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Greetings,  we now have  the  last  class  of  this  unit  in  which  we will  have  some further

discussion  on second order  diagrams and higher-order  diagrams and we will  discuss  the

random phase approximation its extension the relativistic random phase approximation which

you can also do in some other ways. 

Which basically are inspired by the process of linearization which is the linearization of the

time dependent Dirac fork or the Dirac Hartree Fock method? So, these are some of the

things that I will sum up to provide an introduction to research literature.
(Refer Slide Time: 00:53)

So, we were dealing with these second order diagrams in our previous class so we had the

Coulomb diagram the direct and the exchange. And we had started talking about the number

of loops and the number of  hole lines and in the exchange you have got one closed loop as

you can see and the number of hole lines is 2 which is written as mu following the notation of

Raimes. 
(Refer Slide Time: 01:27)



Now to understand how the number of closed loops and the number of hole lines is used in

interpreting the Feynman diagrams. 
(Refer Slide Time: 01:43)

  Let me go back a little bit to the first order diagrams. So, let me refer to the first order

diagram which we considered earlier and here in the direct term you have the double bubble

which we have discussed earlier. 
(Refer Slide Time: 02:02)



And in this  double bubble if  you count  the number of closed loops you have 2 and the

number of hole lines is also 2 okay.  So, this is the situation and what does is if you take the

contribution of lambda and mu together you get a phase factor which is -1 to the power

lambda + mu which in this case is = +1 and what this diagram does is to contribute a +1 sign

to this matrix element okay. So, this contributes a +1 sign to the first order correction.
(Refer Slide Time: 02:45)

(Refer Slide Time: 03:10)



Now if you look at the exchange term you have a ji here and as a result of this you have, in

this  case  the  oyster  right.  This  is  the  exchange  correction  from the  first  order  exchange

correction to the free electron energy. Now what does this does is to contribute -1 sign which

you get by getting the phase as -1 to the power lambda + mu lambda being 1 because there is

only one closed loop and mu being = 2.

So, this contributes a phase -1, so you can pick the number of loops and the number of lines

by simply following by looking at the picture. So, just look at the topography of the picture

and you will get the number of loops and lines number of loops and hole lines which is what

you count for the consideration of what is  used in a very famous theorem known as the

Wick’s theorem.
(Refer Slide Time: 03:54)

So, I will tell you how it is used, so you have in general nth order correction which will have

you know contributions will be either 0 or they could be +1 or they could be -1 they cannot



be  anything  else  because  no  matter  what  n  is  those  are  the  only  diagrams  which  will

contribute to the corrections because unless you destroy a certain number of particles from

occupied states.

And then create those particles in the very same states you are not going to get a nonzero

contribution okay. So, that puts certain restrictions and depending on whether it corresponds

to a direct or in exchange term the contribution is either +1 or -1 otherwise it is 0. So, no

matter what n you are talking about whether it is n = 1.

For which we have seen this explicitly but even for the second order and higher order terms

you always have a contribution to the graph which goes as -1 to the power lambda + mu.

Now this is a result which is based on the Wick's theorem and the details of the proof I will

not work out it is a little laborious but the techniques which go into the proof are essentially

those which we have already used.

So, if you spend enough time you will be able to get a proof of this theorem it is worked out

in considerable detail in the book by Raimes but I will not actually prove this theorem it is

little laborious to do takes a while. But the result can be very simply stated that with reference

to this particular application of the diagrammatic techniques.

That the contribution of a diagram to the correction to the nth order correction goes as -1 to

the power of lambda + mu. So, that  is  where the number of loops closed loops and the

number of hole lines becomes a significant factor to work with.
(Refer Slide Tines: 06:00)

These are the nth order terms, so these terms are quite complicated as such but then because

of these theorems the diagrammatic application of the results turns out to be quite handy and



rather neat which is what means the Feynman diagram methods so powerful and so nice. So,

let us have a quick look at the third order terms okay just to get a little hang of it. So, the third

order terms will have these corrections least contributions from the time integrals.

You will have these two center integrals and there will be a product of three of these terms

and then you will have three sets of these four operators ci dagger cj dagger ck cl then you

have got the next four likewise and then you have a third set. So, you have got a set of twelve

operators sitting in the middle and you take their.
(Refer Slide Time: 06:55)

So,  these  are  third  order  graphs  okay,  now  they  are  built  following  exactly  the  same

techniques that we have discussed in the earlier cases and you get a variety of third order

graphs and what I would like to draw to your attention and I am not going to discuss the third

order and higher order diagrams in great detail  because the foundations we have already

become acquainted with.

