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Greetings, we will have four classes in unit 6 and we will begin to discuss Resonances in

Collision  phenomena.  Resonances  are  also  identified  as  quasi-stationary  states  on  the

principal reference for this unit will be Joachain’s book Chapter 4. Now, today's class, we, we

will go a little slow. And essentially what I will do is to remind you about some of the things

we studied in an earlier unit, in Unit 1 of this course.
 (Refer Slide Time: 1:05)

Because we already talked about Resonance states, we talked about the Virtual bound States

when we talked about Collisions at low energies, in particular, the s-wave Scattering which

we discussed in the Unit 1 of this course. So, I will spend a few minutes re-visiting that and

so that it will help us warm up to this topic.
(Refer Slide Time: 1:12)



So, in particular, have a look at lecture number is 10 and 11 of unit 1 of this course and what

is  in  the  background,  in  the  slide,  is  the  Levinson theorem which  we have  discussed  at

considerable  length  in  the  previous  unit,  right.  So,  we  will  take  our  awareness  of  the

Levinson’s Theorem for granted for this unit. 

So, what we will do is, is to develop some further considerations which go below beyond the 

immediate consequences of the Levinson’s Theorem. And, in particular, we will discuss how 

the scattering phase shifts depends on energy at low energies. We know the low energy limit 

which is k tending to zero but when it is not quite 0, but it is still low energy.

And what is its Energy dependence? How does it change? So, we are now getting into some 

details beyond the Levinson’s Theorem.
(Refer Slide Time: 2:20)

And as I mentioned earlier, this is the primary reference for this portion which is a very fine

book. I really love this.



 (Refer Slide Time: 2:35)

So, the phase shifts are measured with reference to a set of zero of the angle. And this zero of

the angle is the high energy limit of the phase shift, okay. And as k tends to 0, the phase shift

would go to 0 for the lth partial wave.

So, that is the reference level. What happens when k tends to 0? Now that answer is provided

by the Levinson’s Theorem,  okay. Levinson’s Theorem tells  us  what  happens in  the low

energy limit which is k tending to zero. So, we know what is at the extreme k tending to zero.

And then, as k goes to infinity. 

And then we will examine what happens in between and that's where a lot  of interesting

dynamics is. So, from the Levinson’s Theorem here, we know that for the alert partial wave,

if l = 0, when we deal with s-wave scattering and that is the most important contributing to

contributor to the collision phenomena at low energies, as we have discussed earlier. This

phase shift goes to n times pi where this is the number of bound States. 

However, if  there is a resonant bound state at  that  energy, then,  it  does not go to n0 pi,

instead, it goes to n0 + half pi where n0 is the number of bound states which exist at that

particular, for that particular potential. For, this is the zero energy resonance. And we have

discussed this in our previous unit. We have shown that the phase shift, when you do have a

resonant structure, when the strength parameters.

Though we discuss this  in  the context  of a square well  potential  and the strength of the

attractive potential depends on the depth of the potential and the range of the potential. The

two together, in fact, it depends quadratically on the range and linearly on the depth. So, u



zero a square, is the strength parameter or sometimes it is taken as a root of u 0 times a. So,

this is the strength parameter and when this strength parameter becomes pi by 2. 

Then, you get the resonant possibility. And the phase shift then, goes to pi by 2. So, this is a

virtual bound state, okay. So, at any depth less than this, you would not have a bound state.

But then, if you have the depth even a little more than this order, the range, a little more than

this, then you will have a bound state.

So, this is the zero energy resonance and at this resonance the cross section blows up. It

blows up as 1 over k square. So, you can see that as k tends to 0, it just shoots off. So, what

happens if l = 1 or greater than 1, then, the phase shift is always an integral multiple of pi the

integer, being the number of bound states, which exists for that particular potential depending

on its depth and range.

So,  there  is  a  peculiar  behaviour  for  the  s  phase,  as  you  have  noticed  which  we  have

discussed in the previous unit.
(Refer Slide Time: 05:55)

And the zero energy behaviour is therefore different for l = 0 and for l greater than or equal to

1. So, I will refer you to the lecture number 10 and 11 of the unit 1 of this course, we have

seen in that unit, that the tangent of the phase shift has for its low energy limit the 2l + 1

power dependence on k.

So, as k tends to 0, so, that is just there like a threshold effect okay. And this goes into

various, you know, these are results, these results are very general and very powerful go into

the framework of what are commonly known as the threshold laws. Wigner made significant

contribution to this particular area. So, these are the, this is the threshold behaviour. 



