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Greetings, we are getting close to the point that we will soon have the Breit Wigner relation

for Resonances in Collisions. And specifically we will be discussing how the phase shifts

behave at a Resonance. So, I will also introduce what exactly do we mean by Resonance?

What are the different kinds of Resonances that we talk about? And so on. 
(Refer Slide Time: 00:38)

So, in our previous class, we consider scattering by a square well and our analysis was based

on the, on the, on the continuity of the wave function and the derivative at the boundary. So

that  was  contained  in  this  logarithmic  derivative.  So,  this  gamma  we  have  used  in  our

mathematical expressions. So, I will be using it in today's class as well.
(Refer Slide Time: 00:59)



And in terms of this gamma, which comes here, as one of the terms in the denominator which

we defined on the previous slide. The scattering phase shift, we wrote as a product of these

two factors: One which is in this blue box and the other in this rectangular bracket. So, this

separation we expressed in our last class. 

Now, what we also do is, to introduce a function Xi of k such that e to the 2i Xi, is given by

this ratio minus h2 over h1, h2 is the Hankel function of the second fine kind and h1 is the

Hankel function of the first kind. So, the ratio of these two hanker functions with a negative

sign is what gives us this ratio. This ratio is then indicated in terms of this angles Xi and the

phase shift is now separated in two factors.

One of which is this exponential function of modulus one, right. Now, if you look at this and

you set up the you write the Hankel functions: Hankle function of the first kind and Hankle

function of the second time in terms of the Bessel function and the Neumann function, okay.

Because j + i and j - i are the Hankel functions of first and second kind respectively, right. 

So, you can see that this Xi is then nothing but the tan inverse of j over n, the ratio of the

Bessel function to the Neumann function. And what is this quantity? Tan over’s tan inverse j

over n is nothing but the phase shift coming from the hard sphere, okay, so the tangent of the

hard sphere scattering. So, this delta is different from this delta, okay. 

This delta is the scattering phase shift due to the square well potential that we are talking

about, okay which is how we have expressed it. One part of it, which is, the first box in, this

blue box; This part which we have written as e to the 2i Xi, this is exactly the same as the

scattering phase shift which comes from the hard sphere. 



So, this delta is only the hard sphere scattering have used the same symbol because, on slide

66 this ratio represented the tangent of the phase shift due to a hard sphere impenetrable

sphere, okay, which has got an infinite barrier.  So, that scattering phase shift was given by

this ratio and this ratio expresses the tangent of this phase shift Xi which is coming as one of

the factors. 

Effectively  the  net  phase  shift  though this  is  the real  phase shift  due  to  the  square  well

potential. This phase shift can now be written as a sum of two parts: one coming from what is

in this blue box which is the hard sphere component as we shall call it. And then, there is a

remaining part which will depend, which will be very sensitive, to the details of the potential

and other, other parameters of the scattering problem. 

So, what we have essentially done is to factor out a component which we shall refer to as a

hard sphere component. So, mind you, the actual potential is not a hard sphere. The hard

sphere results in a total phase shift, scattering phase shift. One part of which is effectively the

same as if it is coming from hard sphere scattering and then there is a residual part. 
(Refer Slide Time: 05:40)

So, our interest will be very much in the residual part. So, this is the remaining part of the

phase shift, okay. So, the 2i Xi is one part of 2i delta. So, Xi is one part of delta. And then,

there is another part which is dependent to all the collision details of the real potential and the

primary reason of course, is this logarithmic derivative which appears in this term. So, we

introduce a complex number r + is. 

Now, this is going to be different for every partial wave. There are infinite partial waves. So,

we write it specifically for each partial wave. So, there is rl + isl. But for every partial wave,

we have a complex number r + is, which is the ratio of the derivative of the Hankel function



one to the Hankel function one multiplied by k. So, this is the complex number which we

introduce. 

And r is now the real part of this complex number s is the imaginary part of this complex

number. That is how, we have defined it. And now, we have this 2i delta l, this is the phase

shift, delta is the scattering phase shift, which is now written in terms of this hard sphere

component Xi and another component. 

And because I have now introduced this r and s, I can write these ratios in terms of r and s

instead of the hankel functions because here you have defined the r and s, in terms of, the

Hankel functions. So, you can invert the relations and write the Hankel functions, in terms of,

r and s, okay. And this is what it turns out to be. And you have a very nice relationship

emerging from this simplification. 

That the scattering phase-shift delta, you can see is now written as a product of e to the 2i Xi

and another factor which is in this rectangular box. And this rectangular bracket, you can see

is, also of modulus one. So, you can also write it as e to the 2i Rho or something which will

be the other part of the scattering phase shift. So, let us see that. So, that other part will be

Rho and that is coming from this rectangular box. 
(Refer Slide Time: 08:14)

So, I will write this relation explicitly over here. So, we have got this e to the 2i delta l at the

top of this slide. This second factor is of modulus 1. And we now write the second factor as e

to the 2i Rho, because it is of modulus one. So, Rho is another phase shift.  Now, Rho is

another angle. So, the net phase shifts will be, twice delta is equal to twice Xi + twice Rho or

delta = Xi + Rho. 



