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Lippman Schwinger Equation of potential scattering

Greetings, so welcome to the unit five of this course. This is again on Collisions. And I will

call it as Part Two of Quantum Theory of Collisions because the first part we already have

some 11 or  12  lectures  in  the  Unit  1.  And  then,  we took  a  detour  and  it  is  on  second

Quantization Random Phase Approximation, Feynman diagrams. So, we did that in Unit 2, 3

and 4. And now, we are resuming our discussion on Quantum Collisions.

So, in this unit, we will begin with the Lippman Schwinger Equation for Potential Scattering

and subsequently we will also be doing the Coulomb scattering and then the resonances. So,

this unit will basically have three classes: First on Lippman Schwinger equation, Second on

Born approximations and third on Coulomb Scattering.
(Refer Slide Time: 1:13)

And then, in subsequent units, we will have about eight classes on resonances. So, there will

be four classes in unit 6 and another four in unit 7. So, there will be a total of eight classes on

resonances.
(Refer Slide Time: 01:31)



So, now, this is the picture of scattering that we have in front of us, that you have got a

scattering target and then Incident beam which comes and interacts with it get scattered. And

you can think of the scattering region as a certain spherical region of space.And different

parts of the region would be responsible in some sort of a cause-effect relationship that, that

would be the central cause for scattering seen at a given point.

 So, you can think of this phenomenon in terms of a cause-effect relationship and we will

introduce the Green’s functions or the propagator to describe this. We have a different source

point in the scattering region. And I will describe the field point with the position vector r, the

source point with the position vector r prime, with reference to the scattering center and the

difference vector is r - r prime. 

So, this is the direction in which scattering is taking place with reference to the picture you

have in this diagram. 
(Refer Slide Time: 02:44)



So, the essential equation, quantum mechanical equation that we are looking at, we are doing

nonrelativistic quantum mechanics. And we have the Schrodinger equation with which we

work. We can write it, in terms of the reduced potential, just to get rid of some constants like

2m and h cross square. So, we rewrite this equation, in terms of the potential. But essentially,

it has got the same information as is available in the Schrodinger equation itself. 

And you have on the right hand side of this equation, the inhomogeneous term and when you

set it equal to 0, you get the corresponding homogeneous equation for 0 potential which is the

problem for a free particle. So, this operator the del square + k square operator, this is known

as the Helmholtz operator. 

And we can have the Green’s function for the free particle which is defined by this relation.

So, this is, it defines the Green’s function which is the solution for the Helmholtz operator.

(Refer Slide Time: 03:51)



And now, we have to find out what would be the appropriate Green’s function, which will

describe the scattering process. So, this is a differential equation, but we can also cast it as an

integral equation, okay. And what we propose is that, if we set up and a solution in this form,

that the solution way of the Schrodinger equation which is this Psi, that this can be expressed

as a sum of the incident plain wave.

And an integral involving the Green’s function and the potential, okay and then there is also a

solution Psi over here.  And this is a little, this is some kind of cheating because what appears

in the integrand is this wave function, which is what you really want to determine.  So, you

do not know it in the first place. 

So, it is in some sense not really quite fair to put on the right hand side, what you have on the

left hand side of the equation. But that is the formal structure of this relationship. And I will

discuss this, the consequences about this. So, this is the Green’s function. And this, we have

to determine appropriately with due consideration to the boundary conditions, because the

boundary conditions are essential to analyze the solutions. 

You, when you have a differential equation; means you can get of very many different kinds

of solutions will satisfy the differential equation.  But the ones that we are interested in are, to

be subjected to boundary conditions, which are appropriate to the physical problem that we

are dealing with. So, this is a tricky situation. You have got a wave function on the right hand

side in the integrand, which is actually the one on the left hand side. 
And this is what one would regard as a Catch-22 situation that you are asking for the solution

to be written in terms of what you really want to determine. And that problem is it falls into a

vicious circle and you really cannot solve it. So, we will figure out how this is to be solved.

But the first thing to do is that the formal structure of this equation is appropriate. That it does

indeed describe the scattering process. 
(Refer Slide Time: 6:20)



And that is the first thing that we will consider. So, let us begin with what we have over here.

So, we have the Schrodinger equation. The first thing we do is show that this is indeed a

solution of the Schrodinger equation, although it is not a very useful solution because it is

describing in the integrand, the wave function which is what you want to find. 