And for l equal to zero, the tangent blows up when you have a zero energy resonance, if there

is a bound state exactly at that limit okay. Now, we have discussed this: that the cross section

goes as 1 over k square. And this phase shift then will be either pi by 2 for the resonant case

or it could be 3 pi by 2, or 5 pi by 2. It is not an integral multiple of pi, mind you in this case.

But it goes in steps of pi by 2, 3 pi by 2, 5 pi by 2 and so on.

And how large it is depending on how many bound States the potential whole,  so just the

fact that there is a bar, there is an attractive potential does not mean that you will have a

bound state because the potential will have to be sufficiently strong, so that you can have a

bound state, okay.The potential being attractive is a necessary condition it is not a sufficient

condition for you to get a bound state solution. 
(Refer Slide Time: 08:03)

So, this theorem, which is stated so simply that the phase shift is either n pi or n + half pi

depending on l being equal to 1 or greater than 1 or equal to 0. We obtained this theorem

explicitly for the square well potential. However, it holds also for many general potentials;

not just for the square well potential. 
(Refer Slide Time: 08:38)



So,  which  is  why, it  is  such  a  powerful  but  a  theorem.  Now, what  we will  examine  is

remember limiting behaviour as k tends to 0, okay. What happens as k changes? So, this is k

= 0. But, if the k increases gradually and you are still in the low energy regime, okay, you are

still in the low energy regime of the collision phenomena, if you plot the phase shift as a

function of k. how will this plot look like, okay? 

What is the low energy, energy dependence at the phase shift is what we will discuss today.

And we will illustrate this by taking the example of the square well potential. So, you have

got a depth of minus lambda 0 square. And then, you have a range of r = a. So, this is the

square of spherical potential. 
(Refer Slide Time: 09:34)

And we will re-examine the bound state solutions. The bound state energy is intrinsically

negative  okay. So  h  cross  square  k0  squares  by  2m =  -  E0  because  E0  is  intrinsically

negative. And we will consider first, where l = 0 solutions the S wave scattering and in this



case  the  exterior  solution  of  course will  die  off  exponentially, okay. So,  it  will  have  an

exponentially decaying solution outside. 

And in the interior, you will have the Bessel functions, okay for the solutions. And the Bessel

functions,  the  argument  of  the  Bessel  function  will  be  kappa  r  where  kappa  will  be

determined by this k 0 which is the bound state energy and the potential depth, okay. So,

these are the two things which will determine the value of Kappa. 

So, we have put a subscript b on Kappa to remind us that this is the bound state solution. So,

these are the two solutions and you can see that for us in for the geometry that we are dealing

with lambda 0 square will be greater than k 0 square so that you will have a bound State

there.
(Refer Slide Time: 11:02)

Now, we have discussed these solutions at length in the previous unit. So, I will not re-visit

that in any great detail. But you will remember that the bounce rate solutions were obtained at

the intersections of these two families of curves, okay. So, there is one solution which is the

relationship between Xi and beta. 

And then, another set of solutions which is an equation to the circle. And wherever these two

curves intersect, we get a solution or this being transcendental relations typically graphical or

numerical solutions are obtained.
(Refer Slide Time: 11:50)



And I would like to make an interesting observation over here by quoting some writers from

books which you would have used. David Bohm’s book for example: He says in Section 11

that this is a transcendental equation and must be in general solved numerically or graphically

okay. Now, this is David Bohm. 

Now, we have Bransden and Joachain and section 4.6. They say the energy levels are found

by solving  the transcendental  equations  either  numerically  or  graphically  which  is  pretty

much the same thing.  Then you have Griffiths,  Introduction to Quantum Mechanics.  And

what does he say? 

That  this  is  a  transcendental  equation  it  can  be  solved  numerically  using  a  computer  or

graphically, right? As if there is no other way of doing it. And then I would like you to read

this paper by Ken Roberts and Ram Valluri,  my good friend at the University of Western

Ontario. And I have given the link over here. I strongly recommend that you go through this

work.

And they have shown using lambda w functions, how analytical solutions can be obtained for

this problem. And this lambda w function is a very powerful technique you can get analytical

solutions  in  many situations.  It,  they  have  a  very  wide  range of  applications  not  just  in

collision problems, but in a very wide variety of problems.

