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Scattering at High Energy

Greetings, we will continue our discussion on the behaviour of Phase shifts for large Orbital

Angular  Momentum, Quantum number L and examine how the phase shift  changes with

energy and momentum. And then, we will discuss other consequences of this situation. Now,

we already obtained in our previous class.
(Refer Slide Time: 00:33)

The expression for the tangent of the phase shift and we found that the resonance condition is

given by this denominator going to 0; this l + 1 + a gamma. This gamma caret is the limiting

value of the logarithmic derivative as k tends to 0, right. So, typically, because of this ka to

the power 2l +1, all the contributions from higher orbital angular momentum will become

less significant. 

So, we have the expression for the tangent of the phase shift. And because of this k to the

power  2l  +  1,  the  contributions  of  higher  orbital  angular  momentum partial  waves  will

become  insignificant  unless,  the  denominator  l  +  1  +  a  gamma  approaches  0.  So,  this

becomes your necessary condition for resonance. 

And we will have to examine, if s wave scattering is the only important contributor or are

they are we going to expect some contributions from some of the other partial waves. And

this is the resonance condition that we should examine closely. So that is what we are going

to do now.



(Refer Slide Time: 02:01)

So,  this  is  the  necessary  condition  for  resonance  and  the  question  is,  if  you  do  hit  the

resonance, if this denominator really becomes small, then, what will be the scattering cross

section? What will be its contribution to scattering from the lth partial wave? So, we already

know that the total cross section, you can write as a sum of partial wave cross sections from

different orbital angular momentum quantum numbers, right. 

So, you sum over all the values of l going from 0 through infinity and the lth partial wave is

just 4 pi over k square 2l + 1. And then, you have the sine square of the phase shift for that

particular  partial  wave.  So,  that  is  the  contribution  from  the  lth  partial  wave.  So,  this

condition you can see will hit a maximum when the sine square function becomes 1, okay.

That is the maximum value it can take. And at that maximum value when sine square phase

shift is equal to 1 the phase shift will be either half or 3 by 2 and so on. So, it will be n + half

times pi. So, that will be the phase shift at this maximum. So, at the resonance the phase shift

will be pi by 2 modulo 1. It can be pi by 2, it can be 3 pi by 2, 5 pi by 2 and so on. So, that is

the resonance condition which we have.
(Refer Slide Time: 03:46)



And the minimum value of course will be 0 when the phase shift will become npi. And there

is no contribution to scattering by this particular partial wave in that situation. So, actually,

although the expression requires  for  completeness  that  we must sum over, all  the partial

waves from 0, through infinity. But you really do not have to go to very large numbers so far

as the angular momentum quantum number is concerned. 

Because if you have a potential with a finite range then even from classical mechanics means.

This is a semi-classical argument it is not very rigorous; but it works and it gives you at least

an order of magnitude estimate of the maximum number of partial waves that need to be

considered in the scattering phenomena; because r cross p with the angular momentum.

So, if you have a scattering target over here. And you have got a beam which is coming here,

right. So, if this beam happens to become, come not just ahead on, but little above it so that

there is an impact parameter corresponding to the range of the potential. Then, you can see

that the r cross p, at this point, will give you an estimate of the angular momentum, right.

So, that is r into p, right. r into m into V and that will have to be the angular momentum. So,

the  Angular  momentum,  of  course,  is  quantized.  So,  the  Eigen value  that  you are really

considering r Eigen values of l square which will, which will be h cross square l into l + 1.

But you can approximate that for large value of l, l into l + 1 will be almost l. It will be

almost l square and you can ignore the one compared to that. 

Square root will give you well itself. So, h cross l will become of the order of r into h cross k.

So, that tells you that the maximum value of the orbital angular momentum quantum number.

That you need to consider will be of the order of ka and it will not really be infinity. So, you

do not have to go to, you know, very large numbers in most of the physical situations. 



(Refer Slide Time: 06:09)

Now  what  we  are  going  to  discover,  by  doing  a  small  exercise  is  that,  this  particular

condition,  which  we  have  recognized  to  be  the  necessary  condition  for  resonance,  is

completely consistent with the Levinson’s theorem it, because it corresponds to the condition

of getting a bound state for zero energy for the lth partial wave. 

So, that is something that we would expect. And that is what it indeed turns out to be. So, we

have to examine what is the condition to get a bound state at zero energy in the lth partial

wave.
(Refer Slide Time: 06:42)

So, we do this  again by considering a  square well  potential  which is  our prototype of a

potential. The most of the other potentials are more complex but this example does illustrate

the key ideas which go into this analysis. Now, for this square well potential, we have the

usual dynamics over here. 



