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Greetings, we will discuss the Resonances further. The Fano Feshbach Resonances and then

we will relate them to the, to the Fano parameters okay in the coming few classes. So, let me

quickly recapitulate what we did toward the end that we had an expression for the tangent of

the phase shift. And we express this phase shift as a sum of two parts: one corresponding to

the impenetrable hard sphere component.

And the other is the one which would contain all the physics, all the Dynamics, which is

coming from the actual scattering potential that we are dealing with. And you could write the

phase shift as the sum of these two parts. And notice that when this denominator, when this

denominator goes to zero, we would hit a resonance. So, that is the resonance condition. 
(Refer Slide Time: 1:19)



Now, this second phase shift which is not the impenetrable part phase shift, but the remaining

residual part,  which is the one in which we are really interested. This phase shift we had

written in terms of the two parameters s and r. Each defined for every quantum number l

orbital angular quantum number l. So, it is different for each partial wave. And then, gamma

in this is the logarithmic derivative of the wave function at the boundary of the potential. 

So, we had expressed it in terms of this r and s. And here I have multiplied and divided by a

both the denominator and the numerator having a multiplied by a. So, this is the residual part

of the phase shift. And we have the expressions for these terms already. And in terms of this

the  remaining  phase  shift,  which  is  a  to  the  2i  Rho,  is  now  written  in  terms  of  these

parameters; because we know what ar is.

So, ar is given over here, as is given over here. This goes as ka to the 2l + 1. So, this is i times

as. So, that comes over here. So, you have only written this e to the 2i Rho l in terms of these,

right hand side of these expressions. And we can simplify this relationship a little bit. So, this

is the same expression as over here. So, there is no difference between these two expressions.

It is the same one which has been simplified. 
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And now what does it give us? You have a minus sign here in the denominator. So, you have

got in the denominator a complex number. And you multiply this ratio and also divide by the

complex conjugate of the denominator  okay, so that in the denominator, you will get the

modulus square. That is the idea. So, you multiply and divide by the complex conjugate of

the denominator. So that is what is done over here.

So, there is a little bit of analysis which is quite straightforward. I will not put the terms

explicitly one by one and comment on every substitution. It is fairly straightforward. And

now you have got a complex number the denominator is, now, just a modular square. So, it is

a real number and the numerator will be a complex number. 

And if you equate the real parts of the left hand side which is cosine twice Rho l with the real

part of the right hand side and equate the imaginary part of the left hand side which is i sine 2

Rho l with the imaginary part of the right hand side.

And then take the ratio of sine2 2cos Rho l this is what you get okay. So, it is a straight

forward substitution and this is what you get for the tangent of Rho in terms of this factor

here. And we know that it is linked to the resonance condition. 
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So, Xi is the hard sphere impenetrable part of the scattering. And we have already found that

the hard sphere part has got this behaviour. This we obtained explicitly in one of our previous

classes and we have been carrying this result with us. The remaining part which is tan of Rho

is given by this, which we just obtained in the previous slide, right. So, we use this relation.

And now, we recognize that when you hit a resonance, which is here. 

This is the resonant condition that this denominator goes to 0. And this will happen at certain

specific  energies  and  corresponding  specific  momentum.  And  this  is  represented  by  the

resonance momentum being given by k nearly equal to kr. So, k subscript r is the resonance

momentum in  units  of  h  cross.  So,  h  cross  k is  the  momentum.  So,  this  is  the  k value

corresponding to that. 

And when this happens, this phase shift Rho and as a result of this Rho also the phase shift

delta, which is the net scattering phase shift okay, because in the detector, when you carry out

measurements, you will see the net effect. So, you will be focusing your observations on the

net phase shift which is the delta. But because Rho will change very rapidly in the vicinity of

the resonance delta which is some of this Xi plus Rho will also change rapidly. 

Out  of  these  two pieces,  Xi  will  be  changing  relatively, smoothly. But  Rho will  change

rapidly, at  the  resonance  okay. So,  now we have got  this  denominator  kappa and kappa

includes the momentum, as you will remember. So, you can expand this factor, the resonance

condition which is a function of k, in the vicinity of the resonance momentum kr. And you

can expand this denominator near kr.
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So, let us do that. So, kappa square is equal to lambda 0 square + k square. Lambda 0 square

is the depth of the square well potential, the radial square well potential. And now, you have

this as the resonance condition. That this factor, a kappa cotangent of this angle kappa a -l pi

by 2, at the resonance is nearly equal to -l. 