In fact, even for the Coulomb scattering that we discussed yesterday. You can have some

applications and photoionization cross-sections you can use them. So, they make use of the

poly logarithm functions. And this is very powerful to which Ram has really mastered and

strongly recommend that you acquaint yourself with this technique. 
(Refer Slide Time: 13:40)



So,  what  was  the  result  of  the  Levinson  Theorem?  That  as  lambda  0a  is  the  strength

parameter, right? This is lambda 0, is the square root of the depth a, is the range. And as this

increases from 0 to pi by 2 then, till it gets to pi by 2, you cannot have any bound state at all.

So the number of bound state is 0 and the phase shift will be 0. This is for the S waves.

However, when this strength parameter exceeds pi by 2, then, you have one bound state. And

then, the phase shift the low-energy phase shift as k tends to 0 will be equal to pi. And what

happens at pi by 2? That is something which I have indicated by this asterisk. That is when

you have a virtual bound state. So, that is a resonant bound state, okay. So it is in some sense

neither here nor there or in another sense it is here and also there. 

And it is like the Schrodinger’s scat which is either dead or alive. And the reason this happens

is because of Quantum Mechanics, because there is a superposition between the bound state

solution and the continuum solution, okay. So, you have a resonant structure over there. And

that these two possibilities and that is when you get the resonance. So, you have this you, you

have the resonance at pi by 2. 

You have it again at 3 pi by 2 when the first box state is already nicely bound. And the next

bound state is about to be bound; it is not bound at a depth, slightly below this. And it is

bound slightly above this at 3 pi by 2; it is a resonance state, okay. So, this is the picture we

get from the Levinson's theorem. 
(Refer Slide Time: 15:33)



So, let us, our interest is in examining how the phase shift changes with case. If you plot delta

0 vs k, not just look at the limiting behaviour k tending to 0, but to what, how does it change

with k, as you change k in the low energy domain. So, that is our question here. And we first

consider  a  potential  which  is  a  very  weak,  attractive  potential.  It  is  attractive  but  not

sufficiently strong to have even a single bound state, okay. 

So, all that attractive feature is not sufficient to bind a particle. And in this case, the phase

shift will go to 0, right. So, if you now plot delta 0 vs k, the behaviour is given by this

function which we have discussed earlier, it will go to 0 and as you increase k, the phase shift

will increase because delta k, ok is given by this ka times tan kappa a by kappa a - 1. 

We have derived this relation in the previous unit. So, the phase shift will increase that it

cannot keep increasing up to pi, because for the phase shift to be pi, you need the potential to

have one bound state, which it does not,  because the potential is attractive but not enough

attractive to have a bound state. So, the phase shift will not get 2pi. 

And what will happen to the phase shift is that it will keep increasing till it gets to pi by 2,

and then, start diminishing again because the high energy limit of course is 0, right. So, the

phase shift will start increasing and then it will come down. So, you can already expect that

the phase shift will have this profile that it will increase from here. 

So, this is the curve one. It has got no bound state, zero bound state. And the phase shift

increases till  it  approaches pi by 2 then flips over and then Falls to zero, eventually as k

increases. So, that is how the phase shift changes with k. What if the potential has either a

little more depth or a little more range  then it will pick up a bound state once lambda 0a

crosses pi by 2. So, that is the threshold value, right. 



So, that is the minimum strength that it should have. So, this is the picture when there is no

bound state at all. 
(Refer Slide Time: 18:24)

And when you do have one bound state, then, the phase shift as k tends to 0, will be equal to

npi, n = 1 now. So, the phase shift will be pi it will begin over here and then it will keep

falling.  So, the behaviour of the phase shift, the changes in a dramatic manner, in a very

dramatic manner depending on the number of bound state. 

So, for 0 bound State it goes like this. If you have one bound state it will fall like this. So,

these graphs are straight out of Joachain's book. This is in fact figure 4.6 from his book. 
(Refer Slide Time: 19:00)

And now having considered the l equal to zero behaviour, we will now consider the large l,

okay. So, let us consider the large l and ask ourselves how will the phase shift change with k

the limiting value we already know that as k tends to 0 it will go as npi that is Levinson’s



theorem. But if you plot delta as a function of k, not just the limiting value k tending to zero,

how will the graph of delta versus K look like? 

So, that is the question we examined. Now remember, that as l increases, the centrifugal

barrier term will become more and more important and it can become so important that, it

becomes so much more important than the potential itself, when the potential does not matter,

okay. It is there, but it is coming. The total potential is a sum of the centrifugal term plus the

physical potential.