The  continuity  of  the  wave  function  and  is  derivative  is  indicated  by  this  logarithmic

derivative  gamma.  And  this  is  in  terms  of  the  Bessel  function  and  its  derivative.  The

argument of which is Kappa a, and Kappa is determined by the depth of the potential which is

minus lambda 0 square. 

And it is also determined by the energy which is k square, which is h cross square k square by

2m, right. So, this is the limiting value which goes in the necessary condition the gamma

caret or the gamma hat is the limiting value as k tends to 0. So, as k tends to 0, so this term k

square would vanish. And Kappa will be lambda 0. So, that is what you get in the limiting

value. 

What we will do is, to make use of the recursion relations for Bessel functions which you will

find in Abramovitz and Stegun or even in Arfken or you know in almost any usual book on

mathematical physics. You will find the recursion relations for Bessel functions and these are

the standard recursion relations for Bessel functions, in which, the derivatives are given in

terms of the adjacent Bessel functions okay. 

So, there are similar relations for the normal functions and so on. So, you know this is the

particular one for the Bessel functions. So, we make use of the recursion relations for the

Bessel functions and then plug it over here to get the expression for the limiting value of the

logarithmic derivative gamma in terms of the Bessel function for l - 1 and l. 

So, these are the Bessel functions which appear in this because in the recursion relations, the

adjacent values of l, they get connected along with the derivatives.
(Refer Slide Time: 08:59)



So we have this, using the recursion relation this form for the limiting value. And that gives

us for the necessary condition for resonance. Now, in this a gamma, caret, we put the right-

hand side from here, which we have obtained using the Recursion relation. And you have a

times, this is a and then gamma caret which is this beautiful bracket multiplied by lambda 0.

So, lambda 0 is here and the other beautiful bracket is here.

So, now you have got a lambda 0, here and a lambda 0, in the denominator. So, you can

multiply both of these terms by a lambda 0. What happens when you multiply this a lambda

0? This cancels this. And you will have l + 1 here; and then, minus of l + 1 here. So those will

cancel each other. And you are left with a lambda 0 times this ratio. 

This product must be of absolute value which should be a small number okay. So, that is now

effectively the necessary condition for resonance at low energy okay. So, now we ask what

happens when this denominator is small. 
(Refer Slide Time: 10:15)

So, what is going to happen is that when this denominator is small then you get if you go

through this exercise in Schiff’s Quantum Mechanics which I will not work out. Then, you

find that you get a condition for having a bound state.
(Refer Slide Time: 10:47)



So essentially what is going to happen is that the condition that, that you get a bound state for

l becomes completely equivalent to the necessary condition for resonance which is just the

right kind of condition. The only difference between this and the case for the partial wave for

l = 0.
(Refer Slide Time: 11:14)

Is the fact that in the case of l = 0, for the s waves, what happens is you get virtual bound

states, okay, you remember, that, that you had virtual bound states for l = 0 when you have

the resonance condition at, where the depth and the scattering strength parameter was pi by 2,

you got virtual bound states.

Whereas in this case for higher orbital quantum numbers, you get proper bound states, so it is

not it is not like a state which is half bound and half not bound which was the case for the l =

0 case. So, now, if you have a weak potential the phase shift will first increase, if it is weak.



It, if the potential is so weak that it cannot even hold a single bound state then the phase shift

will first increase.

And then, since there is no bound state at all, it will have to come back. And eventually go to

zero. But then, as you increase the depth of the potential or the range of the potential make

the potential stronger. We have seen these plots for l = 0. So, now we are observing that for l

equal  to,  greater  than  zero.  We have  somewhat  similar  plots.  But  then,  we  have  some

differences also.
(Refer Slide Time: 12:35)

Because as the potential becomes stronger then the phase shift increases. But does not quite

get to pi, unless, it actually is strong enough to hold a bound state. Then it flips over and then

comes back whereas if the potential becomes stronger still.
(Refer Slide Time: 12:56)

Then, the once it crosses that threshold. Then, you have a one bound state. So, that the low

energy phase shift will become equal to n pi, n = 1, in this case so that it is just strong enough



to hold one bound state. So, the phase shift at low energy limit, the phase shift will be equal

to pi and then it drops which is given in the curve 3. So this is completely along in consistent

with the Levinson theorem, 
(Refer Slide Time: 13:28)