And we can then apply these techniques to interpret higher order diagrams. There is only one

thing I would like you to notice over here which is the fact that you can recognize that some

of these diagrams are linked and some are unlinked. So, if you look at the link diagrams, so

here this one is a link diagram, this is linked and you can see why these are called as link this

is a link diagram this is also a link diagram whereas this one is unlinked.

And  the  linked  and  unlinked  terms  are  self-explanatory  by  looking  at  the  pictures  you

recognize which are linked diagrams and which are unlink diagrams. So you do not really

have to define them very extensively but you can recognize them from the pictures. So, these

are the unlink diagrams and then there are some linked diagrams.



So, now in many body theory there are some other theorems which are proved, which can be

proved using essentially the same techniques as we have done in this unit and in the in our

discussion on second quantization using is essentially these methods. And you what you can

see that if you look at the unlinked graphs these are made up of lower order linked graphs.

So, this one is independently linked, this one is independently linked.

And every unlink diagram, so these are three unlink diagrams but each is a first order linked

diagram okay. So, all the unlink diagrams contain lower order laying graphs in general. Now

the only the topology is important the size of the graph or the shape of the graph is not

important this comes from our fundamental consideration that whether these arrows point to

the left or right really does not matter.

And that is used only for convenience to see what is happening at which vertex and only to

distinguish between features when the two arrows tend to fall on top of each other that is

when you make them lean to the left or right otherwise it really does not matter. So, only this

topology is important.
(Refer Slide Time: 09:39)

And there is a theorem which is known as the link graph theorem what this theorem tells us is

that  only  the linked graphs contribute  to  the energy correction  for  the  ground state.  The

unlinked graphs will contribute nothing. So, those contributions will go to 0 and some of

these theorems are a matter of detail.

Which I will only mention and it is for you to follow up and there are extensive proofs and

discussions in the book by Raimes, Fetter and Walecka and so on. Which are the primary

references that we have used for our discussion here?
(Refer Slide Time: 10:16)



Now let me come to an important result because I am essentially summing up this discussion

and I just want to in this last class of this unit give you some further leads okay. So, leads into

other applications and developments which I will not be discussing in any great detail but

these are  like  loose ends which come out  of this  which is  for  you to follow up in later

discussions.

 And an important result is that if you sum over all the ring graphs okay you already know

that now there are graphs of different kinds. Now you know what are the ring graphs okay

you have seen second order ring graphs, you will have third order ring graphs, you will have

fourth order in graphs and so on right.

 So, if you sum over all the ring graphs and this was done by Gell-Mann and Brurckner then

the result of the approximation, now there is an approximation which is going into this what

is the approximate that you are restricting your consideration only to the ring graphs and

excluding everything else.

But what you are not excluding is the corresponding exchange terms because as I emphasized

in the previous class when you take the direct terms it goes almost without saying that you

would actually include the corresponding exchange terms although they are not exactly rings

okay. But those are the exchange terms corresponding to the rings and there is a one-to-one

correspondence for every direct term there would be a corresponding exchange term.

So when you sum over all the ring graphs and implicitly or explicitly whether you say it or

not  you  also  include  the  corresponding  exchange  terms.  Then  you  get  a  certain

approximation, the approximation being is that whatever is not the ring and whatever is not

the corresponding exchange is excluded. 



So, whatever  you are excluding is  it  is  not nobody is  claiming that  those terms will  not

contribute to the correlations they bill  but in this  approximation which we are discussing

which is  the choice of certain class of correlations  which we refer to as the correlations

corresponding to the ring diagrams and the corresponding exchange. 

Now this has got exactly the same result as the approximation which was introduced in the

previous unit. In unit 3 we discuss the Bohm Pines method extensively we carried out a series

of canonical transformations you remember that, that in the unit 3 we had a number of classes

some six or seven or eight classes, so we had a fairly detailed discussion on the Bohm Pines

method. 

And we did in the Bohm Pines method was to carry out a number of transformations but then

when we went to higher order terms we agreed that we will remove certain terms from our

consideration why because it is too complicated it is too messy. It is not that we do not like

them or something but it is too messy. And that is how approximations are developed which

is to solve part of the problem which is mathematically tractable.

And you can always go beyond it or make a different approximation and that is a choice that

a  theorist  makes  depending on which  correlations  he or she thinks are  important  for  the

consideration. And the kind of problem at hand often determines what approximations are

made. So, this particular choice of retaining only the ring diagrams is completely equivalent

to the random phase approximation which was done by Bohm and Pines. 