So, it is not particularly useful. So, whether, whether or not it is useful is a different story. But

that  it  is  at  least  correct.  But  formally  this  is  a  solution  of  the  Schrodinger  equation,  is

something that we first test. And that can be seen by operating on the right hand side of this

by the Helmholtz operator.  So, as if you do that, you can very easily verify that in fact it is

the solution. 
(Refer Slide Time: 7:10)

So, let us do that as the first step. So, you operate on this formal structure, formal solution

that  has  been proposed by the  Helmholtz  operator. And now, you know that,  this  is  the



homogeneous equation for a free particle when the potential is zero. So, the first term gives

you nothing, it gives you zero. 

And then, you have the Helmholtz operator operating over here. So, now you know that you

are going to pick up a delta function from this operation; because that is how the Green’s

function is defined, right. So, del square + k square operating on the Green’s function gives

you the delta function. 

So, this is the Direc delta. So, you get a Dirac delta from this operation. And then, you are

going to integrate this potential on this wave function multiplied by the Dirac delta. So, you

will end up having a Dirac delta integration. So, here you have the Dirac delta inserted in

place of del square plus k square, operating on the Green’s function.

And  you  find  that  when  you  carry  out  this  delta  function  integration,  you  recover  the

Schrodinger equation. So, we know that, okay, whatever we proposed as an integral equation

is formally correct, regardless of the fact that, it is not particularly useful at this stage. But

then, we will figure out how to develop some sort of an approximation to it so that it will

become useful, okay. 
(Refer Slide Time: 8:42)

So, this is the Green’s function. But we do not know what the Green’s function is. And this

Green’s  function  will  have  to  be  chosen  according  to  appropriate  boundary  conditions;

because  just  like  the  differential  equation  requires  appropriate  boundary conditions  to  be

solved, the integral equation requires the Green’s function to be defined with reference to

appropriate boundary conditions. 



And we know that  in  Collision  Physics,  we make use of  these outgoing wave boundary

conditions. So, you remember that. And we will put those boundary conditions to describe the

Green’s function in the Collision process. So, first we have to determine the Green’s function

G0 with reference to appropriate boundary conditions. 

So, what we will do is take the Fourier transform of the Green’s function. So, let us define

this Fourier transform. And just to simplify the notation I will drop this case. So, instead of

G0  k  comma  R,  I  will  write  this  only  as  G0  R.  So,  this  is  nothing  but  the  Fourier

representation of the Green’s function. This is the usual standard for your representation of

the Green’s function. 
(Refer Slide Time: 9:52)

And we will also have the usual Fourier representation of the right hand side of this which is

the Fourier representation  of the delta  function.  So, which is  a sum of these exponential

terms,  right?  So, when you sum up all  these exponential  terms integrate  over  the whole

volume in the k space, you get the corresponding Fourier representation of the Dirac Delta.

So, instead of G0 and delta on this side, we use the corresponding Fourier representations.

So, here they are. So, now, you have got this integral of, in the momentum space or the k

space. And then, you have got these coefficients g k prime. And now you have del square plus

k square operating on e to the i k prime dot R which you can see, immediately will give you

this i k prime square from the del square term. 

This will come as a k square multiplier. Right-hand side is pretty much the same. The 2 pi3

on both sides of the equations have cancelled each other, ok. So, we are getting a pretty

straightforward relationship now. And now, you can see that you have in the integrand, both



sides of the integrations, are integrations in the k space. And the integrand has got one factor

which is common e to the i k prime dot R on both sides. 
(Refer Slide Time: 11:20)

So, if you look at this, the, this is the definite integral in the k space over the entire k space.

So, the corresponding integrands will have to be the same and that tells us that this gk prime

must be the inverse of k square - k prime square, so that the product will give you the unity,

which you have on the right hand side, okay. 

So, this is what you get for the Fourier transform. And here you can factor this into k + k

prime and k prime - k. And you recognize that the Green’s function is now given by this

integral. So, this is mathematically completely equivalent to what we started out with using

the Fourier transforms, okay. 
(Refer Slide Time: 12:11)

Now, having got this, notice that what you are integrating out, there is a certain symmetry

that you can exploit, because in this symmetry, you can, you have the volume element in the



k space which is given as k square dk sine theta d theta d Phi. So, this is the spherical polar

coordinates in the reciprocal space in the k space.