And we are now going to expand the left hand side of this about k square which is equal to k

r square which is near the resonance momentum. So, let us expand it. So, you get the first

term, let  this is like a power series expansion. The next term will be the derivative,  with

respect to k square of this function multiplied by the difference in the independent parameter,

which is k square -kr square.

Because you are expanding in the vicinity of k r square, right. And then, you will, of course,

have the higher order terms; the third the third derivative and the cube of the difference and

so on. But, in the vicinity of the resonance, if you are close enough that difference is small

and then higher powers can be neglected. So, to, if you just retain the first two terms. The

first two terms will be –l.

Because at resonance, this is equal to minus l, so it will. The first term, will, of course, be

minus  l.  And  then,  the  second  term  will  be  this  derivative  times  the  difference  in  the

independent  parameter,  which  is  k  square.  So,  this  derivative  which  is  the  first  order

derivative is what I have written as bl, b l is the derivative with respect to k square of this

function, which is a function of k square. 

You can see that  kappa square is  lambda 0 square + k square,  which is  why this  is  the

function of k square, ok. So, if here we are. Now in this denominator, you of course, have a +l



over here, and you are picking a -l over here. So, this -l and this + l will cancel each other, in

the denominator. 

And then, you are left with this bl times k square minus kr square in the denominator bl,

being the first order derivative of this function with respect to k square. So, here you have 1

over b l into k square - kr square. And then, you have got this k to the power 2l + 1 behaviour.
(Refer Slide Time: 10:10)

So, you need this bl. And for that all you need to do is to get this derivative which you can get

quite easily and find the value of the derivative in the vicinity at the value of k square, when k

square is equal to kr square. So, that result turns out to be - a square by 2. So, I will put this

value of bl over here. And then, we will analyze the tangent of Rho. 
(Refer Slide Time: 10:38)

So, that value is not placed over here, which is minus half a square. And now, we had written

in terms of k square, but h cross square k square by 2m being the energy, we can write this



also in terms of energy, which is e square minus Er over here. But then, you have got this h

cross squared over 2m. So, this same expression has been, now written in terms of the energy.

What we now do is to define a function gamma E which will be related to the width of the

resonance as we have. In fact, in anticipation of this I had introduced this in one of the earlier

classes as well. But here, we define it explicitly that this tangent of Rho, we, which we have

obtained over here, okay. 

We introduce a parameter gamma which contains important properties of the resonance. In

fact, it will contain the width of the resonance and this is now defined. This is the definition

of gamma that gamma is such a function, such that, if you divide by 2 times Er - E Er, being

the resonance energy, you get the tangent of Rho.

So,  the  tangent  of  Rho,  we have  obtained  independently  which  is  given  by this  middle

expression here. So, this has been obtained explicitly and if we write this as if it is a ratio of

gamma over 2 divided by Er - E. Then, that gives us the definition of gamma. 
(Refer Slide Time: 12:18)

This will be the resonance width as you will see. So, this is the slowly varying part of the

phase shift Rho, is what contains the dynamics. We have written the ratio in terms of s and r

this is how we had obtained the expression for the residual phase shift Rho. And we have now

defined gamma as this ratio. So, both of these are expressions for tangents of Rho. 

This is tan Rho is given by the ratio s over gamma - r. This is tan of Rho, the same quantity

which is defined as a ratio of gamma over 2Er - E. So, you can rewrite the expressions in

terms of gamma instead of s and r. So, here because at the resonance I will  indicate the

resonance phase shift the residual phase shift as delta with a superscript r.



So,  this  delta  superscript  r  is,  nothing  but  the  remaining  phase  shift  other  than  the

impenetrable hard sphere phase shift that remaining part of the phase shift, add resonance, we

are using a specific symbol to represent this, which is delta with a superscript r and at the

resonance Rho, is now given by Delta superscript r, which is tan inverse of gamma over 2Er -

E, by the definition of gamma that we have introduced.
(Refer Slide Time: 14:01)

What we will do now is to examine the resonance energy, resonance width and the behaviour

of the phase shifts at the resonance, okay.
(Refer Slide Time: 14:12)

So,  here  you  have  got  the  resonance  width  which  is  defined  according  to  the  previous

relation.  And then,  in  our previous  class,  we had obtained the  difference in  the adjacent

asymptotes. So, you will remember this expression from the previous class. It is there on slide

number 102. So, now if you take the ratio of these two gamma over D, okay.



