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Greetings, after doing the random phase approximation in unit 3 we will today start with the

next unit.  And in this  unit  we will  introduce Feynman diagram methods,  I would like to

suggest  these  two  references  which  you  see  on  your  screen  Fetter  and  Walecka’s  book

Quantum Theory of Many-Particle Systems and the book by Raimes Many Electron Theory.

These will be the primary sources for this unit.

And before we get into the details of the Feynman diagram methods today's class will be like

warming up for this topic. We will revisit a little bit of what you would have done in your

quantum mechanics course on the Schrodinger picture, the Heisenberg picture and the Dirac

picture. So, we will spend some time just warming up and that is what we will do today and

then build the topic from there.

So, let me first remind you some results from the unit 3 from the previous unit and I will refer

to the Hartree Fock model. And the Hartree Fock model which we discussed earlier in the

course on atomic physics and later we dealt  with it  also in unit  3 of this course. And in

particular I would like to refer to the lecture number 19 and 20 of unit 3 and slide number 96

and 97 from that lecture.
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So, I will recollect one of the results from there and what we learnt over there that when you

take into account the electron-electron interaction in the Hartree Fock, you get an energy

which  is  actually  lower  than  that  of  the  Sommerfeld  gas  which  is  somewhat  surprising

because you have the electron-electron interaction and you expect that okay it will increase

the energy because it is repulsive.

But then it has an attractive component which is the exchange energy and that is completely

taken into account in the Hartree Fock model right. And what the exchange does is it, it is a

result of the fact that the many electron wave function is an anti symmetrised wave function

in consistency with the Fermi Dirac statistics the electrons being half integer spin particles.

And what this does is to keep electrons with parallel spins away from each other okay.

And that is what reduces the energy as we have seen and what we found is that the average

Hartree Fock energy per electron, so Hartree Fock average energy per electron if capital N is

the number of electrons then this is given by a result which we have discussed in the previous

unit and you will remember that result. 

Now  what  we  also  discussed  is  the  fact  that  if  you  obtain  this  result  using  first  order

perturbation Theory rather than the self-consistent field methodology of the Hartree Fock

scheme you can essentially the same result. So, we discuss this in the previous unit in the

lectures 19 and 20. However if you went to higher order perturbation theory, if you went to

the second order okay or any order higher than the first.

Then you find that the methodology does not converge at all and you cannot use perturbative

methods.  So,  you have to  look for methods which are non perturbative  and whereas  the

Hartree  Fock  self-consistent  method  is  equivalent  in  a  certain  sense  to  the  first  order



perturbation  theory  going  beyond the  perturbation  method  is  important.  Because  Hartree

Fock takes into account this exchange correlation.

The exchange interaction so it takes into account all the correlations which is coming from

the Fermi Dirac statistics but then there are some correlations  which are left  out and the

correlations which are left out are what we call as the Coulomb correlation. So, correlations

in a many electron system are of two kinds one is the spin correlations they are equivalently

the Fermi Dirac correlations or exchange correlations, statistical correlations.

They are all synonymous equivalent terms to describe this fact that the many electron system

observes the Fermi Dirac statistics. But then there are other correlations and these are the

Coulomb correlations and we are interested in taking account of these correlations that is

what many-body theory is about.
(Refer Slide Time: 05:40)

So, these Coulomb correlations are ignored in this result and these can be addressed using a

variety of different techniques and we are in the process of discussing some of them. And for

this  you need a formal many-body theory this is where quantum field theory methods or

many-body methods become necessary and they help us go beyond perturbation methods.

So, the technique that we discussed in the previous unit is the random phase approximation it

is due to Bohm and Pines which was developed in the mid-50s of the previous century, very

nicely described in the book by David Pines elementary excitations in solids and it gives you

a result beyond the first order perturbation theory it gives you a correction and we haven't

discussed some of these results in unit 3.
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So, this is just a quick recapitulation of that and the basic problem that we are trying to solve

is just  the many-electron Schrodinger equation with this  Hamiltonian.  So, this  is  the one

electron part and this is the Coulomb part but then all the statistical correlation is appearing in

the  Hartree  Fock  formalism  because  the  N  electron  wave  function  has  to  be  an  anti

symmetrised wave function.