And if you exploit the azimuthal symmetry about one direction about which you can choose

the polar axis then integration of the azimuthal angle about that will give you a factor of 2 pi.

So, let us get that out of our way and the rest of the integration is now only over two degrees

of freedom which is theta and Phi. 

So, you have got the k square dk sine theta d theta, right. The integration variables I am using

as the prime because that is what we started out with. So, these are the prime variables k

prime square, d k prime, sine theta prime, d theta prime. This is the integrand 1 over k plus k

prime, k prime - k, e to the k prime dot R, okay. 
(Refer Slide Time: 13:26)

Now look at the integrand over here. So, now we can separate out the integration over theta

and k these are independent degrees of freedom. So, what you are integrating over theta

actually theta prime. So, the range of theta prime is from 0 to pi range of Phi prime was from

0 to 2 pi which is what gave us the factor of 2 pi. So, now you have separated the integration

over theta prime and pi. 

And it is convenient as we do in so many problems right from high school mathematics to

change  the  integration  variable  to  cosine  theta  prime.  And  then  write  this  integration

appropriately, you have to put the limits instead of the limits for theta prime. You now put the

limits for cosine theta prime but mind you there is a minus sign here. So, the limits go from

cos theta prime equal to -1 to = 1, okay. 
(Refer Slide Time: 14:20)



So, this is pretty straightforward as such. So, this is the integral over the polar angle theta

prime, okay. So, carry out this integration you have got e to the ik prime r cos theta prime

over ik prime R. And then, you have to take the difference of cos theta over the upper limit

less the lower limit, okay. 

So, let us do that. So, this is the difference at the two limits. You have got the denominator ik

prime R, right. So, now what do you have? You have e to the ik prime R - e to the - ik prime

R. And you can write this as a sinusoidal function. And then, get rid of the common terms 2i

and so on. So, that is straightforward algebra and this is the expression that you get. 
(Refer Slide Time: 15:25)

Now, let us take this to the top of the next slide. And if you look at the integrand, the integral

is an even function of k prime. So, you can extend the integration from k prime = 0 to infinity

2k prime = - infinity to + infinity and then take half of it. So, mathematically it is absolutely



satisfactory; physically it is meaningless because in the spherical polar coordinate system you

have the space covered by the polar angle going from 0 to pi.

The azimuthal angle going from 0 to 2pi and the third degree of freedom going from 0 to

infinity in the reciprocal space it is the k or the k prime, okay. So, physically k prime having

negative values is of absolute no significance but mathematically our interest over here is to

determine what is the value of this integral.

And we can use complex analysis to evaluate this integral by exploiting the fact that, okay

you have got an   integral, in which, you are having an even function. So, so, you extend the

range of integration which is from k prime   = 0 to infinity. You extend it to negative values of

k prime and let it go from minus infinity to plus infinity. And then, use control integration to

deal with the poles. 

You see that there are there would be poles at k prime = + k and k prime = - k. So, then, you

can use contour integration to handle those poles, okay. So, here you are, so, now because

you have extended the range of integration which was from 0 to infinity. You now have the

range of integration from minus infinity to plus infinity. You have picked a factor of half so

that mathematically you have exactly the same value for the net integration, okay.  
(Refer Slide Time: 17:22)

So, this is the integral that you now have to determine which is from minus infinity to plus

infinity. And we once again express this sine function in how we had seen it earlier in terms

of e to the ik prime R - e to the ik prime R divided by 2i, okay. We had put it in the sinusoidal

form, just to make the even nature of the integral explicitly manifest. So, now we go back to

this form and we now write it as 2 integrals.



One coming from this  term and the other coming from this  term,  so,  there are  now two

integrals to evaluate, okay. So, the first one is coming from e to the ik prime R and the other

is coming from this second term e to the - ik prime R. And then, of course, you have this

factor which is common to both, right. So, these are the two integrals which we now have to

determine. 
(Refer Slide Time: 18:28)

And these two integrals  I have represented over here as I1 and I2. So, these are the two

integrals that we have to determine. What we have to keep in mind is that these are to be

evaluated appropriately with reference to the boundary conditions, which must be referred to

without which the solution has got no meaning okay.  