You find that this ratio is a rather small number, okay. Now, what it means, is that the widths

are  small  compared  to  the  energy  spacing  between  the  resonances  which  is  why  the

resonances will appear as spikes, okay, because the energy spacing between the resonances is

given by D capital D okay.

Which  is  the  spacing  between  the  adjacent  neighbouring  asymptotes;  we  obtain  the

expression for D explicitly all. All we are doing now is to take the ratio and the resonances

typically appear as spikes. 
(Refer Slide Time: 15:21)

So, here is an example and here you have the resonance phase shift which is given by tan

inverse of this ratio. And in this width the scattering cross section will rise sharply go to a

maximum at  the resonance energy and then it  will  come down. So, this  is  a rather pure

resonance most of the resonances we meet in atomic physics they are not pure resonances.

But, I will tell you why, they are not pure. 

But this is a pure Lorentz’s kind of Resonance. So, so this is the resonance cross-section

figure. This is from Joechain’s book on page 98 okay. And this is the behavior we will get.

And we will now discuss how we obtain this Lorentzian and shape. 
(Refer Slide Time: 16:23)



What is happening is that in the vicinity of the Resonance, the phase shift as I mentioned in

our previous class. It goes through a change in pi very rapidly through pi by 2. So, from here

to here, very close to the resonance it changes rapidly through pi by 2. So, it goes from pi by

4 to 3pi by 4, the difference here is pi by 2, okay.

But from an energy which is somewhat below the resonance to an energy which is somewhat

above the resonance, the total phase shift is a quarter of a pi here and a quarter of a pi there.

So,  the  total  phase  shift  is  pi,  when you sweep the  resonance,  when  you go across  the

resonance. But right at the resonance, in the immediate vicinity of the resonance, within what

you call as the width of the resonance.

That is where the phase shift changes very rapidly through pi by 2. And the these resonances

appear  as  spikes  as  sharp  variations  in  the  cross  section  because  the  widths  of  these

resonances  is  somewhat  small  compared to the spacing between the resonances which is

given by the distance between the adjacent asymptotes which we discussed in the previous

class.
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Now, let us examine this figure a little closely. Let us look at this particular energy. This is

resonance energy minus half gamma. So, this is the gamma width, okay. You, there are two

points of significant interest which is half gamma below the resonance and half gamma above

the resonance okay. These two points are of significance. So, let us look at what happens at

this energy which is half gamma below the resonance value.

And at this energy, if you look at this expression okay, you will have E = Er - gamma by 2.

So, I put this E = Er - gamma by 2. This Er and this Er cancel, the gamma 2 divided by

gamma 2 becomes +1, okay. So, the value of the tangent of the phase shift becomes +1 at Er -

gamma by 2. And these are somewhat significant points. What happens at the upper value

which is Er + gamma 2? So, this is Er + gamma 2. 

This is the upper value over here. And over here, if you put this E to be Er + gamma by 2, Er

cancels Er. But now, you have got gamma 2 divided by this -gamma by 2. And the ratio

becomes -1. So, at these two points, the tangent of the phase shift, over here the tangent of the

phase shift is plus 1. And the tangent of the phase shift at this point is minus 1. So, this will

play a significant role in our analysis as you will see. 

So, outside the resonance region, of course, the most of the phase shift is coming from the

impenetrable part. So, that is the one which is dominating the region outside the resonance.

But in the resonance region, the phase shift delta superscript r or what is our Rho makes an

important contribution. 

And in the resonance region, the net phase shift will go through pi as you go from well below

the resonance which is here, too well about which is here. So, you have got pi by 2, variation



in the immediate vicinity of the resonance and a quarter of a pi below that and a quarter of a

pi above that. So, the total variation the phase shift is pi. 
(Refer Slide Time: 20:14)

Now observe the correspondence between these two figures. Both are plotted here in the

upper figure. I have got the phase shift which is the resonance phase shift delta superscript r

and in the lower figure, I have got the scattering cross section. Now, both have been plotted

against energy. And the energy horizontal axis is more or less, you know, it is it has the same

scaling.