What we will now consider. We consider the low energy behaviour. Now, we will consider

the high-energy behaviour okay. So, high energy, high wave with respect to what? High with

respect  to the orbital  angular  momentum, because ka and l,  they come together. So,  any

comparison between them tell, tells us that ok if you are much above the l value. Then you

are in the high energy domain so far as this context is concerned.
(Refer Slide Time: 13:54)

So, in this case, let us set up the relationships for the Schrodinger equation, for the inner

region you are said the, the actual radial  solution is capital  R. You set up the differential

equation for y, the radial solution being y over R. So, you have got these two solutions for the



inner region and for the outer region, the outer solution will be determined by the scattering

phase shift, okay. 
And you have  got  from the  continuity  of  the  wave function.  And it  is  derivative  at  the

boundary, this continuity of the logarithmic derivative okay. And this must be the same for

the inner region as for the outer region. So, you have kappa square is lambda 0 square + k

square. 

So, this is the same kind of parameter that we have considered earlier. So, what do we get?

The logarithmic derivative must be continuous and at r = a it must be kappa. It will be given

by this kappa a.
(Refer Slide Time: 15:08)

So, let us take this. Now, I will use these relations which we have obtained earlier. This was

in unit 1. So, we have obtained this relation earlier. So, I will use that relation directly and

consider the high energy limit. So, the high-energy limiting Bessel function values are given

by a sine of z - l pi by 2 divided by for the Bessel function. 

And the Neumann function is a cosine function with the same argument with a 1 over z again,

but with a minus sign okay. So, these are the usual relations for the Bessel functions and

Neumann functions which we have to substitute in this relation. So, let us substitute these

values. 

So, now you have to put in the value corresponding to ka whereas for gamma, you have to

substitute the value corresponding to Kappa a. So, you have these values here, ok. So, there

are similar relations but then, this one is k and this one is Kappa. 
(Refer Slide Time: 16:15)



And with the k’s and the Kappa’s taken care of what have we ignored? We have ignored for

large z, terms of the order 1 over z square, when they come together as additive terms with 1

over z terms. So, that is the approximation. But that is fine mean that always approximation

we take for the asymptotic limit. 

So, so, here the asymptotic limit is coming because, not because of the distance, but because

of  the  energy  parameter,  that  this  is  the  large  energy  limit.  So,  you  have  a  similar

consequence on the values of the Bessel functions. So, you put in these values okay and get

the expression for gamma. 

So, these are straightforward substitutions I will not comment on this. And now here, this

angle kappa a -l pi by 2 is what I write as Phi, just to make our notation compact, ok. So, I

will write this expression in terms of the cosine, sine and tangent or cotangent of the angle

Phi as it the case would be.
(Refer Slide Time: 17:40)



So, I introduce the symbol Phi just to make our notation a little compact. So, this is gamma

here in terms of Phi, which is this angle kappa a - l pi by 2. Or in terms of this, we can write

our  earlier  result.  So,  now the  tangent  of  the  phase  shift  is  now given  in  terms  of  the

trigonometric functions of theta. Theta is ka - l pi by 2 and the other angle is Phi which is

Kappa a -l pi by 2. So, these are the two angles which come in our expressions the actual

substitutions are straightforward.
(Refer Slide Time: 18:24)

So, we have written them in terms of theta and Phi and a little bit of substitution as you can

see  this  cancels  this  k.  The  1  over  a  is  in  every  term,  in  the  numerator  as  well  as  the

denominator. So, they are going to cancel, right. So, now you get rid of all the 1 over a.
(Refer Slide Time: 18:49)



And you get after these simple substitutions. A little bit of rearrangement as you can now

recognized  by  this  blue  arrow  that  there  is  nothing  more  in  it  than  straight  forward

substitutions. So, I will not take you through this step-by-step. But you can work it out and

you can always refer to the PDF for details. 
(Refer Slide Time: 19:11)

So, here you are. So, this is the expression for the tangent of the phase shift and it appears in

terms of two angles theta which is k - l pi by 2 and Phi which is Kappa a - l pi by 2. Now I

see that there is a k over kappa times tan Phi. So, I introduce this angle epsilon the tangent of

which is k over kappa tan Phi because that will make it possible to write the tangent of the

phase shift in this form.

 So, that you can write it as the tangent of a difference of two angles, okay, so that is the idea.

