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Greetings,  we will  discuss some more diagrams of order one then we will  introduce  the

second ordering second order ring diagrams in today's class. So, let me quickly recapitulate

this a little bit but the terms that we are focusing our attention on are these terms. So, you

look at this two center integral as well as the matrix element of the creation and destruction

operators in the vacuum state.

So, we have the Phi 0 which I refer to as a vacuum state and the reason it is a vacuum state

because we have carried out a transformation from the electrons which we write as particles

these are the Fermi particles of our interest but when we refer to the electrons where we write

particles with the upright p. But then we carry out a transformation to what we write as the

slanted p particles which I discussed in the previous classes.

And these are the electrons which are above the Fermi level or the vacant States below the

Fermi level is wha t we refer to as the hole states and here these particle and hole states are

what we write with a slanted p and a slanted  h. So, when there is no hole state and all the

electrons are in their lowest state then of course you essentially have a vacuum in terms of the

slanted p particles and the slanted h holes okay.



So that is the vacuum state that I am now referring to and Phi 0 is the vacuum state. So, we

are taking the expectation value of a certain set of creation and destruction operators in the

vacuum state and we consider in this example the states i, j, k, l of which i and j will be above

the Fermi level and l and k will also be above the Fermi level. So, all our particle states with a

slanted p. 

So, you will all have essentially represented by arrows pointing upward right. So, those are

the; that is the prescription that is the convention that we are following here. So, all of these

will  be represented by arrows pointing upward and by creation and destruction operators

which are the a operators okay. So, these operate above the Fermi level and then you identify

the vertices identify what is on the left and what is on the right.

And then essentially you have four arrows flying up and you have a particle creation and

another particle creation and again a particle destruction and again a particle destruction. So,

that is the kind of diagram that you generate from these terms right. So, you have got the ai

dagger aj daggers which are created and the al and ak which are destroyed as represented

over here. 

So,  this  term  essentially  indicates  the  result  of  this  matrix  element  of  the  creation  and

destruction operators in the vacuum state. But it also you know makes a reference to this two

center integral because the locations of these indices okay which one comes to the left and

which one goes to the right is determined by this over here. So, you keep track of that and

that is a useful thing to remember.

So, this is like a particle from l being excited into i and you know from one from k in this. So,

that's the usual physical picture that you can draw however that is that is a little cumbersome

when you deal with a large number of particle hole excitation, so which is why the Feynman

diagrams are really of great use. 
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What I also pointed out and this is of importance to keep track of that when you interchange

the way of vertices. So this left vertex will go to the right and right to the left, so l and i will

go to the right and j and k will go to the left, so that is what an interchange of vertices will

mean. And essentially as you see from these operators when you interchange i and j you will

pick a minus sign over here.

Because these two creation operators anti commute likewise if you interchange k and l then

you will have these annihilation operators which also anti commute, so you will have you

will pick up a minus sign here and a minus sign here. And essentially the result will remain

invariant okay the two minus signs -1 into -1 is +1 as we say even in quantum theory right, so

you will not any have any difference.

So, this is what we get so if you interchange the vertices you will get this diagram to be

completely equivalent to this diagram when you interchange vertices. Now of course if either

i  = j or k = l you will get 0 contribution from this term because you cannot destroy a particle

from the same state twice. 

Because these are Fermi particles nor can you create these particles into the same state twice.

Because again for the same reason that Fermi particle occupies the state and the occupation

number can only be either 1 or 0 it cannot be anything else.
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So, the other thing you should remember is  that  if  you instead of interchanging the two

vertices completely if you just seem to change two lines like i go into j and j going to i then

you are going to swap the positions of these two creation operators and you will pick up a

minus sign from that swapping. And you can certainly have the corresponding diagram in

which i goes to j and j goes to i but then the signs will be opposite okay.

So, these are certain conventions which consequences of the fact that you have followed a

certain convention of writing which index goes to which vertex left  or right and then of

course  the overriding principle of course is the fact that the positions of these operators is

important  because these are fermi operators and they anti  commute okay. So, let  us take

another example over here.
(Refer Slide Time: 07:07)

But in this case we normally deal with four indices over here but remember that you are

summing over i, j, k, l okay. So, each index will take all the values that particular index can



which are all the infinite values and in some of the combinations you will find that some of

these indices may be the same you can also have all the indices to be the same or some of the

indices to be the same and so on right.