And as I pointed out earlier you do not have an exact solution for this problem. I had quoted

Brown, earlier also that if you are looking for exact analytical solutions then having nobody

at all is already too many and you cannot have exact solutions even for the vacuum state let

alone for the N electron problem. 

So, what do you do; you have non perturbative methods one of which we discussed at length

in the previous class, the random phase approximation. Then there are methods which are

alternative to the RPA some of which turn out to be equivalent to RPA in some sense. Some

of them are different and you can do them using techniques which are based on configuration

interactions or CI methods.

And what they enable you to do is describe the N electron wave function not by a single

Slater determinant as we do in the Hartree Fock but by a superposition of 2, 3, 4 or more or in

principle  it  can be an infinite  set  of Slater  determinants.  And these are  the configuration

interaction methods. So, the methodology which comes out of this when it is based on the

Hartree Fock is called as the multi configuration Hatree Fock.

But you can have its relativistic analog in which the starting elements which go into the Slater

determinant are not the two component Hatree Fock spiners, spiner wave functions, the spin

wave functions. But these are the four component Dirac wave functions the Dirac by spiner’s



as we call them right. So, if the Slater determinants are made up of these four components by

spiners.

Then you have what we call  as the multi  configuration Dirac Fock and more correctly it

should be called as multi configurational Dirac Hartree Fock and there is a whole scheme

which has been developed pioneering works has been done by Frost Fisher for the multi

configurational Hartree Fock by Ian Grant and some others on the multi configurational Dirac

Hartree Fock.

So, we have the multi configurational Dirac Hartree Fock sometimes abbreviated as MCDF

or MCDHF for the Dirac Hartree Fock as such. And then there are other methods which are

the Feynman diagram methods and this unit will focus on the Feynman diagram method. So,

all of these techniques are essentially they target the many-body problem. 

And in particular they target the issue of how the Coulomb correlations must be dealt with in

a many electron system. 
(Refer Slide Time: 10:01)

So, let us have a look at this Hamiltonian now notice that this Hamiltonian is not an explicit

function of time there is no time dependence in this. Now what we can do is the correlations

are of course coming from the electron-electron interaction. So, you have got the 1 over r12

or 1 over rij electron-electron interaction term and if we can deal with this term as if it were

time-dependent okay. 

Then we could use methodology in which the operators are time dependent okay. This is an

operator 1 over r12 or 1 over rij is one of the terms in the N electron Hamiltonian and if we



can treat it as if it were a time dependent term then we can use those methods in quantum

theory in which time dependent operators are made use of.
(Refer Slide Time: 11:14)

And in particular this is possible in what is called as the interaction picture or equivalently

synonymously also called as a Dirac picture. So, I would like to introduce these three pictures

the Schrodinger picture, the Heisenberg picture and the Dirac picture all of these essentially

contributed to the development of quantum theory.

All of them got Nobel Prize, Heisenberg in 1932 and Schrodinger and Dirac share it in 1933

and the formalism of quantum theory which we most often make use of and which is what we

have used in our in our earlier courses. We have made use of the Schrodinger picture but

there are equivalent you know formulations in the so called Heisenberg picture and the Dirac

picture. In today's class I will revisit these pictures.
(Refer Slide Time: 12:00)



These are to be distinguished from what we often refer to as a representation. For example

you will write the state of a system by a vector in the Hilbert space and then you can have a

coordinate representation of the state vector which is the wave function. You can also have a

momentum representation. So, these are different representations and you can go from one

representation to another by carrying out appropriate transformations.

A picture is somewhat different. So, it is also you know different kind of representation in a

certain sense. But these are achieved through what are called as generalized rotations in the

Hilbert space rather than usual rotations in the Hilbert space. So, let me explain this. So let us

begin with a Schrodinger equation H Psi = ih cross time derivative of the wave function. It

what the Schrodinger equation does is to give you the time evolution of the system.