So, we introduce this epsilon so that you can write the phase shift or the tangent of the phase

shift as tangent of another angle. And, and you can immediately get the two angles; you can



equate the two angles. And you get the high energy limit which is - ka - l pi by 2. Now, this is

the one of the two angles this is the theta and then you have got the Phi over here. 

But now the Phi in terms of Phi you have the epsilon so you get this k over kappa, kappa a - l

pi by 2, right. So, this is the expression you get for the phase shift at high energy. So, as

energy  increases,  you  have  this  -ka,  right.  So,  the  phase  shift  will  keep  continuously

decreasing till it becomes 0, okay. So that is the high energy behaviour.
(Refer Slide Time: 20:56)

Now, we will now take the example of a square well, we have already considered but we

have considered square well potential with finite depth and so on. So, we will now consider a

rigid potential  like an impenetrable  sphere okay. It  is  a, it  is sometimes called as a hard

sphere.

You cannot penetrate it  because the potential  inside in the inner region from zero to a is

infinite. So, nothing can get it, okay. It is, it is an ideal situation; it's a mathematical construct

that the potential is infinite are no scattering, no projectile can penetrate that. So, we will

consider this case of hard sphere scattering.
(Refer Slide Time: 21:49)



Now, in the case of the hard sphere scattering, we are not bothered about anything like the

shape of the potential or anything because it just does not matter; it is infinite. So for this

inside there will be it will be impossible for the projectile to get in and outside it will be

governed by this phase shift. 

What happens at the boundary? It go to zero because it cannot get in, okay. So that is a

boundary  condition  because  it  is  hard  sphere;  it  is  impenetrable.  And  therefore  at  the

boundary r = a it must vanish. And therefore this j l k a over n l k a must give you the tangent

of the phase shift. So, now we have an expression for the hard sphere phase shift. 
(Refer Slide Time: 22:44)

Now, this is an important result because when we deal with any arbitrary potential, we can

pretend as if this potential is made up of two pieces. One of which is a hard sphere kind of

situation and the other contains the dynamics. So, we will break up the net result into this

kind of analysis. But that is something that we will discuss in subsequent classes.



So, for now, we know that the function y must go to 0, at r = a, which gives us this expression

for the tangent of the phase shift. And now, over here, if you now consider the low energy

limit  then,  in the low energy limit,  you know, that  the Bessel  function what the limiting

behaviour of the Bessel function and the normal functions are, for the low energy limits as it

tends to 0.

You can put them in and again you get the same ka to the power 2l + 1 behaviour from this,

right. So this is the low energy limit for a hard sphere scattering. And you can see that it

decreases quite rapidly with l again in consistency. No, it is completely consistent with our

expectation that higher partial well waves will not matter.

Most of the scattering will be determined just by the l equal to 0 the s phase. So, this one, this

is your result which you will remember for l equal to 0. We have found that it goes as - ka

because l for l = 0. This 2l goes to 0 and then you will simply have the tangent of delta 0

going as -ka.
(Refer Slide Time: 24:34)

Now, notice that in this case the scattering length which is the ratio of tan delta by k, it will

go as a; and if the scattering length is alpha what does it give us for the scattering cross

section? It is four times pi is a square the classical cross section is pi times a square, okay. Pi

a square that is the area of a circular disc of radius a.

So, this is four times that and that is, that is not surprising because this is not classical this is

quantum so obviously you will expect some differences. And this is what it is.
(Refer Slide Time: 25:14)



So, now you consider the High energy projectiles. Now, when you consider the High energy

projectiles, we have seen that at r = a, this function must go to 0 that this is the hard sphere

scattering phase shift. And the high energy projectiles again you use the High energy limit for

the Bessel function and the Neumann functions.

So, you can put these expressions over here for the tangent of this angle. And what does it

give you for the phase shift itself is this tan inverse of this ratio. This ratio itself is tangent of

this. So, you get the phase shift to be - ka + half l pi.
(Refer Slide Time: 26:04)

Now, this is an interesting result because what is happening is that in the Levinson’s theorem,

we always argued that the phase shift  at  high energy would go to 0,  right.  That was the

reference  for  the  angle  that  we  considered  whereas  in  this  case,  the  phase  shift  keeps

becoming more and more negative. And it goes to negative infinity okay.



So, this is something which you might think is not consistent with the Levinson’s theorem.

But why does it even have to be consistent with the Levinson’s Theorem, because this is a

hard sphere. It does not have any bound state, okay. So, there is, the, there is no problem with

that issue over here. 