So, here in this case I have these two indices the ci dagger and the ci these two indices are the

same j and l are different now when you have this you consider a situation in which the

common index which is here and here if this index is below the Fermi level. So, up Ei this

energy is below the Fermi level Ef whereas the other two indices refer to electron states Ej

and El which are above the Fermi level.

So, that is an example that I am considering we have now in this example you have ci dagger

cj dagger cl ci and then the ci dagger is creation of an electron below the Fermi level which

you are going to do when you destroy a hole in that state. So, this will this ci dagger will be

Vi and this ci will be destroying a particle in a state which is below the Fermi level or when

you do so you create a hole.

So, that will be represented by this bi dagger and then this cj dagger cl j and l are both above

the Fermi level so you have got aj dagger here okay. Because both of these states the j and the

lth state are above the Fermi level.  So, now we can write these because hole creation is

represented by an arrow pointing downward. 

You have a hole destruction, so this is represented by an arrow pointing downward but out of

the vertex this one goes into the vertex and likewise you have got aj dagger and al aj dagger

is particle creation, so an arrow pointing upward but it will go out of the vertex whereas al

will be a particle destruction. So, it will be an arrow pointing upward again but going into the

vertex okay.

So it  is  just  those conventions  that  we are playing with and you can build the Feynman

diagram corresponding  to  it.  So,  you have  got  the  bi  aj  dagger  al  bi  dagger  all  of  this

processes you know are then represented by this diagram. Now I would like you to note, so

that here you have the index i and here also you have the index i okay. So, notice that this is

the common index over here.

And when you have a situation like this okay essentially you have got the same index. So, it

is the same particle which gets scattered into the same state okay it is the same hole in this

case right. These are arrows pointing downward and you have this going into the same state

and this is then represented by a ring of this kind okay. So, this is a little topological you

know adjustment that you make to tell you that okay.



There is only one index which is involved over here okay. It so it does not mean that the left

half  of  this  ring  that  you have  drawn has  got  any particular  significance  okay. It  is  just

indicating the fact that the hole state which is created is the same one corresponding to the

hole state which is destroyed okay. This process is then represented by this circle over here,

so that is the usual convention in drawing these diagrams. 
(Refer Slide Time: 11:19)

So, this is something that we will extend further by; so, let us take another example over here.

In this example again I consider i less than f this is and then j and k are above the Fermi level.

So, let us start building this diagram we first identify the operators using the same convention

that we have defined okay. So, you write this in terms of the corresponding particle and hole

operators now this is the slanted p particle above the Fermi level.

And the hole operators which are below the Fermi level and you have got a particle creation.

So, this is this is a particle destruction in the kth state. So ak is this is an electron above the

Fermi level, so it will be represented by an arrow pointing upward it is destruction, so it goes

into the vertex, so k is going into the vertex and then you have got i which is a hole creation

which is coming from this bi dagger here.

And then you also have a hole destruction which is coming from here okay and this is the

diagram that we construct okay. So, if you just follow all the steps one by one you will be

able to build this diagram. So, this is the kind of picture that of a physical picture that you can

draw but now remind yourself of the fact that I had mentioned that the leanings of these

arrows does not have any particular significance.



And what you can do is draw the same diagram in an alternate man because what is important

about the arrows k and i is that k goes into the vertex and it is an arrow pointing upward and

if it is leaning from right to left or to left to right is of no great significance okay. And you can

draw this diagram equivalently as k with an arrow going upward into the vertex which is also

the case over here okay.

This is also an arrow pointing upward going into the vertex but this one the first time when

we have drawn this diagram you had an arrow leaning from right to left. Now I have got an

arrow which means from left  to right and that is not of any big difference and these are

completely equivalent ways of drawing these diagrams. 

Not only that the reason I have chosen this example is because here you have an index i and

here also you have an index i and that is something that we are going to play with just the

way we played in  the  previous  diagram that  you had an  arrow with the  index ai  going

downward.

And it was again this into the vertex and you had the same index which was going downward

but out of the vertex. And then we indicated that these two states being the same both being i,

we closed the loop right. So, here again we will be able to set up some conventions. So, let us

do that.
(Refer Slide Time: 14:56)

So, this is what we have these are the two equivalent diagrams which I have brought from the

previous slide. So, this is the first one and this is what we have drawn again okay and now we

take cognizance of the fact that these two indices are the same okay. So, you can; how do you



indicate that they are the same you can draw a line between them here it goes. So, this is the

line which goes down and you twist it bring it up and bring it down okay.