So, here we are, so we have got the two integrals to be determined I1 and I2. We have to be

careful while evaluating these integrals because both of them have got poles. And these poles

are at k prime = + k and k prime = - k. 
(Refer Slide Time: 19:06)



So, we will make use of contour integration and   use the Cauchy’s residue theorem which

you are all familiar with. So, this is just that if you have a large expansion, of a function of a

complex variable,  then,  this  integral  over  here,  over a  closed loop,  will  be given by the

residue, which is just this factor 1 over z - z0 of in this Laurent series expansion.
(Refer Slide Time: 19:38)

So that is theorem of residues and in particular, we will use a Jordan's lemma, because we

have got in the integration one factor which goes as e to the iaz. We have already seen that;

so, having seen that, it would be obvious to you that appropriately we must use the Jordan's

lemma which tells us that if the only singularities of the function are isolated poles, then you

can evaluate this integral according to this relation.

So, it is basically just a straightforward extension of the Cauchy’s residue theorem. So, we

will  make  use  of  the  Jordan’s  lemma  and  notice  that  the  Jordan  lemma  requires  this

coefficient a to be a positive. And we have to be careful about it because if it is not positive,



then the contour has to be closed in the lower half of the plane rather than the upper half of

the plane. So that is the only thing that we are going to have to keep track on. 
(Refer Slide Time: 20:34)

So, in this case,   we have two integrals. So, let us look in the first integral and in the first

integral, this k prime      is to be integrated from minus infinity to plus infinity, right. And the

residue of fk prime at k prime, equal to k is, e to the ikR, as you can see. So, this is the

residue at k prime = - k, it will be - ikR. So, depending on this, we have to close the contour

appropriately, okay. 

So let us have a look at what result we get from the Jordan's lemma. And that will of course

depend on how we choose the contour itself. So, we can choose the contour by hopping over

these two poles, okay. And in this case, you can immediately see that this integral will vanish,

okay.

So, this will vanish   if you choose this contour to hop over these two poles. You can, of

course, choose other possible contours by including these two poles or including one at a time

or both at a time and depending on what you do and how you choose this contour you will

obviously get a different answer. 
(Refer Slide Time: 21:54)



So, here was our first choice of the contour, when you hopped over both the poles. And the

solution for this integral is 0. Now, if you now include both the poles, then, the solution will

be e to the ikR and e to the -ikR. And what is, what are these functions? Now, this is only the

solution of the space part of the Schrodinger wave function. There is also a time dependence,

right. 

For the stationary says the time dependence is given by e to the - i omega t. And when you

multiply this by e to the - i omega t, this e to the solution will become e to the ikR, - omega t

for this term and e to the -kR + omega t. So, this will become a spherical outgoing wave and

this will become a spherical in going wave right. So, you will get a solution in this case which

is a superposition of an outgoing wave plus an in going wave. 

What kind of a solution are we looking for? In Collisions, we are looking for outgoing wave

solutions. So, the first contour did not give us what we wanted. It gave us 0; the second

contour also does not give us a solution that we wanted. It does give us an outgoing way but

it does not give us only an outgoing wave. It gives us an outgoing wave and also an in going

wave. So, that is also not the one that we are looking for. 
(Refer Slide Time: 23:24)



How about this, this contour if you include the pole at - k, but exclude the pole at + k, then,

you get e to the - ik prime R, which is again an in going wave. So, that is not what we want.
So, now if you exclude the pole at -k and include the one at +k, then, you get an outgoing

wave solution. 

And that is the one that we are looking for as a solution to our scattering problem. So, it is

just a matter of choosing the appropriate contour. So, what the Jordan's lemma tells you is,

how to  evaluate  the  integral  in  this  particular  case.  But  then,  it  is  up to  you to use  the

appropriate boundary condition. 

And that is always the case, whether it is you are solving a differential equation for scattering

or you are solving an integral equation for scattering; because in both, you know, these are

only mathematically inverses of each other. But both require the boundary conditions to be

referred to one way or another, okay. 
(Refer Slide Time: 24:30)



So, this is now the solution in for the first integral, okay. In the second integral, you do not

have e to the ik prime R, but you have got to the -ik prime R, okay. So, you have to be a little

careful in evaluating the Jordan’s lemma. And what you will have to do in this case is to close

the contour in the lower half of the complex plane. So let us do that. 
(Refer Slide Time: 24:59)

So, now we close on the lower half of the complex plane to evaluate the integral I2. And now

I  will  go  through  this  little  quickly  because  we  know    how  these  contours  are  being

evaluated, say, if you take this contour C1, in which, you include both the poles. But then,

close the contour on the lower half, then, you get a sum of outgoing wave plus an in going

wave. 