And the time evolution operator tells you how the wave function evolves from an initial time

0 to a later time t and the evolution is through this time evolution operator which includes the

Hamiltonian right. So, this is what gives you the Schrodinger equation and this is the typical

Schrodinger picture of quantum mechanics that we are used to.

So, this is the description of state of a vector at time t. And we are essentially looking at

stationary state solutions. So, this exponential of an operator is understood as a power series

expansion. So, that the Hamiltonian can operate as many times depending on whether it is the

first term or the next term and so on. And the stationary state solution then is given by the

solution e to the -i omega t omega is e over h cross.

And most often we write this solution that the time dependent part of the time dependent

solution is given by e to the minus i omega t or - i e over h cross t and the time independent

Schrodinger equation has got the solution which is E is the Eigen value and Eigen function is

Psi  of  r  at  time equal  to  0.  So,  this  is  the time independent  Schrodinger  equation  for  a

stationary state.
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Now notice that the state functions are a time dependent and the entire time evolution is

contained in this e to the minus i omega t term or e to the -i e over h cross t term okay. This is

the entire time dependence, the state function is a time dependent function. And the operators

the operators are made up of the position operator the momentum operator right.

The Hamiltonian operator is made up of the potential energy operator and the kinetic energy

operator and all of these operators you write in terms of the q and p and these are completely

independent of time. So, in this picture it is the state function which is time dependent and the

operators are completely independent of time and this is the signature of the Schrodinger

picture. 

So, this is the usual quantum mechanics that we do and that is the reason I have added a

subscript s to emphasize that what we are looking at over here is the Schrodinge equation in

the Schrodinger picture okay. But you can have alternative formulations in which the time

dependence is not necessarily in the wave function. 

You can actually transfer the time dependence to the operators rather than the wave function.

And still do equivalent quantum mechanics.
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And  let  us  see  how  this  is  done,  this  is  done  through  certain  transformations  unitary

transformations we know that they leave the physics invariant  okay. The physics of such

remains invariant you can have unitary transformations even in time independent Schrodinger

picture formalism. 

And essentially by and large what it amounts to is that you can expand the wave function in

any linearly independent basis. You can have; you can orthogonalize that basis and then you

have got an orthonormal basis and you can have an orthonormal basis made up of you know

like in three dimensional space you have this you can twist it turn it move it right and any

basis which is equivalent will work.

And you can carry out transformation of the wave function from one basis to another through

unitary transformations the coefficients are then the cosine functions which connect the two

orthogonal basis okay. So, that is something that you know very well  and they leave the

physics invariant. We will introduce what are called as generalized rotations. 

So, a rotation from one basis to another, this is the usual rotation that we talk about when we

talk about unitary transformations. Now what I am introducing are generalized rotations we

not transformations of this kind but there are transformations which are very similar but with

a difference. And this difference tells  you how you carry out the transformation from the

Schrodinger picture to the Heisenberg picture or to the Dirac picture. 

So, this is how you carry out the transformation of an operator from the Schrodinger picture.
So, if omega with subscript s is an operator in the Schrodinger picture then the corresponding

operator in the Heisenberg picture is given by this transformation. This is the transformation



rule which tells you how you carry out a transformation from the Schrodinger picture to the

Heisenberg picture. 

And this  transformation  is  effected  through these  time-dependent  operators  in  which  the

Hamiltonian plays a big role okay. So, the Hamiltonian has to appear in this transformation

there is a time dependence which is explicit as you can see and this gives you a new operator.

So,  this  operator  it  is  what  you  call  as  the  Heisenberg  picture  operator  and  this  is  the

Schrodinger picture operator. 

This is the relation between Heisenberg picture and Schrodinger picture.  So, the operator

which is affecting this transformation is this e to the i Ht over h cross this is operator.  So, you

have got O omega s omega dagger which gives you the Heisenberg picture operator okay.

Correspondingly when you carry out the transformation the states will also be transformed. 

And you get new se which are then called as the Heisenberg picture states and these pictures

in the Heisenberg picture, these states the Heisenberg states will become independent of time.

So, the Schrodinger picture the wave functions are time dependent the operators are not, in

the Heisenberg picture it is the other way around. 