So, that is the diagram you get. Alternatively you can also show it like this because what you

are doing is indicating this twist okay. So, these are certain conventions which are defined in

terms of drawing the diagram. So, you show this twist by an arrow going like this but you can

also show it equivalently by an arrow going like this okay. So, this is like a half loop which

goes over here and this is an equivalent.

So, there is no mathematical difference between any of these four diagrams. So, this one is

what we have drawn first this is what we have drawn second, this one third, this one the

fourth time and this is the fifth time. So, we have drawn the same diagram in five different;

you know which look like five different pictures to the eye but they are all essentially the

same and what they are telling us is essentially this particular interaction.

That you are creating a hole and you are destroying a hole but now it is not at the same

vertex. In the previous example you destroyed a hole and you created a hole but it was at the

same  vertex.  What  this  picture  is  telling  us  that  you  are  creating  the  hole  and  you  are

destroying a hole but this is not being done at the same vertex which is why this half semi

circle that you see this purple colour arrow.

Which is going from left to right either above the wiggle or below the wiggle does not matter

but essentially what it is telling us is that it is the same state and the operation is taking place

at  different  vertices,  so  there  is  an  exchange  here  okay. There  was  no  exchange  in  the

previous case. 
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So, let us draw these diagrams in the manner in which you will find them in the book by

Raimes this is figure 7.7. It is the same thing you have this half circle flying from left to right

and in print it will look like a neat diagram it is exactly the same interaction okay. And this is

how it is built that this is the half circle which flies from the left vertex to the right vertex it is

the same one which goes from the left to the right.

But it does not matter whether you close it above this line or above or below this line okay

that is not relevant. So, this is the term corresponding to exchange, so let me remind you once

again  what  the  what  the  previous  diagram was  that  was  this  one  here  the  creation  and

destruction of the hole was at the same vertex okay which is represented by this by this circle

here. 

But in the next example we again have a creation of a hole in the ith state and the destruction

of a hole also in the ith state but not at the same vertex the vertices are exchanged. So, this is

the picture that we get and these are the Feynman diagrams corresponding to this case all

right.
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Now let me take one more example over here and now I have out of the four indices i, j, k, l. I

have two indices here and here which are both i and here and here which are both j okay. So,

there are actually two only, two rather than four indices to think about. And let us consider

both of these indices to be below the Fermi level. So, they will all be represented by hole

operators and they will all be represented by the operators b as we refer to them right.

So, you will have ci dagger will be bi cj dagger will be bj and cj and ci will be bj dagger and

bi. So, these are the operators and now again you follow the same conventions, so you have

got a hole creation again a hole creation at the other vertex and a hole destruction at the first



vertex with the same index and again a hole destruction with the same index at the other

vertex so that is the picture that is emerging.

And what you can obviously do is to show it show just the way we had closed the left side

with  a  circle  we can  do so also  with the  right  side this  time around.  So,  you will  have

essentially two circles one with the index i and the other with the index j. So, this is they not

only look nice and fancy they also have got fancy names. So, now this one is called as a

double bubble okay. 

So, that makes it so much more fun to play with these diagrams and essentially what it is

telling us that you have got two unexcited particles below the Fermi surface they there is an

interaction between them but they do not change their respective states they interact but stay

within their own state. So that i goes to i and j goes to j without any exchange all right.
(Refer Slide Time: 21:30)

But then you can have a situation again with the same set of four indices in which two are the

same so you will have ci dagger and ci in this and again you have the other indexes cj dagger

and cj okay. But now we have swaped the positions both of these are below the Fermi levels.

So, again you would have only the hole particles hole operators which are the operators b and

you represent this using the same convention.

And you get a diagram in which you have the creation of holes in the state j and i and it also

the destruction of holes in the j and i but that is at the opposite vertex now okay. So, just the

way we had you know close the loop earlier you can find that these two indices are the same

both are i and these two can be connected using this connected line. So, that what this line is

telling us that it is the hole destruction of the same state.



And in the same state you also have a hole creation but at a different vertex okay. So, the

same whole state is destroyed as is created but at a different vertex and likewise you also

have the j's over here. So, which again have a similar feature, so now you draw this with

these two lobes but just the way we had twisted them in the earlier case because what is

important is that you are indicating that the same hole state is created as is destroyed.

But this is happening at two different vertices and we have read to show this by an arrow

going from left to right or by right to left and it does not matter whether you draw it above the

line or below the line. So, now you draw it like this and what does it look like I at least Ankur

should be able to recognize this, this is an oyster right. So, those who are fond of seafood

may be quite familiar with this.