When  you  consider  the  time  dependence,  mind  you  that,  unless  you  plug  in  the  time

dependence, the terms outgoing and in going have got absolutely no significance because the

time parameter has to be there. That is the one which is telling you whether a surface of

constant phase is a spherical surface which is moving out of the center or it is converging on

to the center, okay.

So, that has to be done because it, it is a travelling wave. And you have to refer to it, with

reference to, the time parameter. So, make sure that you insert the time dependence e to the -

I omega t at least in your mind so that you know what talking about and why this is an

outgoing wave and why it is an in going wave. 

So, you get a combination of outgoing and in going wave on this contour C1. Contour C2

hops over both the poles and you get zero, okay because it hops over both the poles. So, on

the contour C2, you the value of I2 is 0. 
(Refer Slide Time: 26:34)



And then, you have two other possibilities: one is to hop over this, but include this and the

other is to include this but hop over this. So, you have got two other Contour C3 and C4 and

you find that it is the contour C3, which gives you the outgoing wave e to the ikR. So that

will  be  the  right  Cantour  to  be  chosen.  And  the  Green’s  function  will  be  defined  with

reference to this particular contour, okay.
(Refer Slide Time: 27:02)

So, you have these two integrals that we wanted to determine. And we now know how to

evaluate  those  with  reference  to  the  outgoing  wave  boundary  conditions.  Both  of  these

integrals  I1 and I2 are to be evaluated with reference to that.  And since we are focusing

attention on the outgoing wave boundary condition, I put a superscript plus to remind me that

this is the Green’s function appropriate for the outgoing wave boundary condition okay.

So,  this  is  indicated  by  the  superscript  plus  on  the  Green’s  function.  So,  the  contour

appropriate for I1 was the contour which I had called as C4 and the contour appropriate for I2



which gave us outgoing solution is what we had called as C3. So, that is just a matter of

simple notation in our context. And these are the solutions you have to sum up these two

terms, okay. 
(Refer Slide Time: 28:03)

So, let us go ahead and carry out this summation and the common terms you have got a factor

of 2 pi here, you have got 16 pi square here, you have got 1 over R in both the terms. So, you

put all the terms together simplify and essentially it adds up to -e to the ikR by R divided by 4

PI, okay. So, that is the Green’s function with outgoing wave boundary condition properly

app incorporated. 

So, okay, now, we have got the Green’s function with the outgoing wave boundary condition.

This goes into the Lippman-Schwinger equation. So, we have got the formal solution now.

So, everything is what is how we wanted it except for the two things which we still have to

address. One as to what we are going to do about the fact that the integrand has got, what is

there on the left-hand side. 

And we do not know it. So, you are giving the solution in terms of the problem okay. So that

is cheating. So, we are going to have to address that. We will. And the other thing we have to

remember is that the reason we are doing Mathematics or physics or Quantum Mechanics is

because we are, you know, you are doing an experiment, okay.

We as physicists we want the mathematical theory to simulate the experiment appropriately

so that it describes the experiment. It gets you; it helps you get the solutions. And when you

carry out your measurements, because measurement is fundamental to physics and when you

carry out measurements, you keep a detector somewhere.



And then, in this detector from the observations, in this detector how do you interpret the

results and get information about the target. So, that is the whole reason why you are doing

Quantum Mechanics. It is not just because you want to solve a Differential equation or an

Integral equation but because you want to do some physics.

And what is the physics over here? That there is a detector, which is, where is the detector? It

is very far. It is in the asymptotic region. It is in the region for all practical purposes as R

tends to infinity. So, we are really not interested in the solution as it is. But we are interested

in the asymptotic solution. So, that is the second thing we have to put in. One is to figure out

how to address this function second to get the asymptotic form.