The operators become time dependent but the wave functions become independent of time

and  we will  see  how they  become independent  of  time.  So,  this  is  the  main  difference

between  the  Schrodinger  picture  and  the  Heisenberg  picture.  So,  you  still  need  a  time-

dependent formulation but the time dependence is transferred from the wave function to the

operators. 

To do quantum mechanics there are two things that you do one is represent the state of the

system by the state vector and then deal with operators instead of the classical dynamical

variables. And these operators we are looking at the properties of these operators and now we

will introduce time-dependent operators which we did not use in the Schrodinger picture.
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So, you have a generalized rotation effected through the transformation operator O which is e

to  the  iH  over  h  cross  t.  And  the  corresponding  wave  function  when  you  carry  out

transformation of the operators omega s to omega H there is a transformation of the wave

functions Psi s to Psi H essentially through the same transformation which is operator O.

And because we are dealing with the operator O which affects  the transformation  to the

Heisenberg  picture  I  have  now  added  a  subscript  H  over  here  okay.  So,  this  operator

transforms the Schrodinger   picture wave function to a Heisenberg picture wave function

okay. And this Heisenberg picture wave function is now e to the i H over h cross t operating

on Psi s. 

So, this is an operator which is made up of the Hamiltonian and when this operates on the

Schrodinger picture wave function you get a new wave function which is the wave function

in  the  Heisenberg  picture.  And  notice  that  you  can  write  the  Schrodinger  picture  wave

function is an Eigen function of the Hamiltonian belonging to an Eigen value e. 

So, this e the i H over h cross t is equivalently replaced by the corresponding Eigen value

which  is  e  to  the  -i  E  over  H cross  t.  So,  this  is  the  stationary  state  solution  the  time-

dependent Schrodinger equation.  And if you now put this  back in the Heisenberg picture

wave function, so this is the Heisenberg picture wave function. 

How do we get it by operating by this transformation for generalized rotation operating on

the Schrodinger picture time-dependent wave function which is now e to the -i omega t times

the time independent wave function at t =0,  right. But then e to the -i omega t can be pulled

out. And then you have got this operator operating on the Schrodinger picture wave function

at t = 0 and that will give you e to the +ie omega t.



And these two terms will then cancel each other and you get Psi at r 0. So, you have what a

time dependence a formal time dependence over here but it turns out that it really does not

depend on time because this is the wave function at t =0 okay. So, essentially what we see is

that the time dependence is lost.

So,  all  the time dependence is  in the operator  here,  this  is  where you have got  the time

dependence. So, far as the wave functions are concerned in the Heisenberg picture there is no

time dependence. But the physics remains the same and that is the reason this is called as a

generalized  rotation from one picture  to  another. However  remember that  if  the operator

which is being transformed.

This  is  any Schrodinger  picture  operator  if  this  is  the  Hamiltonian  itself  okay  then  this

Hamiltonian operator of course commutes with e to the - ie Ht over h cross it will commute

with every term in that infinite series right. And you can then write swap the positions of this

operator  H  with  this  and  then  essentially  you  find  that  if  the  operator  which  is  being

transformed happens to be the Hamiltonian itself then it remains the same.

So,  the  Hamiltonian  in  the  Heisenberg  picture  is  the  same  as  the  Hamiltonian  in  the

Schrodinger  picture  and  this  is  not  a  function  of  time  okay.  Otherwise  there  is  a  time

dependence for all of the other operators okay.
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So, this is let me summarize the essence of this. So, you have got the Heisenberg picture

operator which is time dependent and therefore its time evolution can be studied because it is

time dependent. And its time evolution is given by the rate at which it changes with time. So,



now you have got the rate at which omega H changes with time and the time dependence will

come from this term and also from this term.

And you can treat it just as if it is a function of three products of three functions two of which

the first and the third are time dependent, the middle one is time independent right. So, you

get the time derivative of this and then you have got omega s e to the -i H over h cross t + you

have got the this term omega s is not dependent on time. So, it stays as it is and then you have

got to the partial derivative of the third operator which is e to the -i H over h cross t okay.