So, then so this the previous one is called as a double bubble this is an oyster and these

diagrams are then you know named as double bubbles or oysters and so on. So, what the

oyster diagram is doing is it  is telling us about the two hole creation and destruction but

corresponding to the exchange term. So, these are the conventions that we are going to follow

now. 
(Refer Slide Time: 24:29)

And now let us look at their contributions to the correction; the correction is coming because

of the correlations okay.  The correlations to what we began with an electron system which

we consider to be non interacting  these are  represented by the Hamiltonian which is  the

unperturbed  Hamiltonian  H0.  Now you  introduce  the  interaction  between  them and  this

interaction would lead to certain correlations.

And these are the correlations that you are not able to account for in the Hartree Fock or in

the Dirac Hartree Fock formalism the correlations that you do take cognizance of are only the



statistical correlations which come from the anti symmetry of the wave functions. So, the

residual correlations are still sitting over there and we developed this adiabatic hypothesis by

which we switch on the interaction using this mathematical device.

Which is a parameter alpha and this alpha parameter shows up explicitly over here okay.

Then you have these energy sum and difference of all of these i, j, k and l right. So, that is

what goes into this delta 1, so we have considered these terms earlier and then of course when

you evaluate this matrix element. It is obvious that for this matrix element of the creation and

destruction operators in the vacuum state to be nonzero. 

This result of the creation and destruction operators on the vacuum state must have a nonzero

projection  on the vacuum state  right.  Because it  is  you operate  on the  vacuum by these

operators and take the result which gives you a new vector in the occupation number space

and take the projection of this new occupation number vectors state on the vacuum state

again. It is just a expectation value of those creation and destruction operators.

No one will display nonzero, there are certain conditions which must be satisfied for example

we already saw that if you have a combination of ck cl  in which ck and  cl  both refer to the

same electron state like k = l, if both the states are the same states. So, you are trying to

destroy a Fermi particle from some state and even if that state was occupied to begin with

you would destroy it by the first time you operate by the annihilation operator.

And having destroyed it by that you cannot destroy it any further once again okay because it

is already destroyed which is what I often say by saying marehuve ko kya marna okay. So,

you cannot destroy a Fermi particle twice and you cannot destroy a Fermi particle from a

vacant state that state has to be occupied then you can destroy that particle if it is already

occupied and then once it is destroyed you have got a vacancy over there.

And then you can create an electron over there but you cannot then create a hole okay. So,

these are just the consequences of the Fermi Dirac statistics. So, this must be nonzero and

which means that you are really dealing with a vacuum state because it does not have either

holes or excited particles that is why we call it as a vacuum. And in this you can only carry

out certain operations.

So, all of these i, j, k, l each of which can take infinite values they will not make a nonzero

contribution because whenever you do not have the right combinations of the creation and

destruction of particles. You will get a contribution which is 0 from this infinite sum of i, j, k,



l vector i, j, k, l indices okay. So, you have this only certain conditions and these conditions

are written over here.

That i and j both must be either at or below the Fermi level okay they can be at the Fermi

level because those particles are occupied. Fermi level is the level up to which all the electron

states are occupied. And you can have only epsilon i and epsilon j both must be less than or

equal to and they have to come in this particular order okay. So, that is the only way you can

have a nonzero contribution is that clear everybody.

So, this is the only possibility you can destroy electrons c’s are the electron operators these

are not the particles with a slanted  p okay. So, when it is above the Fermi level they are

represented  by the  operators  a  when they are  below the  Fermi  levels  you can  write  the

corresponding  operators  b.  But  essentially  you  can  destroy  electrons  from  the  vacuum

because that is where you have occupied electrons.

So, this is the only case that you can have ci and cj destroy two electrons from the vacuum

and then you have to create them subsequently. Because now that you have holes over there

you have vacancies, so you can sure enough you can have electrons created over there by

destroying the corresponding holes. 

So, these are the two possibilities so one is that you have; if these are you are creating two

electrons in the state i and j you have to destroy them first but you can destroy them in this

order cj ci or in the order ci cj does not matter but when you have when you destroy them in

this order.
 And when you destroy them in this order you will have contributions with opposite signs

okay. Because ci and cj are Fermions operators which anti commutes. So, these are the only

two possibilities which you are going to consider.
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So, let us consider this further and you have only these two indices which are both below the

Fermi level. So, this one we have seen we discussed this a little while ago and we have seen

that we get this double bubble in this particular case. And this is coming from the direct or

interaction or what is also called as the Coulomb interaction. The other is when the indices

switched their positions with respect to the vertices.