So, that is the relation which is emerging for every partial wave for every lth partial wave. So,

delta, we have as a sum of these two phase shifts. So, this part is coming from the hard sphere

and it does not matter. The details of the potential then do not matter, okay, because it is just

the  hard  sphere  component.  The  second  component  Rho  is  what  contains  the  detailed

dynamics of the collision process. 

So, so Rho is the one which will determine which will be determined by the details of the

potential V. So, here we are. When it depends specifically on the details of the potential, Rho

will be very sensitive to this potential. It will be very sensitive to certain dynamical factors

which are involved in the collision process and at some particular energies which are, which

we shall refer to as the resonance energies. 

At these energies, the phase shift Rho, this is the part other than the hard sphere components.

So, this will change very rapidly in the vicinity of the resonance. So, it will be extremely

sensitive to the resonant, to the resonance phenomenon. And this will change very rapidly.

And you will see that it changes very rapidly through pi by 2. But, if you consider a little bit,

if you go to slightly lower to lower energies.
And go well above the resonance, then, over this region, then, the phase shift Rho or the

consequent phase shift delta will change through pi. So, you will see I will show these figures

and that will make this whole thing very clear.
(Refer Slide Time: 10:30)

So, here, is a figure. So, here you have got the phase shift which is changing with energy.  E

zero is the resonance energy, okay; E0or Er here, it is written as E0, because this figure is

from  Arno  Bohm’s  book  on  Quantum  mechanics,  which  is,  a  very  nice  book  which  I



recommend for this topic. So, here Er is the resonance energy. And as you see the phase shift

changes rather rapidly between here, it goes through pi by 2. 

So, from here to here, the net change is pi by 4 + pi by 4. So, there is a pi by 2 change in this

region. And there is another pi by 4 change as you go from well below the resonance and go

to well above the resonance; there is another pi by 4. So, the net phase shifts change is from

delta to delta + pi. So, the net change in the phase shift is pi okay. 

That is the angle through which the phase shift changes, as you go across a resonance, okay.

And very close to the resonance, in the immediate vicinity of the resonance, the phase shift

changes by pi by 2. And that is where it  changes rather rapidly. And how rapidly it will

happen, will depend on the width of the resonance.

 So, gamma is the width. So, half gamma you reduce from E0, you get to the left of this, to

the lower energy side and an equal amount on the right of this. So, this is the region where it

changes rather rapidly. So, how rapidly it changes, that slope will depend on the actual width

of the resonance. 

So, this is the net change in the phase shift which goes from whatever value it has delta to

delta + pi. So, as you go across a resonance, the net change in the phase shift is pi, very close

to the resonance. It goes through pi by 2. 
(Refer Slide Time: 12:36)

So, let us consider scattering by a deep square well. And I will consider angular momentum

greater than zero. And when you have an angular momentum greater than zero, remember

that, when you separate, the Schrodinger equation in the radial part on the angular part, the



radial equation will have a constant of separation, which is coming from separating the radial

part of the Schrodinger equation from the angular part of the Schrodinger equation. 

You would have done that in the first course in Quantum Mechanics. The centrifugal barrier

term l into l + 1 by r square term comes out of this separation, okay. Now, this is a centrifugal

barrier  centrifugal  in  some sense,  it  is  a  pseudo  term.  It  is  not  the  result  of  a  physical

interaction like even in the Hydrogen atom, the physical interaction is 1 over r, okay. That is

the Coulomb interaction.

But when you write the Schrodinger equation, the radial part of the Schrodinger equation,

you will have the net effective potential which is -1 over r which is the Coulomb attraction

plus l into l + 1r square, which is the centrifugal term. So, it is not the result of a real physical

potential, just the way the pseudo forces are not because of real physical interactions.
They  are  a  result  of  the  fact  that  we  try  to  do  dynamics  in  some accelerated  frame of

reference which is why the pseudo forces or the pseudo potentials shape up. And here this

term comes up because you have projected the 3-dimensional  problem on a 1 dimension

which is the r dimension. 

You have separated out the spherical harmonics. So, the two dimensions for theta and Phi, the

two degrees of freedom that dynamics is separated out. And now, you are left with only a one

dimensional Schrodinger equation namely the radial Schrodinger equation. And in this radial

charting an equation, you have a centrifugal term which is a pseudo potential kind of thing.

And this is repulsive, okay.

 So, this  goes all  the way to the,  to infinity  as r  tends to 0,  okay. And the net effective

potential will then you know, it will be,  but this it starts diminishing as r increases, as r goes

to infinity. It will of course go to zero and then the net potential of the square well. If you set

up the radial Schrodinger equation for the spherical square well potential, then, you will have

a potential which goes like this square. 