Why it was called as a random phase is what we discussed at great length in the previous

unit.  Because the terms that we neglected involved certain phase factors and we discuss the

cancellation of some of those terms and these are for a detailed discussion of this topic I will

like to refer you to the unit 3 in which we have discussed this point at great length.  

So, there are certain terms which cancel each other because of the phases and it is only for

this historical reason that this approximation is called as the random phase approximation.

Gell-Mann and Brurckner  what  they did was to  sum over all  the diagrams and they  got

precisely the same effect as was obtained by falling out following the method of Bohm and

Pines.
(Refer Slide Time: 15:15)



And there are this different routes to the random phase approximation you have the Gell-

Mann  Brurckner  ring  diagrams.  So,  that  is  one  route  to  the  RPA to  the  Random Phase

Approximation or RPA as it is called. So, you have the Gell-Mann Brurckner summing over

ring diagrams. Then you have the Bohm Pines method which we discussed in the previous

unit. And there are some other methods and there is a equation of motion method.

There are propagator methods and then there is a method which is a particular interest to

some  of  us  because  this  is  the  form  in  which  we  make  use  of  the  random  phase

approximation in some of the studies that we many of you who are sitting over here in these

classrooms are using and this is the linearized time dependent Hartree Fock method which

was originally introduced by Dalgaarno and Victor.

And then it is relativistic you note formulation of the same technique which was done by

Walter  Johnson and his  collaborators  Lin  and Dalgaarno which  is  called  as  a  relativistic

random phase approximation. So, all of these different routes are essentially equivalent okay.

All of them amount to retention of certain correlations and exclusion of certain correlations.

The correlations which are retained are those which correspond to the ring diagrams.

And the exchange which goes along with that, these are the same terms corresponding to the

retention of those terms by excluding the terms in the Bohm Pines approach of removing the

terms which are random phases which is why it is called as random phase approximation.

And the terminology random phase approximation is applied to all  of these including the

method of the linearized time dependent Hartree Fock because they all amount essentially to

the same set of correlation.
(Refer Slide Time: 17:32)



So,  let  me  refer  to  the  time  dependent  Hartree  Fock  and  the  linearization  of  the  time

dependent Hartree Fock which is the form of RPA which many of us make use of in our

research studies. So, let me remind you the Hartree Fock equation and we have discussed this

at great length in our earlier course on atomic physics. And we have the Hartree Fock single

particle equation right. 

So, I refer you to this particular unit 4 of the course special topics in atomic physics lecture

23 and you have the Hartree Fock equation in this. So, you have set of one electron operators

and then you have got the Hartree Fock operator over here. And this looks like an Eigen value

equation it is not an Eigen value equation as we know it. But some of these points we have

discussed earlier, so I will not discuss them.

Now what would be the relativistic analog of this is what is called as a relativistic Hartree

Fock but because it is starts with the Dirac equation rather than the Schrodinger equation it is

called as the Dirac Fock equation or more correctly and more fully the Dirac Hartree Fock

because  Hartree  is  after  all  the  person  who  really  introduced  the  self-consistent  field

methodology.

So, I think it is not fair to drop his name in the middle. So, this is the Dirac Hartree Fock

method and this is completely identical to the relation at the top which is the Hartree Fock

okay. So, what we did in our courses is to do the Hartree Fock in detail, we did the Dirac

equation in detail in the same course. 

And  now  we  put  the  two  together  and  if  we  were  to  follow  the  self-consistent  field

methodology  of  the  Hartree  Fock  beginning  with  the  Dirac  equation  rather  than  the

Schrodinger equation. We would get essentially an identical result with the difference that



these spin orbitals  were two component  functions  in the Hartree Fock theory. But in  the

relativistic Dirac Hartree Fock theory these will be four components bi-spiners okay.

We have done this in great detail in the context of the Dirac equation. You will have a one

electron  operator  which  is  h0  and  then  you  will  have  a  Dirac  Hartree  Fock  potential

corresponding to the Hartree Fock potential of the non relativistic model. So, you have an

exactly identical equation with the difference that now your operators are represented by 4 by

4 you know matrix operators.

And the wave functions are now bi-spiners, so they have 4 components and the Hartree Fock

wave functions  are  the spin orbital’s which are the 2 component  functions.  So,  with the

difference we now carry over the discussion of the Hartree Fock into the domain of the

relativistic Dirac Hartree Fock. 

So this was the starting point for what is called as a relativistic random phase approximation

which is inspired by the method of linearization of the time dependent Hartree Fock but the

relativistic version being the time dependent Dirac Hartree Fock. So what does it do it begins

with the relativistic Dirac equation.