That is when you have got the exchange, so that is the oyster diagram that we have drawn.

So,  you  have  got  these  two  possibilities  one  corresponding  to  cj  ci  and  the  other

corresponding to  ci  cj  they  will  have  opposite  signs  and they  will  be  represented  direct

respectively  by  the  double  bubble  for  the  direct  interaction  which  is  also  called  as  the

Coulomb interaction.

So,  Coulomb and direct  in  this  context  are  synonymous  and the  other  possibility  is  the

exchange. So, these are the first-order diagrams and these are the only ones which can really

contribute  to  the  correction,  correction  to  what,  correction  to  the  non-interacting  sea  of

electrons okay. So, those are like free electrons they have no interaction between each other

their only energy will be the kinetic energy.

And if you now make corrections because of the electron-electron interaction and consider

this in first order perturbation theory then you will get two contributions one coming from the

Coulomb term and the other coming from the exchange term. And you will represent the

Coulomb contribution  by the double bubble and the exchange contribution  by the oyster

diagram. 
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So, they contribute either +1 or -1 right because this will contribute a +1 sign right. Because

the projection of cj ci on Phi 0 will be exactly it will be equal to unity when you take the

scalar projection when you take the shadow this is nothing but the adjoint of this vector on if

you take if you consider a mirror image over here then you have got a vector to the right of

the central line and a vector to the left of the central line.

And they are just adjoints of each other, so it is like the norm which is 1. So, you get +1 from

the Coulomb term and a -1 from the exchange term of course when i = j both the elements go

to 0 right. So, these are the contributions from the Coulomb and exchange terms.
(Refer Slide Time: 34:13)

And let us evaluate their net contributions. So, we introduced this matrix elements of the time

evolution operator which we indicated by the terms A’s. And then you of course have to

consider the contributions coming from the Coulomb term. So, this are contribution will be 1



from here delta 1 is just this energy sum and difference which is epsilon i + epsilon j because

these two are creation operators and then you have ck and cl.  

So, these two come with a minus sign, so delta 1 is just the energy difference between all of

these. And this when k and l are respectively i and j, so delta 1 will go to 0 right because there

are only two indices epsilon k = epsilon i and epsilon l = epsilon j. So, you have delta 1 = 0

this matrix element is now +1. 

So, this is the net contribution you get to A1 from the direct or the Coulomb terms. And then

of course you have to take the contribution from the exchange terms and from the exchange

terms you have got a -1 over here delta 1 is again 0.
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Subsequently you have to take the partial derivative of A1 with respect to time, derivative is

to be taken at the value t =0. So, all this we have done in our previous classes. You have to

take the derivative at t = 0 and finally take the limit alpha going to 0 because our results

cannot really depend on this mathematical model switch which is the adiabatic hypothesis.

What it did was to help us get into the interaction picture of the Dirac picture.

And  develop  a  formulation  to  handle  the  electron  correlations.  So,  now  this  is  your

contribution to A1 and contribution to A1 from the direct term contribution to A1 from the

exchange term which comes with a minus sign. 
(Refer Slide Time: 36:24)



And then  you take  the  derivative  with  respect  to  time  at  t  =  0.  So,  when  you take  the

derivative of this term this is the only time dependent term everything else is independent of

time. So, you have to take the time derivative over here and it is just the time derivative del

by del t of e to the alpha t which is alpha times e to the alpha t. So, here you have it, so you

have alpha times e to the alpha t the alpha in the numerator and denominator will cancel.

And e to the alpha t  in the limit  at  t  = 0 goes to unity and the consequence is  that  this

particular  may limit  alpha going to 0 does not even matter  because your result  becomes

completely independent of alpha this we have discussed earlier that the first order correction

for the first order correction alpha really does not matter. 

So, what is the correction see what the energy of the non-interacting electrons system and

then in first order because of the electron-electron Coulomb interaction given the fact that

anti symmetry is taken into account you have got the Coulomb terms and the exchange terms

and this is nothing but the Hartree Fock result which we did not only earlier in this course but

also in our earlier course.

Essential results here is that alpha going to 0 this limit does not matter in this case and this is

a result of the Hartree Fock theory all it is doing is taking into account the anti symmetry of

the wave functions. And the Coulomb correlations really are yet to be taken into account and

they will come from second and higher order corrections to the free electron system. So, this

is a result that we have seen earlier not only the Hartree Fock.