So, now let us take these derivatives, so you will get i H over h cross here and you will get

-iH over h cross here. So, now you have got these two terms the third term is missing because

omega s is independent of time. Now you have got these two terms and let us write them in a

slightly different way because the operator products are associative. 

So,  you  can  look  at  these  terms  in  a  slightly  different  way  by  recognizing  that  this

Hamiltonian here and this function of the Hamiltonian which is e to the -i H over h cross t

these two operators can be swapped, their positions can be swapped because they obviously

commute, one is made up of the other. 

So, naturally the two operators swap, so if you interchange the positions of these two you

bring e to the -i H over h cross t to the left of this omega s and to the left of this operator H.

So, this H now is written at the end rather than the penultimate position that it had in the

previous set.
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So,  the  Hamiltonian  as  I  pointed  out  is  the  same  as  the  Heisenberg  picture  as  in  the

Schrodinger picture. The time dependence of an arbitrary operator in the Heisenberg picture



is given by these two terms. And what is this? This is nothing but the transformed operator

omega in the Heisenberg picture right. 

So, you have got a commutator over here. So, if you factor out ih cross is common you find

that the time derivative of the Heisenberg picture operator is given by i over h cross times the

commutator of H the Hamiltonian with this operator H right. So, obviously this gives you the

time evolution and this is sometimes called as the Heisenberg equation of motion for the

operator omega okay.

So, this is how the time derivative of the operator is expressed in the Heisenberg picture. It is

the operators which are time-dependent. The wave functions are independent of time. 
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Now this is contrasted with the Schrodinger picture in which the operator is not a function of

time whereas the wave function was and the relationship was affected through the generalized

transformations which are unitary transformations but generalized rotations in the Hilbert’s

space through operator. 

This  is  the  transformation  operator  e  to  the  iH  over  h  cross  t.  So,  this  gives  you  the

transformation from the Schrodinger picture to the Heisenberg picture. Now there is another

picture that is the Dirac picture it is also called as the interaction picture and in this picture

quantum  mechanics  of  those  problems  which  cannot  be  solved  perturbatively  using

perturbation methods.

This is particularly useful for such problems like the Coulomb correlations in our problem. In

the many electron problem we recognized that the statistical correlations the spin correlations



could be handled using the anti-symmetrised wave function which is the Hartree Fock theory

which we learnt is equivalent to the first order perturbation theory result. 

But there is a residual correlation in the main electron system that is the Coulomb correlation

and that is something we cannot handle using perturbative methods. Because; whereas the

first  order  perturbation  theory gives  you a result  which is  the same as  the Hartree Fock

theory, the second order and higher order perturbative methods do not give any converged

result. 

So, now we are looking of ways to deal with this term the electron-electron interaction which

is responsible for the Coulomb correlations and for these problems for which you cannot

solve using perturbative methods. The interaction picture provides you with very powerful

tools to solve the problem. So, how do you do that you again carry out generalized rotations

in the Hilbert’s space. 

But this time the transformation operator is e to the iH over h cross t but mind you this is the

H0 which is a soluble part of the Hamiltonian. So, this Hamiltonian consists of two parts one

is H0 for which you can get exact solutions. Then there is a residual part which is the culprit

in  a  certain  sense  which  gives  you  these  complications  that  you  cannot  handle  using

perturbative methods.

You can get approximate solutions Hartree Fock is a solution to this problem H0 + H1 but it

is  only  an  approximate  solution.  It  is  approximation  to  the  extent  that  it  has  taken  into

account the statistical correlations but not the Coulomb correlations. And it is the Coulomb

correlations that we are now interested in handling. So this is left out in the transformation

Hamiltonian. 

So, notice the difference between this transformation operator which is the full Hamiltonian

here in the Heisenberg picture. But over here it is only the unperturbed soluble part of the

Hamiltonian which is used to affect the generalized rotation. So, that is the big difference and

this is what gives you the Dirac picture operators omega i.

And the corresponding interaction picture wave functions are obtained from the Schrodinger

picture wave functions. By operating these Schrodinger picture wave functions by the same

transformation operator which is e to the i H0 over h cross t right. So this is the Dirac picture

and in this picture there is time dependence in the wave functions. 