So, this has got no bound state at all. And again you can get the total cross section by carrying

out the summation up to the maximum value of l which using our semi classical argument,

we know, is of the order of ka. So, for all practical purposes, we can take l max to be equal to

ka. It works in most situations which I have mentioned earlier in various different contexts. 
(Refer Slide Time: 27:21)

So, this is the cross section that you get partial wave contributions from different values of l.
You do not have to sum all the way to infinity. You just have to go as far as l max which is

above ka. And what does this some turn out to be. So, let us take this, term by term. So, let us

write this expansion explicitly, because you will find that it sums up to a very compact result

which is rather attractive. So, it is nice to get it in that form. 

So, you write all the terms for l = 0. This half l pi is the only thing which is going to be

different in every term, okay. You are summing over l going from 0 to l max and this half l pi

will go from 0 to pi by 2 and so on, right. So, you get for l = 0, a term in sine square ka. Then,

for l = 1, you have got three times, you have got a 2l + 1 factor here; so, three times sine

square ka - pi by 2. 

Then, for l = 2 you have got to l + 1, which is 5 times sine square ka, - pi, okay; for l =2. And

that is how you get various terms. So, you get with different coefficients of the sine square

functions 1 over here, 3 over here, 5 over here, 7 over year, 9 over here. Notice the, the

pattern in which the coefficients are coming so that you can generalize it very easily.



You can go to higher order terms. So, the maximum value that you have to consider is of the

order of ka and at high energies l max can be large. So, you can sum up to all those values. 
(Refer Slide Time: 29:15)

So, this is the pattern that you are getting and this angle which is sine square, this is not just

theta; but it is theta - pi by 2. So, the argument is ka - pi by 2. But you can write it in terms of

sine or cosine of ka itself; because sine square of ka - pi by 2 is nothing but the cosine square

of ka. So, you can simplify this. 

Likewise, this is sine square of ka - pi and this simplifies to sine square of ka, okay. So, all of

these angles can be written very simply, in terms of sine square or cosine square of ka. So,

this comes out to be sine square ka, the sine square ka - 3 pi by 2, which is here. So, this term

comes out to be cos square ka. 

And then,  you get  terms  in cos  square ka and cos  sine square  ka together. So,  you can

combine them and accept that sine square theta + cos square theta = 1 even in atomic physics,

right. So, we can simplify this relation and we really get a very simple sum. But, of course,

we have to take care of the coefficients here, because they are not the same. 

You have got 1 over here, 3 here, 5 here, ok. So, keep track of that and we will make use of

this relation. So, let us look at these terms. So, the next one again I have not written all the

details over here. But then, you will get similar combinations and you will get either sine

square theta or cos square theta where theta is ka.
(Refer Slide Time: 31:01)



So, these are the terms that you get. So, this one is cos square ka. Here you have got sine

square ka. And here you have got cos square ka and so on. So, now, you write these terms in

terms of this angle ka now. No matter what value of l is, okay. It is always written in terms of

sine square or cosine square of ka.

And now, you have this factor 3. This is 3 times cos square ka. So, this 3, I split into 1 and 2.

So it is cos square ka + twice cos square ka, so that I can combine this cos square ka, with

this sine square ka, to get unity. And then I can combine this twice cos square ka, with the

twice sine square ka, which I am getting from the next term to get a sum, a factor of two,

okay.

Because here, I have got 5 sine square k a, which I have split into twice sine squared ka + 3

times sine square ka, so I take this to twice n square ka, with this twice sine square ka and this

3  sine  squared  ka,  with  this  3  cos  square  ka  of  the  following  term.  So,  this  is  just  a

rearrangement of terms so that I can combine these to, to get a simple result. And what you

see is that we are simply adding 1, +2, +3, +4, +5 and so on, right? up to l max, right.
(Refer Slide Time: 32:46)



And that sum, you can easily get to, l max into l max + 1 by 2, okay. So, that is the compact

expression for the scattering cross section and you find that it  is determined only by this

upper limit in this particular case, okay. So, this is the case, that we have considered and

when l is large. Then, you can approximate this to be l square by 2, okay.
 