If  you  remember  when  we  did  the  random  phase  approximation  unit  there  again  we

considered certain corrections from first order terms and we found in that was the previous

unit, unit 3 and in that unit also we found that when we you carry out the Bohm and Pines



kind of treatment what corresponds to first order corrections gives you essentially the same

results as the Hartree Fock.
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So, everything falls in place and these are the direct and the exchanged terms and essentially

you have the Hartree Fock result is represented by a combination of this double bubble and

the oyster okay. So, these two diagrams represent the Hartree Fock correction to the free

electron gas to the non interacting N electron system okay. 

So, these are the first-order diagrams they correspond to the Hartree Fock approximation and

now we consider second-order diagrams. So, second and of course higher order.
(Refer Slide Time: 39:35)

So, we will do it step by step now of course to take into account all the correlations you have

infinite  order  terms  and  you  have  a  fairly  complicated  relation  to  work  with.  We have

developed  this  formalism  in  some  of  our  earlier  classes.  So,  we  pick  up  the  term



corresponding to the second order correction in which the time evolution operator will be

dealt with appropriately to second order okay.

And then you will have these two time integrals this one with respect to t1 this one with

respect to t2 you will have these delta's twice 1 as delta 1, 1 as delta 2 you will have the e to

the alpha t again twice once with the index t1 and the other with the index t2 and we have

dealt with these time integrals very carefully. So, that these integrations are carry out within

appropriate limits.

Notice  that  the  limit  of  integration  for  t2  is  from minus  infinity  to  t1  but  then  t1  gets

integrated from minus infinity to t. So, all of this is nicely taken into account when we use the

chronological  time  operator  or  we  have  this  alternate  formulation  of  the  time  evolution

operator  like the Dyson chronological  you know which we have written in  two different

equivalent ways.

Then in the second order you will have a product of these two integrals. So, there will be two

center integrals one is this and the other is this, so one comes with indices i, j, l, k okay. The

other comes with indices p, q, s, r and again some of these i, j, l, k and p,q, s, r will happen to

be the same or not because each is going to run over all the possible values. 

So, i, j, k, l so there is a summation which is a double summation, summation over i, j, l, k

now this is actually summation over four indices okay. Each index is a set of four quantum

numbers, so there are multiple summations okay. So, what comes as a single index is already

a set of four quantum numbers, so all that of course we remember.

But  this  is  the  compact  way of  writing  all  that  but  you certainly  have  to  carry  all  that

information  at  the  back  of  your  mind  and  then  the  matrix  element  of  the  creation  and

destruction operators in the vacuum state which is here. So, this is the matrix element of the

creation and destruction operators in the vacuum Phi 0. And now you have got the ci dagger

cj dagger ck  cl.

But then you also have the cp dagger cq dagger cr cs. So, now you have got each of these

operators four and four okay. Subsequently you evaluate the contribution by taking the partial

derivative of A2 with respect to time take the value of the derivative at t = 0 and then take the

limit alpha going to 0 this is what gives you one of the two contributions to the second order

correction.



The other correction to second order comes from this term and we have worked with both of

these terms in our previous classes right. So, you will remember those discussions so you had

two terms contributing to the second order corrections. One was coming from A2 and the

other from the square of A1. 
(Refer Slide Time: 43:19)

So, both of these terms have to be kept track off, so this is the first term and this is the second

and then you take evaluate the time integrals these time integrals we have seen earlier in the

context of the first order terms. So, they have been evaluated and we can use those results in

determining these time integrals. So, now they can be written by a simple extension of what

we did in our previous classes.
(Refer Slide Time:  43:50)

So, let us put all the terms it looks messy but we have done each of these terms carefully and

independently in considerable detail in our earlier classes. So, if you do not recognize any of

those terms just go back to one of our earlier classes maybe two or three classes prior to this



one and you will find a detailed discussion on these terms. Now once again you have to

remember that for this to be nonzero. 

The result of this operator on Phi 0 must have a non projection on Phi 0 right. And what does

it mean that i, j, k, l, p, q, r, s these indices cannot be arbitrary. They take each can case

infinite values but they cannot be arbitrary for example if cr and cs are the same you will get

0 contribution. 

If two of these creation operators are the same or two of these destruction operators are the

same you will get 0 or if you try to destroy a particle which is not there or if you destroy try

to destroy a particle from a state which is above the Fermi level when it has not been excited

yet in the free electron state then you will get a zero contribution.