The  interaction  picture  wave  function  is  time  dependent  okay. There  is  an  explicit  time

dependence over here as well as here and then there is explicit time dependents over here. So

both the operators and the wave functions depend on time. In the Schrodinger picture only the

wave functions depend on time the operators do not. 

In the Heisenberg picture it is our operators which depend on time but the wave functions do

not. And in the interaction picture both depend on time but the physics remains invariant. So,

the  important  difference  in  the  Heisenberg  picture  in  the  Schrodinger  picture  is  that  the

transformation operator consists only of the soluble part of the Hamiltonian. 
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So, here we are this is what we get for the interaction picture operator and the wave function.

And if  you now operate  on  the  interaction  picture  wave  function  by  the  adjoint  of  this

operator which will be e to the -i iH0 over h cross t then you get the Schrodinger picture

wave function right. 

And the Schrodinger picture wave function you know what we can do is rewrite this wave

function this Schrodinger equation. Because this H is nothing but H0 + H1, so that is what we

have over here. Then you have got the Schrodinger picture wave function which is Psi of s,

then you have got ih cross del over del t of the Schrodinger picture time-dependent wave

function. 

But the Schrodinger picture time-dependent wave function is related to the interaction picture

wave function by operating upon this by e to the -i H0 over h cross t okay. So, if this is an

equation which looks very similar to the Schrodinger equation as such but then there are

these subtle differences that you have to keep track of and get used to.
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So, this is; the physics is the same as we had in the Schrodinger equation in the Schrodinger

picture. What are the consequences? Let us take the time derivative of the right hand side, so

there is time dependence over here and the time dependence over here right. So, you have

two terms on the left hand side one coming from the operation on Psi s by H0.

And  the  other  which  comes  from  the  operation  on  Psi  s  by  H1  which  contains  the

complicated terms leading to electron-electron correlations, so you have two terms of the left

hand side on the right hand again you expect two terms because there is a time derivative

which has to be taken of this term as well as this term, so the time derivative of the operator

here gives you -iH 0 over h cross and then this function right.

And then you take the time derivative of the interaction picture wave function which we also

know is time dependent. So, you get a time dependent term over here so there are two terms.

However this term Psi irt is related to the Schrodinger picture wave function through this

generalized transformation operator e to the i H0 over h cross right. 

So, you have you plug it in and using this you find that e to the -iH0 t over h cross operating

on Psi i gives you the Schrodinger picture wave function. Now notice that both sides have got

this term. The left-hand side has got this coming from one of the two terms which comes

from the time derivative. 

And the left-hand side has got this term because the left-hand side Hamiltonian was written in

two pieces one the soluble part H0 and the other is the correlation part. So, these two terms

cancel each other right. So, these two terms are essentially the same they cancel each other

and you are left with the remaining relationship.
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Which  again  looks  like  the  Schrodinger  equation  but  there  are  subtle  differences  and

important differences. So, this Schrodinger picture wave function is now given by this. This

is the transformation, what it does is if you now write this only in terms of the interaction

picture terms okay. 

You write this wave function in terms of interaction picture wave function but to do that you

must operate upon this by –i H0 over h cross t. The right hand side is the same at this stage.

And now on this result you operate on both sides by e to the + i H0 over h cross t this is the

transformation operator O which affects the generalized rotation to the Dirac picture. 

So, you take this relation in this blue box okay and operate on both sides by this e to the i H0

over h cross. So, this term together with this term on the right hand side will give you the unit

operator and you are left only with iH cross times del over del t of Psi i on the right side. And

on the left side you have got this transformation of H1.

And  what  is  this  transformation  this  is  the  transformation  of  the  H1  operator  from the

Schrodinger to the Dirac picture okay, because that transformation is effected through the

operator O which is O omega O dagger. And you have essentially  the interaction picture

Hamiltonian.

But now even if this equation looks just like the Schrodinger equation there are important

differences the physics is the same when we looked at a similar relation in the Schrodinger

picture.  We had  the  wave  functions  which  had  the  entire  time  dependence.  We had the

operators which had no time dependence. 