So, the point Er - gamma by 2 for this figure comes right above the point Er - gamma by 2 for

this  figure. The point for Er + gamma by 2 comes right above the point for Er- E,  Er +

gamma by 2 for the lower figure.  So,  this  is  the correspondence as the phase shift  goes

through pi by 2 in this immediate vicinity, in the width gamma. 

This is what is called as half gamma okay, the cross section which is maximum over here, at

these points; the cross section becomes half of that. So this is the scattering cross section.

This is the maximum. And this is half the scattering cross section. So, which is why, this

gamma is sometimes called as the full width at half maximum okay f, w, h, m is what you

will often read in literature. 

That full width, it is the full width right from the lowest point of this range to the highest

point  of  this  range,  which  is  what,  which  is  why, it  is  called  as  the  full  width.  At  half

maximum, because this is where the cross section at these two points if half of this for a pure

Lorentzian resonance, okay. But the pure Lorentzian resonance is a special case. There are

many other complex features which I will be discussing. 
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So, now you we will study the tangent function, which all of you are familiar with from your

high school days. So, this is the usual tangent function. This is the zero of the angle, on the x-

axis, the y-axis is the tangent function. So, this is the zero of the tangent function. And then,

you have got pi by 2, pi, 3pi by 2, 2pi and so on.

And then, on the negative angles, you have got -pi by 2, -pi, -3pi by 2 and so on. Now, what

did we find that at Er - gamma by 2, the tangent of the phase shift was equal to +1. So, this is

this horizontal line blue line corresponds to tangent of the phase shift equal to +1. And you

know that this is where the significant part of the resonance where the phase shift changes

rapidly through pi by 2 okay. 

That is the onset of this significant part of the resonance. So, here the tangent of the, this

phase shift is equal to 1. So, I draw a horizontal line for tan theta = 1 where theta is the

resonance phase shift delta superscript r. Likewise here you have -1. When do you have -1?

This is when the energy is Er + half width of at full maximum, right. 

So, this is this is a full maximum with this is where the scattering cross section becomes half

and at this point. You have got the tangent of the phase shift becomes -1. So, here is this

horizontal line corresponds to tan theta = -1. So, now, let us look at this point over here. Now,

this point is the intersection of the tangent function. This yellow line or orange colour or

whatever colour it is amber maybe. 

So, this colour, this tangent function intersects tan theta = 1, this blue line at this point which

is right below the cursor that you can see in the figure, right. So, this is where the tangent

function intercepts tan theta = 1. So, this is where it has got a value 1. And if you go to pi by



2, angle above it, because from here to here, as you go to the point to the energy, when the

energy becomes half gamma above the resonance energy, right.

So, at this energy the phase shift would have changed from here to pi by 2. So, you take a

step pi by 2 to the right and you come to this point. This is where you have the -1, right. So,

this is the picture that emerges and it tells us how the phase shift or rather how the tangent of

the phase shift changes across the resonance. The phase shift itself changes as tan inverse of

this function. 
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What we will do now is to express the partial  wave amplitude in terms of the resonance

parameters, because now, we have introduced these resonance parameters. Er is the resonance

energy, gamma is the resonance width and in terms of these, we will analyze the partial wave

amplitude which we have obtained explicitly in terms of these two parts.
So, Xi is the part coming from the impenetrable hard sphere part. And then there are other

factors  which  were  introduced  in  terms  of  the  parameters  r  and  s  and  of  course,  the

logarithmic derivative of the wave function. And once we get the partial wave amplitude we

can then get the scattering amplitude. 

And once you have the scattering amplitude, you can get the scattering cross section itself

which is a major quantity of interest. And this will lead us to the Breit Wigner formula and

subsequently to parameterization of the resonance profiles in terms of what are famously

known as a Fano shape parameters  Queuing and epsilon which I  will  be defining in the

coming few classes. 
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So, here, this is the partial wave amplitude we have this separation of the phase shift to Delta

in 2 Xi + 2 Rho okay. Rho itself was introduced in terms of s and r and the logarithmic

derivative of the radial function. But now, we have defined gamma such that tangent of Rho

is equal to this ratio which is half gamma divided by Er - E. So, now you can write using

these two relations.

Because these are the corresponding ratios, both describe the same angle Rho, but here, this

angle Rho is described in terms of ratio involving s gamma. And over here, this ratio the Rho

angle  is  defined in  terms  of  the  resonance  energy parameters  gamma and the  resonance

energy. 