But then, because of the centrifugal term, you will have a barrier here, okay. So, this is the

effective potential as you will see. Now, what is happening is really interesting because, if

you have, if you consider collision of a certain projectile, by this potential and let us say that

the energy of this projectile is E1. It could be E1, it could be E2, it could be E3 and whatever.

So, if you consider a particular energy like E1, as you see in this figure.

Then, you can see that a particle with this energy would not have a chance of being bound,

unless the barrier was really high. It needed to be high enough and if the barrier was Infinite



then of course you could have trapped it inside, okay. So, this would not be a bound State.

What about this state, if the energy is E2? Then it has the possibility of being bound in the

inner well. 

But, if it tunnels through this barrier region, so, from here to here is the barrier region, right.

And if it  tunnels through, then it could actually escaped into the continuum with positive

energy. So, what is going to happen for a particle with energy E2? It has two possibilities one

is that  it  can be trapped in the inner  well  and the other  is  that  it  can exit  into the open

continuum and escape to r going all the way to infinity. 
It can leak out and go all the way to the asymptotic region r tends to infinity. So, these two

possibilities both coexist and it goes back to the classic Young's Double Slit situation. That

you have two possibilities and then the amplitudes would interfere just the way they do in the

Young's Double Slit experiment, okay. 
 
And then, you have a resonance phenomenon because you have two possibilities which are

both possible, both probable, okay. And this is happening because of a particular shape of this

potential. If l was zero, okay, the potential would not have the shape and depending on the

value of l, l into l +1 by r square will change and the details of this shape will change.  

So, here is a resonance phenomenon which is induced by the shape of the potential which is

why these resonances or meta stable states are called as shape resonances, okay. So, this is a

meta stable state. It will have a certain lifetime okay, because it has the possibility of being

bound. But it also has the possibility of being bound in to the continuum.
(Refer Slide Time: 18:34)

Now, another potential may not have such sharp boundaries like a square well potential, you

may have some sort of it; this is like a harmonic oscillator kind of thing, potential, right. And



then you will have some discrete bound states. And then if you have a state over here, which

is above E = 0, but not so much that, it is well above the highest value of the potential. So,

this is another example of a shape resonance okay. 

So, this is for more realistic potentials which are not like having, sharp boundaries like a

square well. So, this is an example of a shape resonance. If you remember, we talked about

resonances  earlier  in  s-wave  scattering.  And  the  s-wave  scattering,  those  were  coming

because of the virtual bound states, okay. 

So, resonances can be because of many, many different reasons; so, the s-wave resonances

that we talked about, in the context of the Levinson Levinsons’s theorem and so on. So, those

who are coming because of zero energy resonances they were because of the virtual bound

states or which we often called as a half bound states, okay. But that was not because of a

potential shape, okay. 
(Refer Slide Time: 20:02)

So,  here  is  an  example  of  a  shape  resonance.  So,  this  is  called  as  a  shape  resonance

specifically because it is determined by the shape of the potential. What exactly is the shape

of the potential so that is what determines, the shape resonance.
(Refer Slide Time: 20:18)



You can have a resonance because of some other situation.  And that is typical in a many

electron system, because when you have a many electron system, you can have some other

kinds of resonances. And these are, if these come about because of certain correlations. And

why will there be such a correlation? 

Because, the many electron system has got different electrons and all of them do not have the

same  binding  energy.  So,  you  may  have  a  process  like  in  photo  ionization  or  more

specifically in atom ionization of as we call it. You may have a photo absorption of a photon

which is sufficient to knock out an outer electron okay. 

But it does not have enough energy to knock out an inner electron. So, what will happen? It

will not be able to knock out an inner electron. It will knock out an outer electron. However,

as you sweep on the photon energy, if you are doing spectroscopy and like at a synchrotron

light source, you carry out the measurements at different wavelengths of different energies.

Then, you may hit upon an energy.

Which is sufficient not to knock out an electron from the inner level, but to raise it to an

excited bounce rate and at this energy, you have two processes which are degenerate. One is a

bound to bound excitation of an inner electron and a bound to continuum transition of an

outer electron which could result  in ionization.  So, now again you have two possibilities

which are degenerate which can coexist.

Which may happen at a particular energy, which is the resonant energy because the bound to

bound excitation is possible not at any arbitrary energy but only at specific energies because

the  bound  straight  spectrum  is  this  rate  so,  whenever  you  have  such  bound  to  bound

transitions. So, you can have a bound to bound transition from a more tightly bound state. 



But if this part of the discrete spectrum is embedded in the continuum of a less tightly bound

electron, then you will have a resonance, because again you have two possibilities. And once

again  you  can  think  about  it  in  terms  of,  the  Young's  Double  Slit  that  you  will  have

interference between the two alternatives. 

So, this is happening because of electron correlations because the two electrons the dynamics

are one electron cannot be completely separated from the dynamics of the other electrons. So,

you have other two electron correlation. And as a result of this correlation which is not taken

into account in an approximation like the Hartree-fock, okay because in the Hartree-fock, it is

a frozen orbital approximation. 