The two potentials add up, okay in a radial differential equation for the Schrodinger equation,

the two potential add up; one of which becomes a global compared to the other. And the other

takes over the dynamics completely. And the physical potential is of no relevance and does

not matter if it is square well potential or it has got some shape or no shape or you know

whatever it is, it just does not matter.

So, what is going to happen is that if you increase the orbital angular momentum quantum

number, then, the target potential becomes less and less significant? And then, we do know

that for any given value of k, you can always go to values of l, large enough because in the

partial wave analysis l will go all the way from 0 to infinity in the expansion of a plain wave.

You can always go to a value which is large enough and at that value, the potential as if it

does not matter. And the phase shift would go to 0 as n tends to infinity for any given value of

k, okay. So, that is the large behaviour of the phase shift.
(Refer Slide Time: 21:25)

So, let us take some examples here and we have already discussed l equal to 0. So, now we

are discussing a greater than 0. So, it will be at least one or more and we have deduced this



relation in the previous unit in unit 1 of this course that the tangent of the phase shift is given

by this relation.

We had introduced the symbols over here d + and d -. So, these are the double factorial, okay

which we have used earlier. We had introduced this dimensionless quantity which is a ratio of

kj  prime by j.  These  are  the  spherical  Bessel  functions  and gamma was  the  logarithmic

derivative  of  the  function  inside  the  potential  region.  And  outside  if  it  has  got  a  strict

boundary at r = a. 

So, that was the logarithmic derivative. So, gamma is this and this is coming simply from the

continuity of the wave function and it is derivative. So, the larger behaviour is given by this

relation. No matter what k is, okay. And this will also have a resonant structure, which will

depend on this denominator here; because if this denominator vanishes, then, you will expect

a resonant behaviour, okay.

So, we will use the integral representation of the phase shift which we have obtained in the

previous unit.
(Refer Slide Time: 23:02)

This is given in terms of the spherical Bessel function, the potential and the radial solution, I

have put v not equal to 0 as a superscript, because, you deal with radial functions of two

kinds: One is the solution for the free particle which is the absence of the potential. That is

the reference phase and all the phase shifts are measured with respect to the free particle

incident beam phase shift, phase value, right. 

So, you have the integral representation. This is integration over the entire space 0 through

infinity. And then, you have a large value of l. Then, we have noticed that the potential does



not matter because of this centrifugal barrier effect. And if the potential does not matter, then,

this solution over here, which is actual radial solution for the Schrodinger equation with the

potential, with the scattering potential. But then, if all is large, it does not matter. 

So, the solution will be pretty much the same as you would have if V is equal to 0. So, the

radial solution for V not equal to 0 is pretty much the same as the solution when V is equal to

zero which of course is the spherical Bessel function. So, you can put over here for this case

when l is large; when l is large, you can use this radial function to be given by the Bessel

function.

So, you will have one over here and another Bessel function over here. So, this is like the

Born approximation, okay, it is a, right. And you can see that this works at high energy. This

works  as  we  discussed  in  the  context  of  the  born  approximation.  It  is  a  high-energy

approximation but the same expression appears even if you are dealing with large l. 
So, the large l behaviour is similar to the born approximation at high energy. So, these give

you essentially the same kind of relationships. So, here, when l is large you can use the same

result.  And now, let  us  plug in the explicit  form of the Bessel  function.  So,  what  is  the

spherical Bessel function for larger l. 
(Refer Slide Time: 25:32)

So, for large l, what will it be? So, here, this is the policies expansion of the Bessel function

in terms of its argument z in our case the z will be ka or kr and so on, right. And here notice,

that  for  any given  value  of  k,  if  you look at  the  terms  inside  this  bracket,  they  are  all

multiplied by another factor here. But then, inside the bracket, you have l in the denominator.

And all of these terms are going to be compared with the number 1.



So, you have got one minus something, plus something, minus something and so on. But each

term has got the l in the denominator and the value of l is pretty large. It keeps getting larger

as you go to higher terms. But, even the very first term has got 2l + 3 and l is large, no matter

what k is. If l goes large enough, okay, you can throw the rest of the terms, okay. 