But now you have this interaction picture Hamiltonian but what is this Hamiltonian? It has

got information coming in from both the soluble part as well as the part which is not soluble.

The soluble part is coming over here H0 is the part of the Hamiltonian which is the soluble

part. H1 is the one which we are not able to deal with.

So, you have got a relation which looks very similar to the Schrodinger equation. It has got

the same physics but here the focus; the central term is H1. It does not mean that it  has

nothing to do with the soluble part. It is of course implicit because after all it is this product

of these three operators in that particular  order which gives you the Hi t.  So, this  is the

subscript i for the interaction picture correlation part of the term okay. 
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So, this is a very similar relation but it has important differences and it is a result of these

transformations effected through the generalized transformation, generalized rotation in the

Hilbert  space  affected  through  the  soluble  part  H0  of  the  Hamiltonian.  Now  this  is  a

transformation only of the difficult part or the trouble monger if you might call it right, but

then note that H0 the soluble part also plays a role. Because O and O dagger involve the

transformation terms okay.
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So,  this  is  the  interaction  picture  term  interaction  picture  Hamiltonian.  This  is  the

transformation  of  the  difficult  the  trouble  part  but  it  is  effected  through the  simple  nice

(Question time: 42:02) yeah the interaction picture term yeah I mean as the only we are using

the interaction picture only because of  the other term the wave function.

The act  of the x not  on Psi  only easier  phase that  is  only reason why we are using the

interaction picture right, yeah the interaction picture is going to render the operators time

dependent.  The  Schrodinger  picture  operators  are  not  dependent  on  time  okay.  The

Hamiltonian in the Schrodinger picture is completely independent of time.

We are developing methods so that we can use a formulation in which the operators become

time dependent. And the operators become time dependent in the Heisenberg picture they

also become time dependent in the interaction picture and to develop the powerful techniques

of Feynman diagrams the most convenient framework is that of the interaction picture. So, I

am laying down the groundwork for that.

You are doing essentially the same physics, so as of this stage we have not introduced any

methodology to deal with the residual correlation. But that is something that we are going to

develop in the next few classes in this unit. So, the first task in today's class is to show how

you affect these transformations and these are necessary because our essential problem is that

we are not able to deal with the electron-electron correlations in the Schrodinger picture.

We tried using perturbation theory we succeeded with first order perturbation theory but then

when we use the second order or higher order perturbation theory we fail, so; but perturbative

methods are not useful to deal with that one way of dealing with it was the RPA which we

discussed in the previous unit. 



But now we are using we are developing other methods which make use of Feynman diagram

methods  and  these  will  make  use  of  the  interaction  picture.  But  to  be  able  to  use  the

interaction  picture  we need the  operators  to  be  time dependent.  So,  what  we have  done

through  this  transformation?  The  transformation  is  effected  through  this  transformation

operator e to the i H0 over h cross t.

So, this is the transformation operator O it provides a generalized rotation of the state vectors.

So, this is the wave function and this is transformed to a new function which is on the left

hand side and the new wave function is obtained from the previous old wave function of the

Schrodinger  picture  by  a  transformation  operator  which  is  made  up  of  this  exponential

function operator.

But it has only the unperturbed part of the Hamiltonian only the H0. And this makes both the

wave function Psi i time-dependent and the operators omega also time dependent. Now when

you  carry  out  this  transformation  on  the  electron-electron  term  and  that  is  where  the

correlations are coming from. That is where the Coulomb correlations are coming from, the

statistical correlations we know how to handle.

But the coulomb correlations have to be handled and through this transformation this operator

H1 which is otherwise independent of time. This operator H1 which is independent of time

now becomes time dependent, the time dependence is coming here. So, we have succeeded in

expressing  the  electron-electron  interaction  term  this  is  the  difficult  term  which  was

otherwise independent of time.
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But we have not succeeded in expressing it as a time dependent operator but correspondingly

the wave functions are also transformed and then we will do physics in the interaction picture

rather than the Schrodinger picture. So, the subscript i over here look similar to the number

one over here. So, the two fonts are very similar but keep track of the fact that H1 is the

electron-electron interaction term.