So, instead of these quantities, you get the corresponding quantities from here instead of r and

s. So, now you get E - Er - half i gamma. It looks as if the sign were reversed but that is only

because both the numerator and denominator have been multiplied by -1. But otherwise it is

essentially the same factor, okay. So, now you can write this partial wave amplitude instead

of in terms of s and r and gamma.

Instead of these three, we define it in terms of this gamma this upper case gamma is different

from  this.  This  is  the  logarithmic  derivative  of  the  radial  function.  This  gamma  is  the

resonance width, okay. They have the same names, but different symbols. So, this gamma is

the resonance width and in terms of the resonance width you, now have this expression for

the partial wave amplitude. So, here you are.
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And we can put this in the Faxen and Holtzmark’s equation for scattering, get the scattering

amplitude and we can go ahead and get the scattering cross section which will give us the

Breit Wigner formula. So, for the time being, let us focus on only the resonance part. So, we

will pretend that the non-resonance part is not of importance, or it is zero okay.

 So, let us first consider only the resonance part. This is what, will give us the expression, for

what is called is the pure Breit Wagner formula, okay. So, this is the leading this is going to

lead us to the pure Breit Wagner expression. So, for this in the expression, for the scattering

amplitude, this is coming from the resonance part for the pure resonance part. 

So, you have this 2l +1 coming here, okay. And then what is this alk? This is the partial wave

amplitude but the partial wave amplitude is given by the sum of these two terms of which we

pretend that the impenetrable part Xi, is not of importance. So, the whole first term does not

matter. This term e to the 2 Xi becomes unity if you take Xi to be 0, right because that is not

of any importance over here okay.

So, this is the impenetrable part which is not of importance for a pure resonance and then you

are left with only this one over k which comes over here. And then, this ratio half gamma

over Er - E -half i gamma which is here and then you have got this Legendre Polynomial pl

cos theta. So, now, you have got the expression for the scattering amplitude, okay. 
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So,  this  is  the,  only  the  pure  resonance  part  of  the  scattering  amplitude.  What  is  the

differential cross section? It is given by the modular square of the scattering amplitude. It is f

star f. So, it is a modular square of this. You already have this expression which is a complex

number.  So,  you  take  this  factor  multiplied  by  its  complex  conjugate  and  you  get  the

differential cross section to be given by the square of this 2l + 1 over k whole square. 

And this is the modular square of this complex number which is one-fourth of gamma square

Er - E square + gamma square over 4. And then you have got this pl cos theta. Notice that the

angular dependence is determined only by this Legendre polynomial. There is nothing over

here in the remaining factors which depends on angle, okay. 

So, whatever angular dependence the scattering cross section has, the differential scattering

cross section has, is coming only from the dependence of the Legendre polynomial on the

angle because Pl for every value of l has bought a different dependence on theta which is

given  by  Pl  cos  theta  right.  So,  this  is  the  only  thing  which  determines  the  angular

dependence. 

And then, if you are very close to the energy when Er and E are almost equal, when energy is

almost the same as Er. So, this will also vanish. And then, you have got 14 gamma square by

14  gamma  square.  And  then,  the  energy  dependence  is  also  lost.  There  is  no  energy

dependence because all the energy dependence is coming from, from here. So, all the angular

dependence is determined essentially by l through Pl cos theta.

And this angular dependence becomes independent of energy because when you are close to

resonance that factor also disappears. 
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So, this is the picture that is emerging. And this gives us the Breit Wigner relation because

this is a pure resonance. You, have the differential cross section given over here. You can get

the total cross section which will, given by the Breit Wigner formula or what is often called

as the one level Breit Wigner formula.

The total  cross section you get  simply by integrating  the differential  section over all  the

angles. So, all you have to do is to integrate Pl square cos theta over all the angles, right. So,

when you do that, you get 2 pi times 2 over 12 +1 coming from this integration. And now,

this 2l +1 will cancel one of these 12 + 1you have got a square of this over here. Now, you

get the total cross section which is a resonance cross section.

This is just the resonance part we have ignored the residual part which is coming from the

background. And what we get from this is, this gamma square over 4 Er - E square + gamma

square. Sometimes you divide both the numerator and the denominator both by 4. And that is

often a form, in which, you see this formula because then, you can write it as terms of, in

terms of, square of the half width which is gamma over 2 square. 