And just to remind us that we are using the outgoing wave boundary conditions. I will always

keep a superscript plus on the Green’s function and also on the wave function you know this

is very important because when you do photo ionization you have to make use of the ingoing

wave boundary conditions  but in this  case we make use of the outgoing wave boundary

conditions 
(Refer Slide Time: 31:00)

You can also carry out the integration by displacing the pole slightly. And this is just a tiny

mathematical detour which may be of interest to you and depending on what book you are

referring to, you will find solutions which look very similar. But what they do is they; they

displace these polls by an infinitesimal amount and then carry out the integration entirely

along the real axis rather than hopping over the pole. 
So, mathematically it is a completely equivalent process and then you can take the limit if

you have displaced it through this epsilon prime. So, you add this I epsilon prime or subtract

it, okay. Then, you have to take the limit as epsilon prime goes to 0 and then carry out the



integration.  So,  essentially,  you  get  the  same  result.  So,  it  will  not  give  you  any

fundamentally new thing. 
(Refer Slide Time: 31:57)

So, now we are interested in the evaluation of this integral. And this integral is what I have

represented by the letter J, ok. This we already know. This integral, this overall integral is J,

the Green’s function with outgoing wave boundary condition is minus of e to the ik R by 4 PI

R. So, the 4 pi is here and the R is here. And we will now seek the limit R tending to infinity,

okay. 

Now, you remember what this capital R was. In the picture of scattering, which I showed you,

I  had a field point which was r  and a  source point  which was r  prime.  Capital  R is  the

difference r - r prime, okay.
(Refer Slide Time: 32:53)

So, it will tell you, how things take place at the field point because there is a cause for it,

there is a reason for it. And what is the reason that there is a scatterer. And where is the



Scatterer? It is at the source point which is spread out. It is not centered focused at a given

point but it is in the entire scattering region. 

So, it is located at r prime. So, this is capital R which is the distance between r and r prime,

the difference between the field point and the source point which is just the square root of the

inner product of r -r prime with itself. And you can expand this, this factor to the power one-

half, okay. You can carry out an expansion and then develop an approximation as r tends to

infinity because that is a region of 
interest okay.
(Refer Slide Time: 33:50)

So, this expansion, so, this is the picture that we have. So this is r - r prime. This is the same

picture that I showed you earlier. And I will not discuss these steps in between.   You know

how to do that. You would have done that number of times by when you dealt with multiple

expansions, for example, r and so on.

So,  there  are  large  number  of  problems  in  mathematical  physics,  electrodynamics  and

quantum mechanics where you make exactly the same kind of power series expansion and

develop  an  approximation  so  I  will  not  discuss  this  in  detail  I  do  have    most  of  the

intermediate steps on the slides. 

So, you can always refer to the PDF and then take it from there if you need to. But you won't

have to I am pretty sure about it. So, these are blue arrows on the side. They remind me that I

can skip this part of the discussion, okay. And they will also remind you that I am going to

skip the next slide, okay for exactly the same reason, okay. 
(Refer Slide Time: 34:50)



So, then it takes a little while to work it out especially because it is always easy to make a

careless mistake somewhere and get a wrong power somewhere. And then, you mess it up

and spend another five minutes figuring out where it was, or two minutes trying to do it all

over again. And we save all that time by skipping over this. So, all this is homework for you.

You will work it out. It is already here but then these, follow these blue arrows, skip it.
(Refer Slide Time: 35:31)

And here again, right because there are all these unless you combine the terms and take factor

out the common terms and so on. Basically, that is high school mathematics. So, I do not

want to spend any time working it out. But I am sure that, all of you can see at a glance what

the logic is. And during the class, I want you to focus on the logic, okay.

And work out  these intermediate  steps  on your  own   instead  of  watching a  movie,  for

example, okay. 
(Refer Slide Time: 36:06)



So, here, we now have an expansion.  And then look at how these terms pop up. So, you have

got terms and 1 over r and then one over r cube and then one over r square and so on right.

So, now you can see how an approximation can be developed and you have much to do to

rearrange these terms.
I mean 3 or 3 or 4 or 5 slides which I am skipping as you can see, okay. But it is very

straightforward rearrangement of terms. So, I will leave it for you to work it out.  
(Refer Slide Time: 36:45)

I think it is more than three or four. But that is all right. I can always say it was only two

slides. Are you all comfortable? Good.
(Refer Slide Time: 36:58)



So, here we are. So, we have the end result. What is the end result? That you have terms in 1

over r + 1 over r square and so on. And if you now retain only the leading term, okay only the

leading term; because as r tends to infinity, you can always ignore 1 over r cube compared to

1 over r squared. 

And you can always ignore one over r square with compared to 1 over r, okay. So, keep the

leading terms; that is what the asymptotic region is about. And this is where the field point is,

where the detector is. That is where you are carrying out the measurements. That is the place

where you want to know what the solutions will turn out to be like. And in this limit as r

tends to infinity, you have an ie to the ikR by R. 