So, you are one electron operator is not this non relativistic operator of the Hartree Fock but it

is  the  relativistic  operator  of  unit  3  in  our  previous  course  on  atomic  physics.  And this

operator has got these alpha and beta operators, so we have discussed them in our previous

course on relativistic quantum theory okay. So, we have done the Dirac equation we did the

Foldio Dyson’s transformations.

And all of this discussion is available in the previous course this is the special or select topics

and atomic physics we did this mostly in unit 3 and then lecture 14 and you know the lectures

around it you will find all the details. So, this is the single electron operator and then you

have got the Dirac Hartree Fock interaction term. And you will have just like the solution to

the Hartree Fock is given by the Slater determinant.

You will have a Slater determinant giving you the solution of the N electron Dirac Hartree

Fock problem with  the  difference  that  the  elements  of  the Slater  determinant  are  now 4

component bi-spiners and not to component spin orbitals. So, it has the same form it looks the

same it is not the same. 



The Slater determinant that we now on this have on the screen has got for its elements the

relativistic  single  particle  functions  which  are  bi-spiners,  so  this  is  the  solution  for  the

relativistic Slater determinant. 
(Refer Slide Time: 22:50)

Now this  is  the  solution  to  the  Dirac  Hartree  Fock  and  this  its  extension  and  what  the

relativistic Dirac Hartree Fock does is to include the statistical exchange as we know it okay.

It includes the statistical correlations it includes the relativistic effects because it started out

with a Dirac equation rather than the Schrodinger equation what it does not include are the

Coulomb correlations.

The Hartree Fock did not include the Coulomb correlations and the Dirac Hartree Fock does

not  include  the Coulomb correlations.  So,  direct  Hartree Fock solution  is  a  single Slater

determinant  it  includes  the  statistical  correlations,  the  Fermi  correlations,  the  exchange

correlations they are all synonymous terms right, so all of those correlations are included in

the Dirac Hartree Fock.

It is certainly one level better than the Hartree Fock because it is starting point is the Dirac

equation and not the Schrodinger equation and therefore spin comes naturally in the Dirac

Hartree Fock. Whereas in the Hartree Fock spin was sort of introduced on an ad hoc basis

you work with the Schrodinger equation which does not really provide for the electron spin

but you plug it in on an ad hoc basis and then go with the  2 component spin orbital’s.

So, you have got the Hartree Fock two component theory then you have got the Dirac Hartree

Fock for component formalism which gives you for its solution the Slater determinant. But

what the Dirac Hartree Fock does not have is the Coulomb relation and to introduce these

Coulomb correlations.



You can follow Bohm and Pines and do the RPA or you can follow Bruckner method and do

the  ring  diagrams  or  you  can  follow  Dalgaarno  and  Victor  and  do  the  linearized  time

dependent Hartree Fock which is what Walter Johnson did and this is the classic paper which

I like to show this picture on the screen and Walter’s lectures are also now available as a

springer book.

So, that is where you will find a very rigorous treatment of most of the atomic physics that I

have attempted to cover or I have attempted to cover just a small fraction of what you will

find in this book not a small fraction maybe a very small fraction or a small fraction of a

small fraction if you like okay. So, this is where you will find further leads. 

And this is the famous paper which is cited in almost every work on the relativistic random

phase approximation.
(Refer Slide Time: 25:44)

So, what it has are the Slater determinants in which each element is a 4 component bi-spiner

okay. So, you have got these radial functions F and G coming from the Dirac equation right

are this again I will not spend any time discussing it but refer you to what we did in unit 3 of

our previous course a special or select topics in atomic physics. So, you will find a detailed

discussion on these 4 component functions in the previous course okay.

Now here you have got the vector spherical harmonics and these vectors spherical harmonics

you have two of them one for l + half and the other when the total angular momentum for the

single electron is l - half. So, you have got two components over here, so that is what makes

this two into two of four component wave function or a bi-spiner okay. So, you have these

two and these two so you have got four component functions over here.



And this is the kappa quantum number which we have introduced in the previous course. So,

these are the quantum numbers which go into the description of these one electron wave

functions which are solutions of the Dirac equation and these are the elements of the Slater

determinant.  So, now you can do a Hartree Fock like treatment completely with the four

component relativistic wave functions. You will get an exactly identical form.
(Refer Slide Time: 27:30)

And essentially you will get the relativistic Dirac Hartree Fock equation which you already

see is exactly the same as the non relativistic Hartree Fock equation with the difference that

now you are single particle operator is the Dirac operator at h0. And your Coulomb exchange

term is represented in terms of this Dirac Hartree Fock potential.