So i, j, k,l and p, q, r, s, cannot be arbitrary indices they can only need some chosen sets and

not arbitrary now that puts some restrictions and this restriction will manifest as admitting

only certain second order diagrams and not any arbitrary diagram okay. Because how these

arrows go in and out is just a statement of the creation and destruction of particles and holes

okay. So, not all diagrams will contribute to the ground state.
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Only some diagrams will  and some will  not so you can draw a number of second order

diagrams okay. When you consider all kinds of possibilities you can get various second order

diagrams however not all of them will be possible, so now there are two times that you are

considering in second order diagrams, so if you take the lowest block, so what is between the

lowest redline and the next maroon line.



So, you have time going from the bottom to the top, so you have time t1 here and this is time

t2 okay. So, this is just one set of second order diagrams, this is another set okay, this is

another set, this is a fourth set, this is a fifth set. So, there are a number of second order

diagrams on this picture. 

And they come as you can very easily imagine and I think it is too much work and too much

time to discuss all the terms which contribute to these but I think you now have essentially

the idea. Because depending on what values the i, j, k,l and p, q, r, s take you can have you

can certainly draw diagrams of all kinds.

But not all of them will contribute to the correction to the ground state energy in the second

order. What will only contribute are the diagrams which are in the top row in this okay. So,

these are second order diagrams there is a time t1 here and this is the time t2 here okay. So,

this is a time t1 at the lower edge and this is the upper edge.

So, these are the two t1 and t2 time parameters and only these contribute to second order

diagrams. You have many of other pictures but they do not contribute to the term which is

going  into  the  term A2 which  is  what  we will  have  to  plug  in  to  get  the  second order

corrections.
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So these are the only ones to be considered and that offers a lot of simplification not only that

it turns out that only these two a and c you have four diagrams over there a b c and d only a

and c need to be explicitly considered. So, out of these four only a and c need to be explicitly

considered because you can get b and d from the previous ones all you do is to interchange

the vertices and at one of the two interactions.



If you just  do that you get the diagrams b and d, so they come simply by swapping the

vertices as one of the two interactions dash line okay. So, you do not have a lot of diagrams to

work with and essentially you have to work with only the diagrams a and c. 
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So, let us get the diagrams a and c we will focus our attention on a and c. Now you are just

following the same prescription which is; these pictures I have run through every slide to

remind us that particles are represented by arrows pointing upward holes by arrows pointing

downward particle creation by an arrow pointing upward but out of the vortex and particle

destruction by arrows pointing upward but into the vertex.

And a similar  convention for the hole operator. So, this  is  a picture which I keep in the

margin just, so that you can always refer back to that. And now consider the time axis going

from bottom to the top I mentioned that you had those six different sets of second order

diagrams each set refer to one value of time and another value of time. So, I will consider t1

and t2, t1 greater than t2 it does not matter one of which is greater than the other. 

So, let us consider the diagrams which matter, so you have t1 and t2 and let us consider a

situation in which at each instant of time we have considered first order diagrams okay. So,

just think of a first order diagram at time t2 and another first order diagram at time t1 in

which the diagram is represented by these arrows and now you know what these arrows are

telling you okay.

The arrows pointing upward are particle operators the arrows pointing downward are the hole

operators right. If it is an arrow pointing upward and into the vertex it is a particle destruction

and if it is an arrow pointing upward and out of the vertex it is a particle creation okay. So,



now this is the kind of picture that we are now considering this is a kind of diagram that we

are considering at two time intervals.

At two time instants one is t1 the other is t2 but what are these states these days can be

anything i, j, k,l can take various different values and we already know that they cannot take

arbitrary different values okay they can be only certain value. So, let us consider a situation in

which these states are 1 in electron 1 states which is indexed by m which is a set of four

quantum numbers okay.

And then this is n so I am just making some choices and I consider those situations in which

this is m and n and the indices at the upper time at time t1 are also m and n okay. Likewise on

the other vertex I consider pq and I consider the indices at the later time at t1 to be also p and

q. Now when you have a diagram of this kind it makes sense to join the m’s and the n’s okay

right.

Because when you join it tells you that the same state same hole state which is destroyed at t1

is the one which is created at the previous time t2 that is the information which is contained

in the fact  that both of these are represented by the state m and that  information is then

included in simply joining this. Likewise you join the indices n as well but it now you do the

same with the labels p and now again with the label q okay.

