may  also  be  symmetric  like  in  the  Breit-Wigner  pure  resonance.  It  does  have  a

symmetric line shape. In this case it is asymmetric.
 (Refer Slide Time: 19:34)

In case c the background phase shift is pi by 2 which begins over here and q is 0. And when q

is 0, you have got only the square of epsilon in the numerator here in this formula okay. But 

what is epsilon. It is related to the resonance phase shift. And the resonance phase shift is pi 

by 2 okay. We have seen that in our previous discussion. 
So, what does it mean you get a scattering cross section which actually goes to 0. And this

resonance is often called as a window resonance okay. Because as you can see you get a

window like behaviour, a window like shape in the red in the scattering cross section. So, this

is often referred to as a window resonance.
(Refer Slide Time: 20:33)

And then we also had the other case which is the ah background phase shift being three-

fourth of pi. And then you have got q =+1. And as was the case for q =-1, you have an



asymmetric line profile.  So, most of the profiles for various different values of q will  be

asymmetric okay. 

In certain cases you may get some kind of symmetry that depends and the actual shape, the

information about the shape of the profile is then contained in the q parameter. So, this is the

famous Fano’s q parameter. And you can see that how specially if you are an experimentalist

you would like to look at the shape and analyse it in some simple terms.

So, Fano parameters let you analyse the shape of the resonances in a very neat form.
(Refer Slide Time: 21:34)

So, here is our expression for the scattering cross section of the lth partial wave. So, this

formula is no different from this one. There is nothing in this formula which is not there in

the  first  formula.  The  two  are  completely  equivalent  but  the  second  one  is  in  terms  of

parameters which have got rather simple interpretation when you are looking at a scattering

spectrum. 

When  you  look  at  the  scattering  cross  section  and  study  it  as  a  function  of  energy  or

momentum then, you can analyse the shapes of the resonances very neatly using the Fano

shape parameters. And ah here I have given some reference but  plural references because

there are so many of them okay. 

And I am borrowing some discussion from the book by Massey and Burhop on electronic and

ionic impact phenomena. This is a very classic book on scattering theory and then of course

there are a large number of papers by Fano and other reviews and so on. So, I am not going to

attempt to review the entire literature extensively except point out some of the key references.
(Refer Slide Time: 22:50)



So, this is these are the three terms which are of importance to us the background term, the

resonance term and the interference term. And these play this formula in terms of the Fano

parameters becomes extremely useful when you study the configuration interaction between

bound to bound and bound to continuum transitions. 

So, that that's what you get in a phenomenon like auto ionization okay. In auto ionization you

have got  alternate  channels  which are open for  the photo absorption process.  The photo

absorption can result in either a bound to bound transition from an inner electron of the atom

or from a bound to continuum transition from an outer electron.

Because both the processes can be degenerate and it will be a resonant process because the

bound to bound transition is always between discrete levels which are quantized okay. So,

this will be a resonant process. And essentially you have these two possibilities. So, you can

have an electron in the bound state or in a two electron system you can have one electron in a

bound state and the other also in an excited bound state. 

So, this will be a bound to bound transition from discrete bound to discrete bound okay. And

this channel is degenerate with an outer bound into the continuum and these two represent

two different configurations or occupation numbers of the single electron states are obviously

different in these two. 

So, you essentially have a configuration interaction between the continuum and the discrete.

And that  is  what  Fano parameters  help  us  analyse.  So,  this  is  the classic  paper  which  I

mentioned earlier  also most atomic physicists have got this reference by heart they know

volume 124, number 6 everything. They almost know it by heart. It is a classic paper. 
(Refer Slide Time: 24:54)



So, we analysed this in terms of the square well potential right. The expressions we got were

in terms of the scattering by a square well. That was our prototype of a potential. But then our

interest  is in realistic potentials.  And the realistic  potentials  would be somewhat different

from square well potential. The square well potential is just an attractive model potential. 

And we will therefore now like to ask how will this analysis go if you worked with a more

realistic  potential  then,  some  of  the  parameters  may  end  up  having  either  a  different

interpretation or they if you are to use the same kind of expression then you must find out

what would be the meanings of these parameters and how to interpret them. So, let us discuss

that. 
(Refer Slide Time: 26:00)

So, let us consider a pure Breit Wigner resonance which has its maximum at E = E r. This is a

symmetric. You know classic Lorentzian shape okay. But most of the resonance profiles are



often asymmetric. And then we can deal with potentials which are much different than the

square well potential. 