 So, you have the Coulomb term and the exchange term but these are now the relativistic

wave functions okay. So, you have got exactly the same form and if you go back to the

previous discussion on the Hartree Fock you will find exactly the same term. Same symbols

with the difference that in the context of the Hartree Fock they will refer to the 2 component

Hartree Fock Schrodinger wave functions. 

Whereas in the present context the same symbols now represent for component Dirac Hartree

Fock bi-spiners okay. The 4 component wave functions, so you have the same results.
(Refer Slide Time: 28:45)



But what they have excluded are the correlations  now how would the system respond to

correlations.  So  got  an  electron  system  you  have  taken  into  account  all  this  statistical

correlations. You have also taken into account all the relativistic effects and we have come a

long way by describing this an electron system by a relativistic Dirac Hartree Fock formalism

with a single Slater determinant.

Whose components  are  the 4 components  bi-spiners that  is  done what  is  left  out are  the

correlations. But the reason to do this is also to study the response of the system to a stimulus

such as an electromatic radiation which will cause transitions from a certain initial state to a

certain final state and this is the photo absorption process in which many of us are deeply

interested.

We discussed  in  collision  physics  that  if  you  have  a  target  and  you  want  to  probe  its

properties you can do so either by shining electromatic radiation on that or is by firing some

particles a beam of projectiles which can be electrons, positrons, alpha particles. So, you can

either do a collision experiment or you can do photo absorption, photoionization.

We have also discussed in our previous course how the two methodologies are related to each

other  through  the  time  reversal  symmetry  which  is  why  the  entire  quantum  mechanical

machinery of collision physics gets applied in photoionization physics. And here we are now

talking  about  a  particular  probe  which  is  electromatic  radiation  and  we  represent  this

electromatic radiation as a time dependent external field.
Which is represented by this operator here which is the alpha dot A and it is adjoint. So, you

have got a combination of terms with e to the - i omega t and e to the +i omega t. So, let us



say that this term represents the interaction, so this is very similar to the p dot A term in time

dependent perturbation theory of the Schrodinger formalism. 

The time dependent Schrodinger formalism time-dependent perturbation theory in which you

consider the application for example to the famous what is it called Fermi’s golden rule okay.

So, in that context you have got the p dot A coupling between the atom and the applied

electromagnetic field.

But that is a non relativistic formulation in the relativistic formulation as we have discussed

at great length in the previous course in the unit 3 I believe of the course on atomic physics

instead of the p dot A you have got the alpha dot A term. So, that is the coupling to an

external field but we could use it commonly also to represent the response of the N electron

Dirac Hartree Fock system to whatever was not included in the Dirac Hartree Fock.

What was not included the Coulomb correlations okay Coulomb correlations were left out of

the Dirac Hartree Fock and what this stimulus would do inclusive of the correlation effect is

that these Slater determinant functions the single particle functions are no longer what they

were. They would change what were they, they were the solutions of the Dirac Hartree Fock

and they were the solutions of the N electron system.

When  the  statistical  correlation  was  included  in  the  relativistic  avatar  in  the  relativistic

formulation of that theory what did they include in addition to the statistical exchange they

included the relativistic effects because they started out with the Dirac equation. But both left

out something and that was the Coulomb correlation.

Which is what we did what we addressed using the Bohm Pines method or the Brurckner

method the ring diagrams and so on right. So, this was excluded and as a result of this these

single particle functions will no longer be what they were in the Hartree Fock or the Dirac

Hartree Fock method they will change. 

How will they change each element of the Slater determinant will change to what it was to

something new? And this new is something it is a consequence of what was left out of the

Dirac Hartree Fock. What was left out of the Dirac Hartree Fock was the correlation and the

coupling to the electromatic field okay. 

So, if that is that effect is taken into account then you have new orbitals and these are not just

our orbital’s these are the bi-spiners. So, these are the 4 components, so every single u that we



are talking about we are looking at in this later determinants. And what we see over here is

not the same as the Hartree Fock spin orbital.

But it is the four component bi-spiner function which is which comes from the Dirac theory.

Now  these  by  spiners  will  be  mixed  by  certain  perturbed  orbitals,  so  this  is  the  space

dependent part and this is the time dependent part. These will be perturbed by these perturbed

orbital’s the wi + and the wi- and with these new 4 component functions you can rebuild a

variational method.

How  did  we  get  the  Dirac  Hartree  Fock  equation?  How  did  we  get  the  Hartree  Fock

equation? We essentially did a variational methodology right. We used a variational technique

variation technique subject to certain constraints. What were the constraints in the Hartree

Fock that the one electron wave functions remain orthogonal to each other and they remain

normalized? 