So, what it means is that you can approximate for large l the Bessel function to be given by

just this other factor which is outside this bracket multiplying unity over here. And this is

nearly  equal  to  z  to  the  power l  divided by this  2l  +  1,  double  factorial,  okay. So,  this

approximation would be applicable not just when z = 0 but also for in some given value of k,

when l is large. 
So, where l is large, you get the same expression that you can use, but for a different reason,

okay, the reasons are different for k going to 0. The reasons are that these higher powers of z

become increasingly smaller, okay. So, that is the reason for the low energy behaviour.
(Refer Slide Time: 27:34)

So, now our interest is in the large l behaviour and we have justified that this expression for

the Bessel function can be used in this context. So, we put this Bessel function, the explicit

form of this Bessel function over here. You leave the square of it, okay. So, you put z is kr,

you put the square of it which is here kr to the power l upon 2l + 1, double factorial; 2l to the

power 2. 
(Refer Slide Time: 28:07)



And now you take out whatever does not depend on r, because the  integration is with respect

to r. So, whatever is not dependent on you pull out of the integration. Now, this is the integral,

you have to solve. And in this integral, if you put the square spherical square well which is

the potential of finite range, then, you do not have to carry out the integration from r going

from 0 through infinity; because the potential has got a finite range only up to a.

And up to a the potential is minus u 0, it is not a function of r for the spherical square well.

So, you take it outside the integration. So, u0k to the power 2l + 1 comes here. And you have

a simple integral of r to the power 2l + 2 to be evaluated from zero to a. So, you get a to the

power 2l + 3 divided by 2l + 3, okay. So that is your tangent of the phase shift in this case.

So, this is a nice result notice that the potential strength parameter appears explicitly and you

have got this famous 2l + 1 power of k which appears in the phase shift, okay. Now, we have

to be careful because if you have used this result for finite potential. If the potential does not

have a finite range and it has got a sizeable tail.
(Refer Slide Time: 29:40)



And you will have those cases like in a Coulomb potential or something, then, you cannot use

this. Let us consider two partial waves, 2 partial waves with adjacent quantum numbers for

the orbital angular momentum. So, one is got an orbital angular momentum l, the next one is l

+1. So, we will write this expression for both, okay, tan delta l which we just obtained. And

we will also write the corresponding expression if the angular momentum was l + 1. 

So, wherever you have l over here, you will write l + 1. So, you had l over here. So, now, we

have written a +1 over here. You had 2i over here. So, you have 2l + 1 over here. And we do

the same thing over here, okay. So, this is the corresponding expression for l + 1. And if you,

you can determine the value explicitly. So, you have 2l + 5 in the denominator and 2l + 3

power of ka.

 So,  if  you take the ratio  of these two angles  then notice that  it  falls  pretty  rapidly as l

increases  because  the ratio  goes  as  1  over  s  square.  And this  is  what  one would expect

because it  is completely in line with our understanding of the fact that as the centrifugal

barrier becomes strong, then, the higher partial waves can be ignored, okay. 
 (Refer Slide Time: 31:18)



So, all that is fine, the only thing is that if the potential has got some strength even as you go

as  far  as  l  over  k,  then,  you may have some significant  contributions  to  scattering.  So,

otherwise you can use this, in those situations, where the potential has got a finite range. So,

any potential which has got a tail like the Yukawa potential or the Coulomb potential, you

will not use this particular approximation. 

So, we will study the behaviour of the phase shifts as a function of k for large l and at lower

energies. 
(Refer Slide Time: 31:56)

So, the scattering solutions, we consider. And the Scattering solutions, we can again rewrite,

by Schrodinger’s equation for the reduced potential u instead of v, so that we get rid of the m

and h cross and so on. We set up the differential equation for y instead of r, okay. But the

information  in  the  differential  equation  for  y  is  essentially  the  same  as  that  in  the

Schrodinger’s equation. 



So, this is the effective, effective leader Schrodinger’s equation or what comes straight out of

the Schrodinger’s equation.
(Refer Slide Time: 32:30)

And we have to examine its solutions. So, you have the solution for r less than a will be given

by this; because the potential in this case is minus lambda 0, okay. And for r greater than 0,

the potential is 0. So, there is no term corresponding to the potential. And instead of this,

kappa square, kappa is determined by the depth of the potential and the energy both.

But outside this region, the depth of the potential does not matter, because the potential itself

does not matter. There is no potential outside r = a, right. So, these are the two solutions, two

equations for the two regions of space. 
(Refer Slide Time: 33:19)

And we can find the solution. So, for the inner region you have got r times j, as the solution.

And outside the region,  the potential will generate a phase shift. And the solution will be



written as a superposition of two linearly independent functions. You can as usual use the

Bessel function and the Neumann function. 