And the typical resonance profile as you see in this figure. You have got the background

cross-section  which  goes  almost  flat  over  this  small  energy region,  over  a  wider  energy

region background cross section of course would change but over a narrow region it would be

relatively flat. 

And over this the actual cross section has got a completely different symmetry okay. It is an

asymmetric cross section and obviously has some value of q which is somewhere between

minus infinity and plus infinity and we can specify exactly what is the value of q for this

particular shape resonance okay. 

So, the maximum of the cross section as you see is not necessarily at the value of E r. It can be

somewhere else. So, the criterion of the resonance energy is that it is the energy at which the

resonant part of the phase shift goes through pi by 2 okay. That is the criterion and not the

value of the cross section itself. 

The cross section can hit  the roof.  And it  can be a maximum, it  can also disappear in a

window resonance, it can even go to 0 or it can have any other value in the intermediate

range anywhere between zero and whatever is the maximum value that it can get. So, you

have got the background part which is relatively flat over this narrow energy region.
(Refer Slide Time: 27:52)

And to understand these terms we will very quickly recapitulate some of the terms that we

have discussed at length for the square well ah potential which we have discussed at length in



our previous classes. So, I will only summarize the essential results just to relate so that we

can relate to those terms. 
(Refer Slide Time: 28:12)

And we you will remember that we had solutions for the inner region, we had solutions for 

the outer region, we had the wave functions, the exact radial functions okay. For the outer 

region and for the inner region we have the expression for the continuity of the logarithmic 

derivative coming from the continuous nature of the radial function and also its derivative. 
(Refer Slide Time: 28:42)

And what happens as a result of this is that when you exploit the continuity of the radial

function and it is derivative okay. You have the corresponding expression for the outer region;

outside you have got the total phase shift which is the sum of the background part and the

resonance part.

And near the resonance if you rewrite this expression what it gives you for the internal wave

function,  is a function of an amplitude which is the most amplitude.  So, what this whole



analysis is resulting in is that the particle tends to get bound in the well for this particular

case. So, that is what happens at a resonance. So, there is a bound state which and the particle

tends to get mind. It tends to get bound in that in the well. 
(Refer Slide Time: 29:43)

So, you can have for l not equal to 0. You can have the centrifugal barrier; you can have

metastable states in this. And then for l = 0, we know that there is no centrifugal barrier

because it is l into l + 1 by r square whereas. So, s wave resonances are coming because of

the virtual bound states which we have discussed at some length especially in the context of

the Levinson’s theorem we have discussed this feature to us in considerable detail.
(Refer Slide Time: 30:19)

So, now you have this potential scattering. So, this is no longer just a square well okay. It can

have some other shape. And this figure we here in the lower right corner over here represents

an alternative potential shape. It can be anything else. In general it is quite complex. It will



not even have an analytical form okay. And in most situations you end up getting numerical

forms.

So, you cannot really sketch them so easily like this but by and large the only thing that is

conveyed in this figure is that this is how you will deal with potential scattering from those

potentials which are different from the square well potential and this is a prototype of all of

them okay. So,  you  can  have  discrete  bound  states  over  here,  you  can  have  metastable

resonances over here which will give you shape resonances. 
(Refer Slide Time: 31:24)

And then you can analyse this in terms of the phase shifts at resonance and the phase shift in

the background region which is Psi. And our question that we are addressing is how would

the above relations all of these relations how will they get modified if we deal not with an

ideal square well potential but with some other potential the prototype of which is what our

figure suggested. 

So, our first conclusion is that if our potential is no longer the square well potential what we

had for gamma and gamma plays a big role over here. Notice that all the rapid fluctuations

are coming because of gamma. r and s and Psi, they change relatively smoothly across the

resonance region. It is the gamma which changes widely and that is of importance.

And because gamma is changing widely for a potential which is other than the square well

potential, you will not be able to use the same expression for gamma as you did for the square

well potential for which we had the exact solutions for the inner region and the outer region.

For some arbitrary potential we can hope to expand gamma about the resonance energy and

we carry out a power series expansion and consider only the first term.