So, now we are going to have to do the same, we did it in the Dirac Hartree Fock by requiring

the one electron 4 component functions to be orthogonal and normalized and we would have

introduced  some  Lagrange  variational  multipliers  and  carried  out  that  entire  variational

technique using that.

But now we have to do it one more time because now we are not using the same elements of

the  Slater  determinant  but  new  single  particle  states  which  will  take  into  account  the

correlation effect. And these will  then require you to carry out a variational methodology

once again on this which will give you with these time dependent terms because this is the

interaction term that you are now going to include okay.

These are the consequences that you are now going to include, so you will essentially have a

time dependent Hartree Fock theory okay. So, this will require a time dependent Hartree Fock

theory or it is a relativistic version is what you will call as the time dependent Dirac Hartree

Fock formalism. And you can rebuild the time dependent Hartree Fock or the time dependent

the Dirac Hartree Fock.

The  time  dependent  Hartree  Fock  is  what  was  done  by  Dalgaarno  and  Victor  the  time

dependent Dirac Hartree Fock was done by Johnson and Lin and also Dalgaarno of course so

he was also one of the key contributors to that. So this is the time dependent Dirac Hartree

Fock. But now when you have all of these higher harmonics you will have nonlinear terms

because of this okay.
(Refer Slide Time: 37:08)



And out of these non-linear terms then if you make an approximation, so you can rebuild the

time  dependent  Dirac  Hartree  Fock  equations  and  retain  only  the  linear  terms.  Now

linearization if you remember was this key element in the Bohm Pines method because when

we excluded those terms with random phases it amounted to throwing out certain nonlinear

terms the terms that we did retain had linear term.

So, it is the linearization process which is common and which is fundamental which is why

all of these methodologies these different routes to RPA are completely equivalent to each

other. So, you have the linearized time dependent Dirac Hartree Fock equations that you get

by retaining only the first order terms in this process.

And but when you do the self-consistent field methodology you have to introduce certain

constraints. Because now the perturbed orbital’s that you are including the w orbital’s okay.

These are the additional perturbed orbital’s which are coming into our formalism which was

not there in the Dirac Hartree Fock.

You will have to maintain that these perturbed orbitals must be orthogonal to the occupied

orbitals.  So,  you have an additional  constraint  and because of  that  you have some more

multipliers,  variational  multipliers  which  are  again  Lagrange  method  of  variational

multipliers.

So, the technique is exactly the same what you do is make use of these Lagrange's variational

multipliers  and  carry  out  a  self-consistent  field  variational  methodology  on  the  time

dependent Dirac Hartree Fock, linearize it throw away the higher harmonics and then you get

the linearized time-dependent Dirac Hartree Fock. 



So, this V is the Dirac Hartree Fock potential which we have seen on also in the relativistic

Hartree  Fock  or  the  Dirac  Hartree  Fock and  this  V plus  or  minus  is  what  includes  the

correlation effects which was missing in the Hartree Fock and it was missing in the Dirac

Hartree Fock. 

So, these are the terms which include the electron-electron correlation effects and all of these

relations are directly from the paper by Johnson and Lin using essentially the same notation

as used in Johnson and Lin papers. 
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So, this  is  the term which includes  the correlation effects  and of course it  has got  these

perturbed orbitals that W. So, it has the driving terms, so this is what is contributing to the

correlation and you have got you get you can solve them at various levels what you do is first

drop the driving terms and get what are called as the basic RPA equations. 

Then of course you can write the solutions inclusive of the driving terms in terms of the

solutions you get for this. So, this is a matter of detail and what this methodology enables you

to do is to take into account the effect of the correlation which manifests as these perturbed

orbitals. 

And they take into account correlations in both the final state and correlations in the initial

state because you know when you go backward in time you pick up the correlations you

know if you identify a photon vortex. I am going to show you those diagrams and when you

go backward in time you pick up the correlations in the initial state.



And you also pick up the correlations in the final state which we do in the RPA and in the

relativistic RPA literature we refer to it as inter channel coupling when we are talking about

the correlations in the final state. 
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So, these are the corrections that were introduced by Walter Johnson Dalgaarno and Lin. And

the solutions will give you the excitation spectrum, you get the bound state spectrum, you get

the continuum and all  the solutions can be obtained using this method in response to the

driving term. So, both the final state and the initial state correlations are included in this. 
(Refer Slide Time: 41:47)

So, you can solve the inhomogeneous equation first get the basic RPA equations and then do

the full RPA inclusive of the driving terms. So, you solve the linearized time dependent Dirac

Hartree  Fock  equations  in  terms  of  the  solutions  to  the  basic  RPA equations  and  then

ultimately as is developed in great detail in this paper by Johnson and Lin. And there is no

substitute to studying that paper.