It  pretends that whatever happens in one orbital  has no consequence on any of the other

orbital’s which remain frozen. But when you go beyond this approximation and think about

the electron correlations, then it becomes impossible to separate the dynamics of one electron

from  that  of  the  other.  So,  configuration  interactions  or  electron  correlations  are  then

responsible for resonances as well.
(Refer Slide Time: 23:50)

So, you, we first talked about the shape resonance which you can talk about in the framework

of  the  independent  particle  model  because  here  you  are  talking  only  about  one  single

electron, no second electron is involved over here. So, you talk about the shape resonance in

the framework of a single particle model. 

Of  course,  electron  correlations  are  there  and  they  complicate  this  further.  But  the

fundamental  process,  process  does  not  require  correlation.  The  fundamental  process  is

described in terms of the shape of the potential itself; whereas the other resonance like the



autoionization resonance is essentially a correlation effect. And you will then be talking about

a many electron system with at least two electrons. Two is already many, okay.
(Refer Slide Time: 24:42)

So, here is  it,  this  is  an example of many electrons  Atomic System. And let  us take the

example  of  Neon,  which  has  got  ten  electrons.  So,  1s2,  2s2,  2p6,  that  is  the  usual

configuration of the Neon atom. And you have the 1s is filled to 2s filled and the outer 2p.

You can have a bound to bound transition over here.

 So, these are various bound state excitations possible from the 2p1 half which is more tightly

bound than the 2p3 half okay. So, if you have a and a photon energy which is more than the

binding energy of the 2p3 half electron, but less than the binding energy of the 2p1 half, so

some binding and some photon energy which is greater than the mining energy of 2p3 half.

So, that it can kick out an electron from the 2p3 half into the continuum. It cannot however

kick out an electron from the 2p1 half state, which is slightly more tightly bound. However it

may be just enough to raise it to a bound excited state like the 4p3 half, the 4d3 half okay. Of

course, you have to respect the dipole selection rules. 

So, it can from 2p1 half, you can go either to d3 half or 2ns1 half. So, you will have two

possibilities over there. And these are the two excitation bound to bound excitation channels

which are possible for the bound to bound transition. Whereas the 2p3 half to continuum, you

can have various possibilities of getting into the continuum because from 2p3 half, you can

get into the d type continuum. 

So, d5 half or d3 half and you can of course go to the s half continuum okay. So, these are the

different relativistic channels. And I do take into account relativistic splitting of the levels in



the, in this discussion because that is fundamental to the understanding of the resonances in

this region, okay. So, you have the 2p1 half, 2nd3 half or ns half. So, n are discrete state

quantum numbers of excited states. 

And this, these bound to bound transitions are embedded, in this bound to continuum. So,

continuum state energies are represented by this epsilon bound state energies. I represent by

the Principal Quantum Number n, because the bound state energies in Hydrogenic model go

as one over n square. So, this is a typical example of an autoionization resonance. 

So, you have two possibilities. And there will be interference between the bound to bound

States and the bound to continuum.  And these states are sometimes referred to as quasi-

stationary states or resonance states. And these are, these come into play because you have

got one bound state spectrum which is embedded in the continuum with respect to one of the

threshold, okay. 

So,  this  is  results:  the  electron  correlations  cause  these  resonances  which  are  sometimes

referred to as the Beutler-Fano Resonances in Collision Dynamics. They are usually referred

to as Feshbach resonances or Fano Feshbach resonances and so on. Or in atomic physics

when  you're  working  with  outer  state,  outer  electron  you  typically  refer  to  them  as

autoionization resonances. 
(Refer Slide Time: 28:32)

Now, the classic analysis of this is due to Fano. And I really like to show a picture of this

paper, it is a classic paper it came out in 1961, okay, physical review vol 124, Number 6,

1961. And this paper is one of the most cited paper in Physics Literature means you would

think that okay. 



The papers which are most cited are papers by some, you know, people like Schrodinger,

Borne, Bohm, Eisenbud and so on.  But this paper is cited across all branches of Physics,

Atomic Physics, Condensed matter Physics, Solid-state Physics, Nuclear Physics, okay. And

this is a classic paper and it is, I strongly recommend that you go through the original paper

itself.
(Refer Slide Time: 29:31)

Look at the number of citations in each year like in 2001, it was referred to 81 or 80 times,

then 2004, 82 times, in 1997, 84 times, 2006, 143 times. The number of citations, in Physics

Rev., are well over 609, thousands of citations, okay. This is absolutely remarkable paper and

something that you would love reading. 

And when you go through this  paper  you will  really  understand why it  is  so  important

because it explains the fundamental process of correlations, okay and how these correlations

are to be analyzed in terms of configuration interactions and so on. 
(Refer Slide Time: 30:23)



So, this is the classic paper and it results in resonances. So, the typical states that we talk

about which are non-resonant states. These are the stationary, Eigen states. And if you have

an isolated  system, then,  for an isolated system, you have got  the Schrodinger  equation,

whose solution has got a space dependent factor and a time dependent factor which has got a

uniquely defined sharp energy. 