We already know that compared to the energy differences between adjacent resonances, the

width of a resonance is rather small which is why they appear as spikes. So, it is sufficient to

take the first order term in the power series expansion for gamma. So, you have a power

series expansion for gamma, this is the first order term. And this is what we will use for

gamma. 
(Refer Slide Time: 33:34)

So, now let us look at the expression for the resonant phase shift. And this is just simply

determined by the properties of the tangent functions which we have discussed earlier also.

And notice that at resonance when E = Er this denominator goes to zero. So, the tangent

shoots up right. And phase shift is npi by 2 okay. So, that is the criterion mind you for a

resonance. 

It is not in terms of what is the value of the cross-section, it is in terms of what is the value of

the scattering phase shift of the resonance part of the scattering okay. The net phase shift

being separated in the background part Psi and the resonance part delta. So, this phase shift

Rho which is the part of the phase shift other than the background, when it is specifically at

the resonance we use a specific symbol for it which is delta with a superscript r. 

So, this is nothing but Rho at resonance and this will be npi by 2 and essentially if you look at

this alternative expression for the tangent of the phase shift. When this tangent blows up as

one would expect at resonance effectively you have gamma becoming nearly equal to r, so

that this denominator would go to 0. 

So, gamma being equal to r is the same condition as the resonance condition E =r Er and the

resonance phase shift going to pi by 2 or npi by 2 where n is an odd number. So, gamma = r



is now an equivalent criterion to recognize the resonance condition for square well scattering

potential. So, at resonance gamma is nearly equal to r. So, that is our conclusion. 
(Refer Slide Time: 35:42)

What we will do now is that if we now carry forward the same interpretation that if gamma

being associated or being set equal to r works for scattering potential.  And if we were to

extend this correspondence to other cases also, when you have a potential which is different

from a square well potential then, if we were to write the tangent of the phase shift using a

similar expression.

What  would  be  the  meaning  of  gamma  it  could  be  different  okay. Because  you are  re-

interpreting this in terms of the square well parameters but for a potential case presuming that

gamma  being  equal  to  r  works  even  for  other  cases.  So,  this  will  give  us  an  effective

interpretation of the width of the resonance width. So, let us look at other cases of potential

scattering. 

When I use the term potential scattering, I am specifically looking at those potentials which

are other than the square well potential. What I have for a square well potential is what I

indicate explicitly by writing a square well scattering as a superscript over here. So, anything

which is a potential scattering this is of course also a potential but it is a specific potential that

we have worked with and for which we have got the exact solutions. 

Whereas this is in general some other potential which is a more realistic potential prototype

of which we have the figure for. And in general it would be some other potential other than

the square well deep square well potential okay. And then we will ask the question that if this

correspondence holds good even for potential scattering.



Then what would be the interpretation of s and what would be the interpretation of gamma.

Over here the interpretation of r is what we pin down as a reference level okay. So, r would

be the same as gamma but gamma for the potential scattering is not the same as gamma for a

square wave scattering. 

We have seen that you can expand it about the energy and you then include at least the first

order correction term okay. So, we will  now ask what would be the interpretation of the

parameters s and gamma in this case for potential scattering. 
(Refer Slide Time: 38:25)

So, this is the expansion of gamma. So, you have got this is the first order change in gamma

that  you will  need to  consider  when you deal  with potentials  other  than the square well

potential. And you do know that the representation of the remaining part of the phase shift

which is other than the background phase shift which is Rho has got a specific notation in our

analysis which is delta superscript r. 

And we know that this expression holds good for the square well potential. And we know that

for the square well potential the tangent of this phase shift you can write in terms of s, r and

gamma and equivalently in terms of this gamma over the energy difference. This is how we

defined gamma, so that this becomes equal to this at resonance right.

So, this is how this width gamma was defined. And now to write it in terms of s and r, we

write this gamma in terms of this expansion on the right hand side. So, you have got this

expansion here and then you have got s and r over here.  But these may have a different

interpretation than what we had for the square well case.



So, now our criterion to identify the interpretation of s and r and then also the resonance

width gamma is that we presume that just as in the case of the deep square well potential this

is our reference for comparison that we interpret r to be the same as gamma. So, this terms

becomes equal to this right. 