So, I will only refer you to that literature you it the transition matrix elements there are other

consequences which are of importance we discussed. I think in our previous course on the

course and atomic physics then you can determine the matrix elements in the length form and

also in the momentum form okay. And when you are dealing with a non-local potential we

found that they often give you different results.

If you make use of a local potential like if you do a further approximation like the Slater

approximation to exchange you get a local potential and you will get essentially the same

result that is not because the method is better but only because the approximation makes the

potential local. So, now we do have a non-local potential okay. 

We do have the Hartree Fock potential or rather the Dirac Hartree Fock potential. We do have

the exchange terms, so we do have the non-local terms nevertheless this is a beautiful feature

of this approximation which is the random phase approximation that if you determine the

transition matrix element.

And the transition amplitudes it does not matter whether you do it in the link form or the

velocity form. And this was shown by Dong and Lin in one of the earlier papers I can give

you the references many of you probably already have it. It turns out that this when you carry

out the summation over all.

The possible correlations which are included within the subset of the choice of the random

phase approximation which are the ring diagrams and the corresponding exchange then the

length form of the matrix element and the velocity or the momentum form of the matrix

element give you essentially the same result.
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So, this is a matter of detail and what you do is to determine not just the transition matrix

element  and the  photoionization  cross  section  but  you  get  a  number  of  other  properties

because as a physicist you will always like to do a complete experiment. You will like to get

maximum information about a system and what kind of information you can it depends on

what measurements are compatible.

Because certain measurements are not compatible with each other in quantum theory this

goes  down  to  the  uncertainty  principle  itself  okay.  So,  you  have  got  a  fundamental

measurement process which results in a superposed system to collapse into an Eigen state

corresponding  to  the  measurement  to  the  property  that  you  are  measuring.  And  all  the

properties which are compatible with each other can be measured together.

But  those  which  are  not  compatible  cannot  be  measured  together  and  the  operators

corresponding to them would not commute. So, you like to do a complete measurement and

what  constitutes  a  complete  measurement  is  determined  essentially  by  the  quantum

uncertainty principle and its consequences to measurement and how it is reflected in quantum

theory by the choice of operators which commute with each other.

So,  these  complete  set  of  commuting  operators  that  we  talked  about  the  CSCO  or  the

complete  set  of  compatible  observables.  And  then  what  goes  into  the  complete  set  of

measurements in the photoionization process is not just the cross-sections but you can also

determine the spin polarization states of the photoelectrons. 

You can determine the angular distributions okay. So, you get the angular distributions and all

these relations for the angular distributions and the spin polarization parameters these are



worked out in details in the papers by Johnson and Lin in this phase Drive 1979 or 1980 this

paper by Johnson, Cheng, Huang and Le Dhorneu okay.

Huang is the one who wrote the codes for the spin polarization techniques along with Walter

Johnson. So, you can measure all of these properties and here of course I am referring only to

the  dipole  approximation  okay.  In  the  quadruple  approximation  you  have  these  angular

distribution parameters that you call as what is it delta zeta and so on right. 

So, those are the things which go into this and all of these parameters can be determined

using the very powerful techniques of Walter Johnson.
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Essentially these are the diagrams which go into the analysis, so you have got this photon

vertex over here. You have got time going from bottom to the top okay. What the RPA does is

to take into account the ring diagrams which are both time backward as well as time forward.

And these diagrams are from Grant’s book relativistic quantum theory of atoms. You will also

find them in various papers by Johnson and some others. So, you have in this diagram the

photon is  represented by this  wiggle  okay and the interaction  by this  dash line.  So,  this

photon interaction takes place at this vertex and you have got a ring diagram. 

So, with reference to this point of interaction between the photon and the atomic system this

is the time backward ring diagram. And here you have got a time forward ring diagram okay.

So, what the RPA does is to take only the ring diagrams but also the exchange corresponding

to it and these are the interactions these are the correlations which are included in the RPA.

But you of course you can go beyond the RPA you can go beyond RPA in the sense not

necessarily better than RPA whether it is better or worse depends on whether it gives you a



better account of the experiment or not okay. But then you can do a time dank of by taking

only the time forward diagrams. You can do a multi configuration time dank of which some

of you have done.

In which case you take the initial correlations into account by doing an explicit configuration

interaction you can do so by using a multi configuration Dirac Hartree Fock code which is

developed by Grant and his group or which is typically known as the Grasp code okay. So,

using Grasp you can do a multi configurational Dirac Hartree Fock to represent the initial

state.