This energy E that you find in the solution of the Schrodinger equation is an extremely sharp

level. And if any electron gets excited to that state, okay that state being sharp. It will have

infinite lifetime and it has no business to that an atom in that type of a state will have no

business to decay and come down to a lower energy state okay. 

But  the  reason it  has  got  the  sharp energy is  because,  you have  solved the  Schrodinger

equation for the atom pretending that there is nothing else in the universe that the whole

universe is only this. But then there is the rest of the universe and the coupling between the

rests of the universe. 

And this atom allows for the energy to be transferred from one to the other, okay. And this is

just like having what we call as dissipation okay. What we call is friction. The friction when

you rub something on a surface, okay, you say that heat is lost or energy is lost. Now, energy

cannot really get lost. Where does it go? It gets transformed, okay.

It is not really lost. But then, it gets lost from our bookkeeping because when we set up our

equation of motion, we have not taken into account the degrees of freedom coming from the

surface interactions. So, these are the unspecified degrees of freedom. And whenever you

have these unspecified degrees of freedom, you have the possibility of the system decaying

from what you would otherwise expect to be a stationary state. 



So,  this  is  not  a Stationary  state.  It  becomes  a meta  stable  state  because there are  these

additional degrees of freedom so that the energy can escape to that. So, you have, when you,

when you want to rewrite the energy of such a system taking into account the effect of the

environment, but not the details of the environment. You can do so by writing these energies

as complex numbers, so that they will have a certain width and a certain lifetime.

So, the lifetime comes from that, not from the solution of the Schrodinger equation for an

isolated system. The Schrodinger equation for an isolated system will always give you four

bound states sharp energy levels which will have infinite lifetimes okay. 
(Refer Slide Time: 33:35)

So, now, you will have these costs discrete States because of the presence of the environment

in, okay. So, these are quasi-stationary states or resonances or quantity quasi discrete states.

They are also called  as quasi  continuum because they are neither  completely  bound, nor

completely into the continuum okay.

So, you refer to them sometimes as quasi discrete or quasi-stationary, quasi continuum. And

all of these terms are used to convey one or the other meaning like in a thesaurus, you have so

many different terms, which describe different connotations, different meanings of the term.

So, you have these different possibilities. But you are always talking about the same Essential

Physics. 

So,  there  is  a  possibility  of  disintegration  also,  because  you  have  one  possibility,  the

continuum channel is degenerated with the bound to bound discrete excitation channel. And

the continuum channel will leave you with fragments of the system, which received, which



go away from each other into the asymptotic regions far away from each other infinitely far

as well. 
(Refer Slide Time: 34:55)

So, obviously you will now run into resonant widths, time delays, lifetimes and so on, right.

So, these are the things that you will now have to be concerned with. So, the lifetime, so, this

is like the energy time uncertainty which you are all aware is not the same as the position

momentum uncertainty  okay. It  is  coming  because  of  this  coupling  with  the  rest  of  the

universe okay. There is no operator for time in Quantum Mechanics. 

So, when you write the uncertainty principle for position and momentum, there is an operator

for position and for momentum. But, when you write the uncertainty relation energy and time

which are also canonically conjugate, you do not write an operator for time, because it is

always treated only is a parameter in Quantum Mechanics. 

So, you have this width, which is given by a relation, which is like the uncertainty principle.

It is in fact often referred to as the uncertainty principle. But it fundamentally it is slightly

different from the QP uncertainty because of this real difference because of the fact that time

does not have an operator. It is only a parameter. 

So,  we will  continue  to  refer  to  it  as  the  uncertainty  principle,  because  it  has  the  same

structure  and  the  relationship  is  again  between  canonically  conjugate  variables.  And  the

description of this process is then possible in terms of the Collision Physics, the scattering

equations that we have set up the phase shifts and so on.
(Refer Slide Time: 36:33)



So, we will discuss it in terms of the scattering phase shift. So, I mentioned earlier that at a

resonance,  the  phase  shift  changes  rapidly  through pi,  pi  by 2 and from well  below the

resonance to well above the resonance. The net change in the phase shift is through pi okay.

So, across the resonance, you will find that the phase shift changes through pi.

 Close to the resonance, it will change rapidly through pi by 2. How rapidly it will change

through pi by 2 will depend on the width of the resonance and some other details  of the

resonance profile, if you look at the derivative of the phase shift with respect to energy okay.

So, this is the energy derivative of the phase shift.

This energy derivative of the phase shift, if you see from this profile; so, this is d delta by dE

which corresponds to this variation of delta with E, okay. Notice that the phase shift changes

most rapidly at the resonance. And here, the rate of change of delta with E becomes 0 okay.

It, it is, it becomes flat. 
(Refer Slide Time: 37:53)



So, this is the rate of change of phase shift with energy. The only thing you have to remember

is that the change in phase shift which is a change through pi across the resonance. 
We have plotted this figure as if we started off from 0. And then, we get to pi, when we go

through the resonance. 