So, these two terms would be equal and they will cancel each other and you get an effective

expression for the tangent of phase shift in which we do not have s and gamma anymore, you

do have the derivative of gamma with respect to energy coming from this term. And this is

valid  for  the  potential  scattering  which  is  for  the  case  when  the  scattering  potential  is

something different from the square well potential. 
(Refer Slide Time: 40:51)

So, this is the expression that we have, presuming that gamma and r are the same. But this is

no longer the gamma ah of the ah square well potential, it is the one corresponding to the

actual potential. And this is the leading term and then you have got a correction which is the

first derivative of gamma with respect to energy. So, here I have rewritten this. I have got E

minus Er in the denominator which I now write in terms of Er - E. 

So, I have a minus sign over here. So, these two terms are essentially the same except that I

have absorbed the negative sign in the denominator and attach it to the numerator okay. And

what this allows me to do is to determine what would be how to interpret the resonance width

okay. The resonance width has now got a new meaning for the potential scattering. 

Because if the resonance width is to be, so defined that half of that divided by the energy

difference will still be related to the tangent of the phase shifted resonance. Then, if we now

have a correspondence which means between this part which is in this blue box and this part



which is in this blue box. So, these two parts must correspond to each other and that gives us

an interpretation of the resonance width gamma for the potential scattering right. 

Because these two must correspond to each other so that you can write gamma or you can

interpret  gamma once  again  in  the  same fashion that  half  of  that  divided  by the  energy

difference will be the tangent of the phase shift at resonance. So, this is the correspondence

which is emerging from this comparison okay.
(Refer Slide Time: 42:58)

So, here this particular correspondence, it allows us to write the expression for the tangent of

the resonance phase shift in the same form as we did for the square well scattering. And now

because gamma has been interpreted in this particular form, we cannot presume any longer

that this gamma will always be a positive quantity.

Because you know that the dynamics is governed by all these cotangent curves and they can

take all kinds of value. So, you cannot guarantee their gamma is a positive quantity. So, it

does not have to be a positive quantity. 
(Refer Slide Time: 43:46)



And then if you look at the properties of the tangent function then if gamma is positive then,

what happens to the resonance phase shift that it increases through an odd multiple of pi by 2

but if it is negative it actually decreases through an odd multiple of pi by 2. So, that is an

upshot of this particular analysis. So, this is for a typical resonance coming from some other

potential.
(Refer Slide Time: 44:15)

So, this is something which is of great importance in the ah ah analysis of auto ionization

resonances and in particular the configuration interactions between the bound to bound and

bound to continuum states. And a classic example of this is two electron systems, which I will

discuss in some details.
(Refer Slide Time: 44:39)



And a two electron system, like the helium atom okay or it could be the hydrogen negative

ion. So, these are the simplest examples of two electron systems. But then a two electron

system can be  a  subset  of  any many electron  systems.  And you can  analyse  the  atomic

properties of many electron atoms in terms of the analysis for the two electron systems. So,

we will describe this in terms of zero order approximation. 

And  in  the  zero  order  approximation,  you  pretend  that  the  interaction  between  the  two

electrons is switched off which means that you can continue to use the hydrogenic quantum

numbers. Well you will remember that the hydrogenic quantum numbers like n, l, m and so

on. They essentially come from symmetry properties. They come from those Eigen values of

those operators which commute with the Hamiltonian okay.

But once you break the symmetry of the Hamiltonian because once you have me you do have

the spherical symmetry for the hydrogen atom. So, n, l, m are good quantum numbers for the

hydrogen atom but there would not be really good quantum numbers for any other atom, any

atom other than the hydrogen atom right. So, those quantum numbers will not be the so-

called good quantum numbers. 

But we will continue to use the hydrogenic quantum numbers.  But then you will now have

configuration interactions okay, between these different hydrogenic states. So, we will have

one particle hydrogen-like states which will define different configurations. So, I will give

examples of some of these. 

And the actual state action really will be a configuration interaction, which means that if you

have a  superposition if  you have the atomic system described by a superposition of two



configurations. One in which you have got one set of hydrogenic quantum numbers, other in

which you have a different set of quantum numbers, hydrogenic quantum numbers.

But  obviously  you  are  conceding  that  the  hydrogenic  quantum  numbers  are  not  good

quantum numbers because the state is described by a superposition of these two okay.
(Refer Slide Time: 47:03)

So, you have the two electron system like the helium atom or the negative hydrogen ion. And

let us consider some configurations. You can have 1s2 that is what would come to your mind.

You may also have 1s 2s for the two electrons right. You may also have 1s3s. And you may

also have one 1sEcs, Ec is a continuum energy so it can go into the continuum. And then you

may have infinite number of different possibilities. 