And to  take  into  account  the  correlations  in  the  final  state  you can  do an  inter  channel

coupling as you did in the random phase approximation okay. So, you can have the time

forward diagrams corresponding to that to the inter channel coupling and that will be some

sort of a mix of an RPA and a non RPA technique.

Now in some sense it is better than RPA because it will let you take into account some of the

non RPA correlations but in some case it will not be as good as RPA because some of the

terms that you would have included in the RPA have to be compromised with. Because what

the RPA does effectively and that is a matter of detail which we have not discussed that you

can take into account the ring diagrams to all orders of perturbation theory.

You cannot do that when you do a limited basis like you take a few configurations to go into

your grasp self-consistent field. So, you do a multi configuration Dirac Hartree Fock or a

multi configurational Hartree Fock and then you get some of the correlations but not to all

orders of perturbation theory. So, you get some non RPA correlations but not to all orders of

perturbation theory.

Whereas in RPA you get some of the correlations but to all orders of perturbation theory, so

there is a matter of give and take and there is a price to pay you cannot do everything and get

an ideal solution which is good in every respect. The reason you cannot do it, is what was

stated at the very beginning even of the Hartree Fock formalism.

That if you are looking for exact solutions having no body at all is already too many you

there are no exact solutions even for the vacuum state. So, when you have an electron system

you do not have exact solutions you have to make approximations and the challenge which

theories has is that you make as good an approximation as you can to explain the experiments

you are interested in that is where the challenges.



So, you need a consistent theory and what you do in the RPA or the relativistic random phase

approximation is to take into account all the time forward diagrams. So, here you have got the

interaction taking place at this vertex you have got a ring diagram this is the direct term, this

is the exchange term here this is the time backward ringing diagram.

So,  this  takes  into  account  all  the  correlations  in  the  initial  state  and  then  there  is  a

corresponding  exchange  term because  exchange  is  something  by  default  as  I  mentioned

automatically it ought to be included and it is included in most studies okay. Whenever it is

not done of course you will get some errors.
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So, I would like to acknowledge the contributions of all of you who are taking this course and

you have the first paper here by Hari but there are many others who have contributed Tanima,

Sunil, Jobin, Gaghan, Aarthi, Ashish, Sindhu, so many have contributed and even prior to

Hari of course there are various at the students who have contributed to this.

This is only the set of some of the references to papers in which the relativistic random phase

approximation has been used in our group purely IIT  Madras and of course in collaboration

with many others and the principal collaborators of course are  Walter Johnson whose codes

we have been using all the original codes were written by him. 
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Voya who many of you have worked with, Steve is of course a long term collaborator and he

has been with us throughout this development for more than three decades, beginning with

some of the earliest papers that I was involved with although the earliest ones were of course

with Walter and then many others students graduate students post docs other collaborators

there are many whose pictures are not here.

In particular some experimentalist like Dennis Lintel and so on who have contributed a lot to

many of our studies. So, you will find all the references and so on at our web page which is

this and this is one of our latest contributions because the methodology has been used to

many different kind of situations not just the photoionization of free atoms. 

But  photo  ionization  of  confined  atoms  and  Hari  was  the  first  one  to  start  working  on

confined atoms then we studied photoionization not just in the  dipole approximation but also

in the quadrupole and there are various contributors to that and Tanima and Gaghan and many

of you.

So, your are the pictures of many over your some of you are sitting in this hall some of you in

these remote locations and some elsewhere or maybe having just a cup of tea or a nap. So,

with that I think I will conclude this unit and there are several leads to follow up and I would

be very happy to take some questions.

So these studies have been applied to confined quantum systems then to studies in which the

dipole  studies  have  been  carried  out,  the  quadrupole  studies  have  been  carried  out,  the

interference  between  the  dipole  and  quadrupole  which  gives  rise  to  peculiar  angular

distributions have been studied.



There are various other applications including the determination of the phase shifts and the

time delays  where these are  some problems of current  interest  because earlier  on it  was

believed that when a photoelectron is knocked out of the atom it is kicked out instantly but

there is a little bit of delay which is of the order of some auto seconds.

So Ankur, Samajit, Ashish there, Hari some of you are working on these problems Jobin also.

So, what is done in these studies is that these time delays are determined and in this particular

figure that we have over here we have the time delay in free atom and in the confined atom. 
So,  you  feel  you  see  certain  oscillations  which  come  as  a  very  beautiful  signature  of

confinement. 

But  this  is  the  matter  of  detail  and  you  can  refer  to  the  original  literature  for  these

applications. Any other question, if not let us conclude this unit.