However, the phase shift at  the onset of this resonance may not be necessarily 0. It may

already have some value which is coming from the background scattering okay. And then,

over and above that background, it will then go through a change in pi, pi by 2, most rapidly

at the resonance. But it may have so the zero of the phase shift for a detailed discussion will

be offset.
(Refer Slide Time: 38:47)

So, that is something that you must remember. So, here is an example of the phase shift, here.

So, here, in each case in, there are various figures here. And this is also from Arno Bohm’s



book. So, here you have the phase shift changing through pi, in all of these five figures, okay.

But, the starting phase shift is zero only for the first curve.

For the second, it is somewhat different, for the third again, it is somewhat different, for the

fourth is different and for the fifth that is different. So, depending on what value it had from

the background scattering,  okay because,  the collision process we have factored into two

processes: one is the hard sphere component okay.

So, delta, the net phase shift is the sum of two angles Xi and Rho. Xi is coming from the hard

sphere and there will already be some phase shift because of that. And over and above that,

because of the dynamics of the Collision process, you may have an additional phase shift

which goes through a change in Phi. 

And look at this, that if you have a starting value which is different, then, if you plot the cross

section which is like sine square delta for that particular partial wave, of course, these figures

will be different for every different value of the l quantum number. Then, the scattering cross

section will have very different kind of profiles. 

And you will see at a resonance, when the scattering cross section goes all the way to the top

or it goes up and then decreases, comes back or it could go to zero, as you see over here okay.

So, all these are possibilities.  So, resonance does not necessarily mean that the scattering

cross section will go to the top and go through the roof. 

It can also go through zero. And this will not surprise us because we already know that in

Young's double slit experiment, you have got bright fringes, you also have dark fringes, okay.

So, that depends on how the phase and the amplitudes, you know, combine to generate the

superposition.
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So,  we  will  take  the  example  of  this  square  well  potential  and  we  will  discuss  our

phenomenology in the context of a very simple potential. The actual potentials in that, we

have to deal with are much more complex. But this is the easiest example. So, let us take up

this example.
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And  here,  you  now  have  this  resonance  width.  So,  this  resonance  width  you  have  the

resonance energy. And depending on the width, you go down, half the width to the lower

energy side and half the width, to the upper above this energy, and you define this angle as

tan  inverse  of  gamma which  is  the  half-width  gamma by 2,  over  this  Er  -  E,  Er  is  the

resonance energy. 

So, you define this delta. This is with the superscript r. So, this is what the other phase shift

will be in the resonance region, okay. So, your net scattering phase shift is the sum of two



powers Xi and Rho, which we saw earlier. When you are at a resonance, this will correspond

to the resonance phase shift which is why to emphasize a fact that it is a resonance part. 

So,  Rho  is  not  always  a  resonance  because  resonance  will  take  place  only  in  specific

conditions, for resonance are satisfied. It can also be, so both Xi and Rho, in general, are

slowly varying functions of energy. But at a resonance, Rho becomes such that it changes

rapidly. 

And that is when I refer to it as a delta with a superscript r, to remind me that, that is a special

case of the resonance feature of the other dynamical phase shift which is Rho. This mouse

does not work, okay. So, outside the resonance region, okay, outside the resonance region, the

scattering phase shift is dominated by the hard sphere component, okay.

So, what relations do we get at the resonance? If you go to this energy, which is half width

below the resonance, the tangent of delta which is defined by this relation becomes +1 as you

can see clearly, right. And if you go just as much above the resonance energy, as below like

go Er + delta, then the tangent of delta in this case, becomes -1 okay. 

So the tan delta becomes +1, at this point. And it becomes -1, at this point. And this is what

happens to the cross section itself, okay for this type of behaviour. If it starts off over here,

okay. So, this  is a typical  resonance profile and you have a resonance width. So, the net

change in delta will be through an angle which is pi. 

What happens at the resonance energy itself? Delta, this resonance phase shift will be pi by 2,

okay. It is here, over here, this resonance phase shift is exactly pi by 2, okay. So, it changes

through pi by 2 from here to here. At the resonance, this is what is on the vertical axis has got

a value which is pi by 2, okay. The net change from well below to well above is through pi.

So, now you keep track of the parameters, as we have defined them. 
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And essentially the change in the net phase shift will be from some value to another value

which is PI above it okay. So, that is the kind of thing that happens across a resonance, okay.
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Now, at the resonance, this is the tangent of the second part of the phase shift other than the

hard sphere component right.So, see what happens as gamma l becomes equal to r l. The

tangent blows up, okay. The tangent of Rho goes, it shoots up to infinity. And the angle Rho

itself will be like pi by 2 or 3pi by 2 or 5pi by 2 and so on. So, that is the kind of angular

dependence that you get, okay. 
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So, this is the net phase shift which we have now written as the sum of these two parts. These

functions, the hard sphere component and these functions r and s, these usually change with

energy. But, only slowly, okay. They are not nothing dramatic is happening to them. What is

happening at the resonance is that this gamma, this changes rather dramatically. 