You may also have 1s2 and then 1s2p why not. You may have 1s3p. So, you have got very

many different  possibilities.  So,  you have a large number of actually  infinite  numbers of

possibilities,  different configurations in which the two electron system can reside. And in

general the two electron system if you want to describe it in a complete set of basis it will

then have a superposition of all of these basis states. 

But then this is not the only one. You may also have 2s2. So, you may have another series

which is built on 2s2 configuration. So, 2s2 , 2s3s, 2s4s, 2s continuum s. You may also have

2s2, 2s2p, 2s3p and 2s continuum p and so on right. And both the possibilities are considered

over here you may have liked each of these you know stipulates a bound to bound excitation

from a discrete bound state to another discrete bound state. 

But  it  also  accommodates  a  transition  from a  bound  state  to  a  continuum state.  And  it

includes  the configuration  interactions  between bound to bound and bound to continuum



states. You may have other possibilities. And here notice that there are two principal quantum

numbers which are involved. So, you write one of them with an uppercase N and the other

with a lowercase n. 

So, which one is written with an upper case and which one with a lower case so there is you

know means sometimes annotations differ but you just have to be careful that one of them

represents both our principal quantum number: one for one of the electrons and the other for

the other electron. In any case the electrons are indistinguishable you are not putting a tag on

any one of them but it only represents the configuration of that particular state. 

So, you may have other possibilities. This is built on 2s2. This is built on 2p2. So, you can

have a 2p2 then 2p3p, 2p4p then 2p2 , 2p3s, 2p4s and so on. And how many can you think of.

So, let us pack them all in etcetera okay. It is one of the very nice words in the English

language  okay. It  includes  everything  especially  your  ignorance  right.  So,  everything  is

included in that. 
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So here you are. So, if you look at the helium atom the two electron system. You have got the

1s2 configuration.  Then you can have a 1s2s, then you can have a 1s3s, 1s4s or 1sns in

general till you can knock out 1s into the continuum s okay. And that would be the series

limit. And this series limit is at 24.6 electron volts for the helium atom. 

Then, you can have another one which is built on this 2s2 which is what I mentioned in the

previous slide okay. And then, you can have the notation is this that 2s3s corresponds to one

electron having a principal quantum number 2 and the other having 3. It does not matter

which one is which. 



Then, you can have another one and you can actually have an infinite series. And notice that

the discrete bound to bound of one series can be embedded in the continuum of another. So,

those are degenerate and you can expect you know resonances coming from this possibility

that whenever you have two alternative channels like an a young's double slit experiment.

The amplitudes of the wave functions would superpose not the intensities okay. So, here the

labelling is in terms of the independent electron picture which we know is not correct. But

what  we are  doing  is  correct  because  we are  using  configuration  interaction  which  is  a

superposition of the one electronic state.  So, we have not shown in this figure the single

electron continuum states above each ion ion limit for the different quantum numbers n.

And we have also not shown in this figure the double electron continuum. But then there are

other  figures  in  literature  and I  will  show you this  classic  figure  from ah  Fano  and ah

Cooper's paper. So, here you have the series limits over here which is 24.6 over here then,

65.4 for this then, 79 for this and so on. And there will be so many which go through the roof

of this picture okay. 
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So, you have this classic figure from Fano in Cooper's review in modern physics in 1968.

Many  of  you  would  have  seen  this  is  one  of  the  most  famous  figures  in  literature  on

resonances. Notice that you have the only difference between this figure and the previous

figure is that energy is increasing from left to right where as in the previous figure the energy

was increasing from bottom to the top.

So, it is the same as a previous figure but it is tilted through rotated to 90 degrees and what is

also shown are the continuum over here. So, you have got the first ionization threshold at

24.6 which we have seen, the second ionization threshold at 65.4 then, you have at 72.9. And



then you have many more okay. So, all these other ones I had not shown in the previous one

but then you do know that there are infinite numbers of them. 

And  notice  that  the  bound  to  bound  transitions  some  of  these  discrete  lines  they  are

embedded in this continuum and that is true for a large number of different cases. So, what

you will  then  have  is  a  resonance  between a bound to  bound transition  and a  bound to

continuum transition. You will get a resonance and you can analyse in terms of the Fano

shape parameter. So, I will proceed from this point in the next class. 

If there is any question for today, I will be happy to take otherwise we conclude the class at

this point.