So, if you divide the numerator by 4 and divide the denominator also by 4 then, you will, this

4 will go away. But then, you will get the square of gamma by 2 here. So, that is often the

form in which you will meet the Breit Wagner formula. So, in this expression, this is hm, we

have considered only the pure resonance part or the resonant part alone has been considered.

And this formula is what is known as the Breit Wigner, one level formula.
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Now,  here  is  an  example  from  Merzbacher’s  book  of  scattering  phase  shift.  You  will

remember that the scattering phase shift can go rapidly through pi by 2 or 3pi by 2 or 5pi by 2

and so on. So, here is an example which Merzbacher gives, in which, the scattering phase

shift goes through 3pi by 2 for l = 1, partial wave. So, that is the P wave . The s-wave phase

shift is varying smoothly. This is delta 0, the s-wave phase shift for l = 0. 

This wave changes smoothly but the l =1, the p-wave phase shift in this narrow region it

changes rapidly through 3pi by 2.So, here the angle phase shift is plotted in units of pi. So,

this is about this from 4 to 5 is 1 unit of pi. So, this is about 3pi by 2. So, that is the difference

of which the phase shift is changing and as the phase shift changes through 3pi by 2, the cross

section in the l = 1 partial wave, sigma 1.

So,  Sigma 1  goes,  it  goes  through  a  significant  change  over  here.  Sigma 0  is  changing

somewhat smoothly. The total goes quite a bit up. And it is one example of a scattering cross

section which is very nearly Lorentzian okay. But you will notice that it does have departure

from a Lorentzian shape, because they are there is a background. There is contribution from

delta 0 which is coming from the s wave scattering.

So, the resonance, the Lorentzian resonance formula, will give you the pure Lorentzian shape

only for a particular l, partial wave. But there may be contributions to the scattering from

some of the other partial waves. And the actual cross section profile may differ because of

this. But then, of course, there are other reasons because there is a mixing which I will now

comment on.
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So, the mixing comes because, as we know, the partial wave amplitude is given by the sum of

these two terms. And this term is not the only 1. So, in our previous discussion, we ignored

the background phase shift. We set Xi = 0, as Xi = 0 also got rid of this term which is because

this gives us e to the 0, okay.

So, this is the only thing that we talked about, which is, what gave us the pure Breit Wigner

formula. And what we really should be doing is to consider both the background part as well

as the resonance part. So, when you do that and then put this expression for the partial wave

amplitude consisting of both the background part and the resonance part, then you will get a

different expression for the scattering amplitude.

And for a different expression for a differential cross-section and for the total cross section as

well. So, now we will the actual amplitude that should go in the expression for the scattering

amplitude is the complete partial  wave amplitude which includes not just the hard sphere

part. But it also includes the resonance part. So, both the parts have to be included. 
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So, let us do that. So, these are the two parts and we should put them in the expression for the

scattering amplitude. So, now we write the scattering amplitude as this is an infinite sum over

all the partial waves, okay. Sorry. So, this is an infinite sum over all the partial waves. And

here, this amplitude now, has both the parts.

The background part  and the resonance part,  there is  a 1 over k which has been written

outside the summation sign. And then, there is this Legendre polynomial which comes here.

Now, what  do  we  need?  We need  the  complex  conjugation.  So,  we  write  the  complex

conjugate of this expression here. 
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So, now we have got the scattering amplitude. We have got the complex conjugate of that. If

you multiply the two, you get the modular square and you get the differential cross section.

So, let us multiply these two terms. You have to be careful that here, you have got infinite



sum, over the partial wave. So, l goes from 0 to infinity but it does so even in the expression

for the complex conjugate. 

So I have used a different dummy index over here, which is, l prime going from 0 to infinity;

because it is an independent sum okay, although it is a sum over all the partial waves. So, you

have got l prime going from 0 to infinity. So, this expression is the same as this except for

complex conjugation and for a different dummy index.