And this changes dramatically as a result of which Rho changes dramatically, as a result of

which the net phase changes dramatically and the net phase ends up going through a change

in Phi, pi, okay. So, the origins are in the details of the dynamics of the Collision process,

okay because gamma is the logarithmic derivative of the, of the radial solutions.
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So, now, we have separated the phase shifts into a hard sphere part and another part which

depends  on  the  dynamics  of  the  collision  process  which  could  become  resonant  when

conditions for resonance are satisfied. And this solution will go into the scattering solution.



So, this is the solution corresponding to the outgoing wave boundary condition. You have got

the scattering amplitude. 

And the Scattering amplitude is written in terms of what we call as partial wave amplitude,

right. So, what comes in this beautiful bracket is what we refer to as partial wave amplitude.

E is a partial wave amplitude f is the scattering amplitude. So, what we going to ask, is can

we separate out the hard sphere component from the partial wave amplitude? 

That a itself if we write it as a sum of two parts one of which is coming from the hard sphere

which causes the phase shift Xi, which is the hard sphere phase shift and the other part which

will  correspond to the dynamics of the collision process. So,  we try to separate the hard

sphere component from the partial wave amplitude. 
(Refer Slide Time: 48:38)

And indeed it can be done by looking at these complex numbers. So, this is not particularly

difficult.  So, you write this phase shift Rho, which is now, this second factor. This is the

second factor Rho. This is the hard sphere part.  The remaining part,  the dynamics of the

collision is, contained in this factor. And the scattering amplitude is, can be obtained from

here. So, the partial wave amplitude, we want to write, as a sum of two parts. 

So, this is the usual expression for the partial wave amplitude, right. So, this thing in the

beautiful bracket, this is the partial wave amplitude and using this relation, you can write this

partial wave amplitude. You can just separate out that part, using this complex numbers. And

it comes as a sum of these two parts. 



So, this is the hard sphere part and this is coming from the dynamics of the collision process.

So,  these are  the two parts  of the partial  wave scattering  amplitude.  So,  the second part

depends on the details of the potential. The first part is just the hard sphere part okay.
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So, this the first part you can write in another form in which you find it in many books. So,

this is straightforward way of rewriting it. So, I would not comment on this. But you will

often find it in this form which is, essentially an equivalent form of writing the partial wave

amplitudes. 
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So, now we will consider the behaviour of the phase shifts across the resonance. And we will

take the example of a strongly attractive well. So, you have got a well,  which is strongly

attractive, which is why, I show it by what looks like a deep well just to indicate that, it is

strongly attractive, okay. The strongly attractive, the strength, of course, depends on the depth

as well as the range of the potential.



But you are only to indicate that we have a strongly attractive well and we have used these

relations earlier. So, you define the quantum numbers: kappa square, which is the sum of

lambda 0 square and k square is the energy of the projectile. It is actually h cross square k

square by 2m, but essentially k square is a measure of the energy right. 

So, you have a deep well and the reason I refer to this is a deep well because kappa a, in this

case is, much larger this l into l + 1 even when l is not equal to 0. So, as you can see from this

right-hand side, the value of this right hand side will increase with the value of l. But we are

dealing with such kappa, with such depth. So, that kappa a is always greater than l into l + 1. 
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So, we consider low-energy scattering. And in this, we look at the parameters r and s. These

have different values for different partial waves. And you can write these Hankel functions, in

terms of the Bessel functions, the Neumann functions. And look at the low-energy behaviour

because that is well known. 

And from this, you can get the low-energy behaviour of the Hankel functions and get the

low-energy behaviour of the terms r and s, okay. So, that is a straightforward analysis which I

will not work out in details. But, you can see where it is coming from, okay. So, you have the

low-energy behaviour of the Bessel function and the Neumann function.

In terms of which you can describe the low-energy behaviour of the Hankel functions, in

terms of, which you can describe the low-energy behaviour of the functions r and s. And in

terms of this, you can analyze the phase shifts, the phase shifts Rho. So, you can get these

relations that when you are dealing with low energy. So, that k is is much less than 1, okay.



So, this is the low energy domain. And you can get the values for s, when l is 0 and when l is

not 0, when l is greater than 0. 
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And you get these values from this by taking the low-energy behaviour. And now you can

examine  what  will  be  your  gamma,  because  gamma  is  the  one  which  is  going  to  be  a

controlling factor okay. So, you find, when you put all of these values of r and s in this

relation, gamma which is nothing but this kappa j prime over j. So, this turns out to be given

by this k cotangent function -1 over a. 

Now, it  is this cotangent function,  you know, that the tangent  function and the cotangent

function,  they are very sensitive function that there are regions where they just shoot up,

right. And any small change in the angle will change their value in such a huge manner that

you will have dramatic results. So, that is what you will expect because the key feature in

gamma is a cotangent function.
(Refer Slide Time: 54:14)



So, if you look at the cotangent function, okay. So, this is a cotangent function, okay. And

you see that when you are close to these points okay like if the angle is 0 or pi, or 2pi and so

on.  Any  small  change  in  the  value  of  the  angle,  changes  the  value  of  the  cotangent

dramatically. 