You can also do it in some other basis, if you like. But essentially the two pieces of which

will  be,  which  will  be  superposed,  will  be  superposed  by  a  coefficient  which  will  be

determined by the scattering phase shift because that is what is generating the potential, the

scattering phase shift itself, right. So, this is the solution for r greater than e. And so, there is a

this relationship between kappa and lambda 0.
(Refer Slide Time: 34:25)

So, these are the two solutions for the two different regions of space. The solution, however,

will have to be continuous at the boundary, at r = a. So, the usual way of setting this up is to

get the logarithmic derivative and then explore the continuity of the logarithmic derivative

itself. And whatever be the value of this derivative from inside, it will have to be the same as

you get from the outside. 

And you can for the outside; you have got the solution explicitly. So, you can see that this is

kappa j prime kappa r by j kappa r, okay. Kappa is coming from the depth under energy itself.

So, this is the logarithmic derivative. 
(Refer Slide Time: 35:21)



And we have expressed this logarithmic derivative.  We had introduced this dimensionless

parameter  q  because it  offers  a good deal  of  mathematical  convenience.  It  is  in  fact  the

logarithmic derivative itself, if the solutions were just the free particle waves. So, that is in

the numerator, you just have to remember that the derivative is with respect to r.

And therefore there will be an extra factor of k, when you write, the take the derivative, right

with respect to r; because argument is kr and not r. So, when the potential is zero, the factor q,

will be equal to 1 because these two will become equal. That is how we have defined it, okay.
(Refer Slide Time: 36:16)

So, this is what we have got so far. And you can rearrange the terms and put it in a somewhat

simple form, right. So, you now have l into this l. which is in the denominator here.  I have

multiplied this one by l. So, I get l + 1 + over here. And this l is now in the numerator. 
(Refer Slide Time: 36:45)



So, this is a little bit of rearrangement we have made use of the explicit form of the Bessel

functions. We have taken the derivatives appropriately. And by putting this these the ratio of

the derivative and the function itself at the Bessel function, you find that this ratio becomes l

over a. So, now, what does it give us for q?  q is this. 

So, q you can get this numerator  now goes as l over a and you will  now get this q, the

dimensionless quantity which we defined to be l over a gamma and gamma we will take the

limiting value of gamma k tends to 0 + some other terms which we have ignored. And those

will be of the order of t a square, okay. 

The terms that  we have ignored but  then we take the limiting  value of gamma which is

represented by this gamma carrot or gamma hat right.
(Refer Slide Time: 37:47)

So, this is the result we have, okay. So, this is the limiting behaviour of the dimensionless

parameter q. What is ignored is the tangent of the first shift so far are these terms of the order



of ka square. Other than that, all the terms are taken care of. So, I will like you to recognize

that there will be a certain resonance condition.

And at the resonance, if the terms that we have ignored will they may be of any importance

and we had some discussion on this in the previous units. So, I am going to stop here at this

point  so  that  when  we  come  for  the  next  class,  we  have  brushed  up  some  of  these

considerations. 
But essentially, we know the terms as we get, we know what the resonant condition for l

greater  than  0  will  be,  okay;  for  l  =  0,  we  already  discussed.  We  know  that,  what

approximations we have made; because over here, we have ignored terms of the order of k

square a square. Now, you can again find some common terms and simplify this. So, there

was an extra factor of l, which was needless. So, we can get rid of it. 
(Refer Slide Time: 39:25)

So, we already know that the s wave scattering is the most important one because you see that

the phase shift goes as 2l + 1 and as l increases, it will become smaller and smaller, right. So,

that is the importance of the centrifugal barrier effect unless of course you have a resonance,

okay. So, all this is fine but when you do have a resonance which you may have because

depending on the range of the potential.

And the logarithmic derivative you may hit a value of l that for some partial wave, you may

hit a resonance. And the necessary condition for resonance now is that the denominator goes

to 0 or it becomes much smaller than 1 okay. That is now the condition for resonance. So, the

resonance in the lth partial wave will take place, when you have this condition satisfied that

this denominator is much smaller than 1. 



And this is a good approximation. The only thing is, it ignores is terms of order k square, a

square. So, all the contributions from higher partial waves can be ignored. You can work only

with S waves except when the resonance condition is satisfied. And we have found what the

resonance condition is that this modulus of l + 1 + a gamma must be not less than 1, okay. all

right, if there is any question I will be happy to take. Otherwise, we continue from here, in the

next class.