What do you get you get a ring diagram okay this is the second order ring diagram okay and

it is giving you a particular information about what kind of hole destruction and creation and

electron destruction and electron creation essentially it is telling you what kind of correlation

which configurations are now being referred to by this diagram. 

Because all of these occupations number states they translate to different configurations okay.
There is a one-to-one correspondence between an occupation number state and the Slater

determinant which you write for a given configuration. So, essentially it amounts to doing a

multi configuration Hartree Fock or a multi configuration Dirac Hartree Fock if you are doing

relativistic. 

So, this is what you get from this particular type of interaction you can consider another

example over here let me take it over here. So, these are the ring diagrams which come from

the direct interactions which are also referred to as the Coulomb terms.
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Let us draw another second order diagram, so here again you have got two time interval, two

time instants t1 and t2 and here again you have got to first order diagrams to begin with. But

now consider the indices to be pm over here and one of the two indices at the top is the same

as the one at the bottom p is the same. But the other index is not m now it is n, so it is

different from the previous case notice that right.

And then if you go to the other vertex let us have n and q over here and m and q over here.

Now what this will suggest to you is that you can connect the m right and you can connect

the n right. Because those are the same single particle states or single hole states right and

then you can connect the p’s okay. So, you have got the p at the top connect to the p at the

time t2 and you do the same for the label q.

Now what is the picture that you get because you already know that whether these arrows

lean to the left or right really does not matter okay? It is only how they are topologically

placed that is the only point of interest in these diagrams. So, the picture that you get instead

of drawing this diagram in such a clumsy way you can draw it neatly and essentially what

comes out of it is the exchange diagram. 

This is the second order exchange diagram okay, now this is the one which corresponds to the

same ring diagram as such but this is the exchange part the previous one is the Coulomb term.

So, you can get second order direct effects and second order exchange effects and when you

do all calculation you are any study. You, if you are taking corrections to second order then

you must of course include all the Coulomb terms.
And it is automatic that you also include the exchange terms. So, sometimes you can refer to

this as terms with exchange but that goes really without saying because there is no point in



including one type of second order term but not another type of second order term okay.

Because all second order corrections should be taken into account on the same footing. 

So this term automatically goes in, so this is the exchange term corresponding to the ring

diagram. So, these are the second-order diagrams, so you have got the direct or the Coulomb

contributions and then you have got the exchange contributions.  So, these are the second

order direct and exchange terms corresponding to the ring diagram.

You very often in literature you refer to this only as the ring diagram because the default

implication is that you will of course take into account the  corresponding exchange. So,

when you talk about the direct diagrams or the ring diagrams okay the terminology already

includes the consideration of the corresponding exchange.

Because  nobody  going  to  do  a  second  order  Coulomb  correction  without  doing  the

corresponding exchange correction because after all the statistical correct correlations are the

most important ones those are the ones that we first do those are the ones that we discussed in

the Hartree Fock approximation, so they are already taken into account.

So, you may or may not explicitly  mention the term exchange but it is implied that it  is

always taken cognizance off okay. 
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So, these are the second order diagrams and now notice that here you can actually count the

number of loops and this is represented by the letter lambda you can choose any letter but I

am using the notation in the book by Raimes okay. So, if you look at the number of closed

loops you have lambda = 2 and the number of hole lines is also 2.



The number of hole lines which are the arrows pointing downward is 2 there are two arrows

pointing downward and there are two closed loops. So, it is now important for the analysis of

higher order terms it becomes very useful to keep track of how many loops do you have and

how many hole lines do you have.

Now if you look at the Coulomb term which is the one at the top lambda = 2 and mu = 2

however if you look at this diagram over here the closed loop and the hole lines. So, here

again you have lambda = 1 and mu = 2 okay. So, you have got two hole lines one loop over

here but they come with opposite signs.
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So, to understand how these are used we will go back a little bit to the first order terms and

then discuss how these are used so that is something that I will do in the next class if there is

any question I will be happy to take yes Jobin (Question time: 1:00:50-not audible) so you

said that pattern b  can be obtained from a explicit the diagram b where it is sir you so what

does that mean so you pinch this vertex here okay.

If this were made of strings you pinch it over here and drag it to this point and likewise you

pinch this and drag it over here when you do that you will get b. So, it is topologically the

same so essentially if you just pinch that the combination of that hole and particle interaction

line at  a given vertex and drag it  to the other vertex you get a corresponding equivalent

diagram okay. So we will take a short break here. 