 So,  now you multiply  these  two.  You multiply  the  scattering  amplitude  by its  complex

conjugate. So, here is the scattering amplitude multiplied by the complex conjugate okay. So,

you can work out this multiplication step by step. It is quite easy to do. 
(Refer Slide Time: 40:25)

So, these are the terms. So, you will get cross terms, this term multiplied by this. Then, this

term  multiplied  by  this.  Then,  you  will  have  this  term  multiplying  this  and  this  term

multiplying this, right. Now, notice that when you have this term multiplying this, you will

have e to the -2iXi multiplying e to the 2i Xi, but notice there is an l prime here and there is

an l here. But if l were equal to l prime, they would cancel each other. 

But then, you also have to take the integration over the whole space 2pi is coming from the

integration over the azimuthal angle Phi okay. Because there is an axial symmetry and then

you are left with a residual integration over pi going from 0 to pi in the radial, in the spherical

polar coordinate system. 

So, now to get the total cross section, you will have to integrate this. And the only angular

dependence is coming from the Legendre polynomials over here. So, now you have got a

double summation 1 over l prime coming from here, 1 over l coming from here. So, you have



got this double summation 2l prime + 1 multiplied by 2l +1, which is here, these two factors

multiplying each other.

And then you have the angle integration 2pi is taken care of over here. The 1 over k, the 1

over k, give you a k square in the denominator. And then, you have got this integration of the

Legendre polynomials.  And now, you can use the Orthogonality relation for the Legendre

polynomial okay.
(Refer Slide Time: 42:12)

So, now if you use the orthogonality relationship you will get a Kronecker delta, delta l prime

l. And then, you can contract the double summation so that summation over only one index

will  survive.  And  now,  you  have  this  double  summation.  But  then,  you  have  got  this

Kronecker delta which is coming from the orthogonality of the Legendre polynomials 2 over

2l + 1.

And then, when l prime becomes equal to l, this 2l + 1 will cancel one of these two which

will  both  become equal  when l  prime  = l,  okay. So,  it  is  a  very  simple  straightforward

simplification of this relation. They look big it would take a while to write it in your notebook

on, or on the board. But you can see the physics at a glance as we just go through this, right.
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So, now after contracting over this Kronecker Delta, you are now left with only one single

summation which is over l going from 0 through infinity. There is only 1 to l plus 1 factor

because this to l plus 1 has killed one of these two. And now you have got these four terms

sine Xi. Then, e to the minus 2i Xi coming from here, then this sine Xi is coming from here.

And then, this term and now, when these to multiply each other, both have the same partial

wave quantum number l and e to the -2i Xi, will multiply e to the +2i Xi, giving you a factor

of unity. So, in this cross product, the Xi will disappear. 
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So, let us go ahead and carry out that multiplication. So, you have got all of those terms. So,

in the last term, the Xi has disappeared. It is just the square of these two terms, okay. The

modular square of these two terms because these are complex conjugates of each other, okay.

And now, when you take the cross terms, you will have sine Xi times this. And here, you

have got sine Xi times this.



So, sine Xi comes as common. And then, you have got this factor multiplied by e to the + i Xi

and over here you have got - iXi. So, you have got these two terms. And the sum of these two

is nothing but twice the real part of this complex number okay. So, now we have got a very

simple relationship in which we have got the pure Breit Wigner part.

Then, you have got the background part. And then you have got the interference part also. So,

the complete expression is now developed from this analysis for the total cross section. 
(Refer Slide Time: 45:13)

So, let us recognize these terms explicitly. So, you have got the total cross section, which is

given by, this sum over infinite partial waves. We do know that we rarely have to go to very

high partial waves. We just usually have to go to only a few partial waves. And in these, in

this infinite sum, only few terms will be contributing in this infinite partial wave. And then,

you have got a sine squares Xi, which is coming from the background.

And then you have a sum over partial wave of all quantum numbers l going from 0 to infinity.

You have got all of these terms in the lth partial wave. So, this is a focus on the scattering

cross section contributed by a particular partial wave with quantum number l. So, Sigma l is

given by this. Of which, this is the background part. 

This is the pure background okay. It then, you have got the pure resonance part. This is what

we call is a pure Breit Wigner part. And then, there is an interference part which is what gives

us  the  Breit  Wigner  extended  formula  which  includes  the  pure  resonance  part  on  the

background. So, in the next class, we will discuss the Fano resonance parameters.



In the next unit, we have I believe, 4 classes in the next unit. So, with this we conclude Unit

number 6. And then, we will have unit number 7, in which, we will have 4 classes. In which I

will introduce the Fano shape parameters. Is there any question?