If you ignore this one compared l max, because l max is large, it can be 10, it can be 20. So,

you get the high energy cross-section. And in this case, now, if you put this equal to l square

over 2, what do you get? Twice pi a square. So, this is half the previous result. This is twice pi

a square. The previous result was 4 times pi a square.
(Refer Slide Time: 33:54)

And now, we can consider the resonances. So, once again we go back to this expression. So,

this is a common expression that we are going to use throughout our analysis. That is the

basic relationship to discuss the phase shifts. But what we will do is, we can use any pair of



base functions. Our base pair has been the Bessel function and the Neumann function. We can

also use the Hankel functions. 

The Hankel functions of the first kind and the Hankel functions of the second kind, because

they are made up of the Bessel and the Neumann functions. And you get an alternate pair of

basis so that it gives some advantage. So, you have got the Hankel functions of the first kind

which is just the Bessel function j + i times.

 And so you have got the Bessel function + i times the Neumann function, in the Hankel

function of the first kind; in the Hankel function of the second kind, it is the Bessel function -

i times the Neumann function, okay.
(Refer Slide Time: 35:10)

So, in terms of the Hankel functions, now, we can rewrite the expression for the tangent of

the phase shifts because the Bessel functions and the anointment functions can be written in

terms of the Hankel functions backward, right. So, you substitute all that and then you get the

phase shifts, okay.

And you get an expression for the phase shift which is now given completely in terms of the

Hankel functions, okay. So, this is again straight forward substitution which I will let your

work out.  This  is  the  result  that  you get,  that  the  scattering  phase shift  is  given by this

expression here.
(Refer Slide Time: 35:52)



Now, the reason to put it in this form is, will, become clear perhaps in the next class or maybe

in the next one or two classes. Because what it allows us to do is, to introduce two different

angles. And you can write the phase shift, the, the net scattering phase shift is delta. But you

can write this scattering phase shift in terms of two angles, okay. 

You can write the scattering phase shift as a sum of two different angles. One is Xi and the

other is Rho. So, we introduce these two angles. And one is defined in terms of the ratio of

the Hankel function of the second type, to the Hankel function of the first type which you see

is factored out in this term already, right. 

And then, you have got the other factor, in terms of which, we will write another angle which

is Rho, so that the scattering phase shift can be written in these two parts. And then, it turns

out that these two parts refer to hard sphere scattering and the other will be given by the

actual dynamics of the potential. 

And that is the one which we be, which will be of central interest in considering resonances;

because when you have a resonance, the other term which is Rho, which gets added to Xi, is

the  one  which  will  very  rapidly  at  the  resonance.  And  it  is  this  rapid  variation  in  the

resonance region which is going to be the subject of a discussion in the next several classes.
(Refer Slide Time: 37:38)



So, this is the phase shift in terms of the Hankel functions, we have introduced these two

angles. Now, one is Xi. And this Xi is written in terms of, this ratio of the Hankel function of

the second type, to the Hankel function of the first type, together with a minus sign. So this e

to the 2i is Xi l is now, defined. This is the defining relation, for this particular phase shift,

okay. 

This is a part of the phase shift. So, this is one part of the phase shift. And then there is the

other part,  You will see immediately that the hard sphere scattering phase shift which we

obtained earlier was nothing but this. It was exactly this. So, we have factored out from the

total phase shift one part which is coming, which can be attributed completely to the hard

sphere component, okay.

So, it is not that there is a physical hard sphere which is sitting over there, okay. What this

analysis is letting us do is, that the net scattering phase shift which is determined by the real

potential, by the real dynamics of that potential. So that real potential generates a result, a

resulting scattering phase shift which you can write as a sum of two terms: one of which can

be attributed to hard sphere scattering.

Because the ratio that you get which in terms of which you define the phase shifts Xi gives

you for its tangent, nothing but the same ratio that you get for scattering by a impenetrable

sphere, okay. This is just the ratio of the Bessel function to the Neumann function okay. So,

this result we have from an, from the earlier discussion.
That this is the hard sphere scattering phase shift and now what we will do in subsequent

classes is to focus our attention from the hard sphere part to the other part which is the Rho,



okay. So, there are 2, 2 contributions to the net scattering phase shift: One is what we will call

as the hard sphere component and the other is the dynamical component. 

And the dynamical component in the absence of resonances will very smoothly with energy

or it will have a smooth variation with respect to k. But at resonance, it will change very

rapidly. So, these are the resonances which are of great importance for our study in collision

phenomena. 

There are two kinds of resonances. You have got the shape resonances and you have the Fano

Feshbach resonances. So, these we shall  discuss in the next few classes. So, there is any

question I will be happy to take otherwise we take it from here in the next class. 