And yes we have met this term in our first course in quantum mechanics and in our early

discussions in scattering theory. So, we are beginning to see a form that we know how to

exploit and then we have some remaining terms. 
(Refer Slide Time: 38:02)



So, you have got this e to the ik r by r and e to the -ikf dot r prime. So, this will go where e to

the ikr by r goes. So, this is the e to the ikR by R. So, the minus sign is here. So, that comes

here okay. The one over 4 pi is there, that comes over here. 1 over 4 pi then you have this e to

the ik r by r which is good.

And this e to the ik r by r we know we can factor it outside the integration, because the

integration is over the variable r prime which is changing for different source points in the

scattering region. But they are all causing an effect at only one field point which is r. And that

does not change as you integrate over r prime, okay. 

The integration is over the source points for a given field point. So, e to the ik r by r can also

be factored out. So, we will do that very quickly, now. 
(Refer Slide Time: 39:10)

So, now we have got this e to the ik r by r outside. And then, we have this 4 pi to be properly

accommodated. So, that has been done rather significantly, so that, you can get a plane wave



over here with a useful normalization, because but it does not matter what the normalization

is, in the end, the normalization can be factored out.

 So, now you have this e to the ik i dot r. This is the incident plane wave. And we know that a

scattering solution we are in our very first what I call is a phenomenological solution, okay.

The phenomenological solution of the scattering problem is what would you expect? That

you it will be a superposition of the incident plane wave plus a scattered wave which is a

spherically outgoing wave, right. 

And the conservation of flux tells us that since the area of the sphere increases as r square as

4pi r square the amplitude will diminish as 1 over r. So, you factor out this 1 over r. So, that is

over here. Then, you have got a spherical  wave which is outgoing. Why is it out going?

Because there is an e to the - i omega t time dependence so you have factored that out. 

And what is the rest of it? That is an angle dependent scattering amplitude, right. So, that is

the  scattering  amplitude  f  that  we  have  used  in  the  phenomenological  solution  of  the

scattering problem. So, now we have got the solution to the scattering problem in a form that

we have been using all along, okay.

And we have obtained it using the Lippman Schwinger equation. We know that the form is

correct. We know that it gives us what we want. Except that we do not really know how to

evaluate this integral, because the integral has got this i plus which is there on the left-hand

side. So, we are going to have to worry about that. 

But at least we have addressed one of the two issues which I mentioned. That we have to seek

the asymptotic form because that is where the detector is and the other factor is. How to

address this issue? So, we will do that so this is the scattering amplitude.
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And  this  is  the  solution  I  have  used  Joachain’s  Quantum  theory  of  Collisions  for  this

discussion. So, it is a very nice book that you will find very useful. And this term is nothing

but the plane wave. So, this scattering amplitude I write as an integral of which the first factor

is the plane wave corresponding to the wave vector kf, because the wave vector here is kf,

mind you.

Over here, it is ki that is the incident direction. The kf exit direction is different. So, you must

remember that. So, this is the kf here, this is the ki, with the incident wave vector. But this is

the complete solution to the target   scattering with the superscript pass which we do not

know as yet. But we know that formally it is correct; it is acceptable, right.

So, this I have written in the Dirac notation. And this is in terms of the reduced potential. We

can write it in terms of the physical potential V, which is why, the 2pi in the h cross and the m

pop up one  more  time  which  we had eliminated.  So,  now in  terms  of  the  real  physical

potential, it is this.
And this is where I will conclude today's class. And we will take it from here tomorrow to

determine, how we are going to deal with this problem, okay; because we have got a solution,

all right. But it only gives us the solution in terms of the problem. Now, that is not very good,

okay, so that we will discuss tomorrow   or in the next class.

 And  this  matrix  element  is  often  referred  to  as  the  transition  matrix  element.  So,  the

scattering  amplitude  is  proportional  to  the  transition  matrix  element  which  is  T and  the

differential cross section is just the modular square of the scattering amplitude as we have

discussed earlier. 



So, you get the model square of this. So, I will be happy to take a few questions. Otherwise,

we will discuss what to do about this cheating, if you might want to call it, which is to give a

solution in terms of the problem. But then, there are ways of handling it which is what we

will discuss in the next class.