And it will change the value of gamma dramatically, which is why, you have such spectacular

changes,  when  there  are  very  small  changes  in  the  energy. So,  when  you go across  the

resonance, the change in the energy independent parameter may be very small. But the effects

on the phase shifts and on scattering cross sections are huge.
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So, here, look at it over here, that whenever theta, the angle theta is in the neighbourhood of

npi okay, whenever it is in the neighbourhood of npi, there are huge changes in the value of

the cotangent function. And because of this, gamma changes in a big way. And because this

gamma changes, Rho changes and then, the next phase shift delta changes because delta is



nothing but Xi + Rho. So, Xi part is not changing very much but the Rho part changes in a

very spectacular manner. 

So, if you look at the asymptotes of this function, they occur whenever this arguments of the

cotangent  function.  What is argument? This angle is kappa, kappa a - lpi by 2, okay. So

whenever this angle kappa a -lpi by 2 is equal to npi that is when you have the asymptotes of

the cotangent function, okay. So, kappa a when this condition is satisfied you bring this l pi

by 2 to the right.  So, kappa a will be npi + lpi by 2.
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That is what we get. And if you look at neighboring asymptotes, the adjacent asymptotes,

then for one kappa a, will be npi + l pi by 2, for the next one which I indicate by a subscript n

+ 1. Instead of n here, I have n + 1 pi + lpi by 2. So, these are the values of kappa.This is how

kappa would change as you go from one asymptote to the next asymptote. 

So, what is the net change in kappa a? The net change in kappa a, this is, this delta is not the

phase shift. It only represents the change. So, change in kappa a is pi, right. Or change in

kappa itself is pi over a, okay. So, now you have kappa square equal to lambda 0 square + k

square. 

So, from this we can take the derivative. So, you get 2 kappa delta kappa from the left. And

this one is just the depth of the potential. So that does not change. And then, you have the 2m

over h cross square d, because E is h cross square k square over 2m okay. So, here you get

kappa, delta  kappa.  The two will  cancel.  So,  kappa delta kappa will  be md over h cross

square.



But now you have a delta kappa from here but you also have a delta kappa from here. So, you

can put the two together. And what do you get? You get that pi over a, which is this which is

equal to delta Kappa. But this delta Kappa is equal to md over kappa h cross square. So, pi

over a, becomes md over kappa h cross square. What is d? d is the energy difference between

two edges and resonances. 

So, the two adjacent resonances will occur at this energy which will depend, which we have

now found to be given by pi h cross square over ma. And it will then be related to the size of

the potential lambda 0 is the root of the potential depth in this case okay. The potential depth

itself is lambda 0 square. So, it is proportional to the root of the depth of the potential. So this

is what you get for the separation between adjacent resonances. 
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And we will now be interested in examining how the phase shift changes at the resonances.

So, this expression we have obtained in one of our earlier classes. So, I will use it directly,

okay. And in this notice that there is there is this gamma which we have obtained just few

slides prior, prior to this. 

And now, you can write this a gamma, okay. This is a gamma. So, we had obtained gammas.

So you multiplied  by  a.  You get  a  gamma right  and  you can  put  this  a  gamma in  this

expression here. And you get tan delta to be given by this relation, okay. You have neglected

certain terms here. 
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So, this is your expression for tan delta. This phase shift is, has been written as, the sum of

these two parts. Remember, that this k a to the power 2 l plus 1 divided by d plus, d minus

this factor was nothing but the tangent and the hard sphere scattering phase shift, ok. We have

done this earlier. 

This is a result from slide number 56 and we have obtained this result earlier. So, this term is

nothing but the hard sphere component, ok. This term over here, this term over here is exactly

the same over here, with the difference that there is a minus sign here, ok. So, you have to be

careful about it. So, take care of this minus sign. And you can write this phase shift. 

So, instead of this, you can write this tan of Xi, because it is the same except for the minus

sign. And that minus sign you accommodate on in the second term by making this l as minus

l. Instead of this minus, a kappa, cotangent function I have got a plus a kappa function and

instead of this minus 1 I have got a plus one, okay.

So I have adjusted the minus sign over here. So, you have this net expression for the phase

shift, in which, you have one part coming from the hard sphere impenetrable sphere and the

remaining part is coming from the dynamics of the actual potential. And that is a part which

is of interest in the resonance condition. And you can see where the resonance will take place.

The resonance will take place when this denominator will become small, okay.
The cotangent will take all kinds of values, okay. And when the cotangent takes such a value

that, a kappa, cotangent theta, where theta is kappa minus l pi by 2, becomes equal to minus

of l. That is when you will get a resonance. So, we will discuss those details in the next class.

There  is  any question  for  today I  will  be happy to take.  Otherwise we will  pick up the

discussion from this point in the next class. Thank you.