Hi is the corresponding interaction picture term which is a transformation of H1 through the

generalized rotation affected by the operator which carry out the transformation from the

Schrodinger picture to the interaction picture. 
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So, this is the interaction picture term and this is a transformation of what only the H1 part

not the H0 part. This is the transformation only of the H1 part but the transformation is by the

operator omega by the operator e to the iH0 over h cross t and this is where the soluble part of

the Hamiltonian shows up. 

So,  you  have  got  time  dependence  which  is  contained  in  the  wave  function  Psi  i  the

interaction picture wave functions are time dependent. And the interaction picture operators

are also time dependent both are time dependent and the time dependence is governed both

by H0 as well as by H1 as it ought to be because the physics is the same.
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So, this  is  again a unitary transformation and notice that  if  there were no interaction the

electron-electron interaction were 0, then this H1 would be 0 Hi would be 0 and what if Hi is

0 then the time derivative of the interaction picture would also be 0 and then the interaction

picture becomes independent  of time okay. So, it  is  particularly  tailored to  deal with the

electron-electron term which is the one which we really want to focus on.

 The soluble part we already know how to do it in quantum mechanics you know it in your

first course in quantum theory. So, it is the difficult part and that is what is the focus in the

Dirac picture. So, if there were no electron-electron interaction then the interaction picture

wave function becomes time independent.

And you get a result similar to the Heisenberg picture but that is a special case. When there is

no electron-electron interaction all right. Let us study task time development operator now.
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Now what the time development operator does is it gives you the wave function at a later

time t from an earlier time t0. So, this is the time evolution from the time t 0 to the time t and

this is the result of the time evolution operator and its properties are quite familiar to you

because you can carry out a transformation from t0 to t through an intermediate instant of

time t1.

So, first carry out look at the evolution from t0 to t1 and then the evolution from t1 to t. So,

you  can  have  a  cascading  effect  like  this.  So,  this  is  an  essential  property  of  the  time

evolution operator. You can also see that if you look at the evolution from instant of time t to

the same instant of time t then of course you have the unit operator right. 

So, if you break this into any intermediate step you have U t ,t = 1 from t1 evolution from t3

to t1 can be done in two stages t3 to t2 and then t2 to t1 you can do it you can break that time

interval into 2 pieces, 3 pieces or even infinite pieces okay. It is the continuous time interval

you can break it into infinite pieces. 

So, these are the properties of the time evolution operator we have already seen that if you

break it from; If you look at the time evolution from t to t0 and then from t0 to t then you find

that  the inverse of t0  to t  evolution is  the same as t,  t0,  essentially  if  you look at  these

properties.

You find that the inverse exists there is a closure property, the unit operator exists and these

are the properties of operators which constitute a group okay. Because you have the closure,

you have got the existence of the unit operator and you also have the inverse. So, they these

time evolution operators they constitute a group. 
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So, this is the unitary transformation the reason it is unitary is because it preserves the norm.

You look at  the wave function you construct  its  norm. So, this  is  the norm of the wave

function in the interaction picture and you obtain it by looking at the evolution from t0 to t on

the; this adjoint vector is given over here. 

And this operator being unitary you have U dagger U = 1. And what you find is that the time

evolution operator is essentially a unitary operator because it preserves the norm. 
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So, these properties will be utilized in our analysis. So you have got the interaction picture

Schrodinger equation now. This is the time evolution from time t0 to t  of the interaction

picture wave function. This is for an arbitrary time t0 okay and essentially you get from this

because this result holds good for any arbitrary interaction picture wave function. 

So, there is a corresponding operator equivalence of the operator which is operating on this.

So, that operator equivalence is HiU on the left hand side is equal to ih cross del over del t of

the  time  evolution  operator.  So,  this  is  the  equation  of  motion  of  the  time  development

operator. 
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So, we have got in this the initial state was recognized at t =0 but if the initial time is some

arbitrary time t0 then here instead of this -i over H cross ht instead of this t you will have t -

t0. So, it is just an offset of the 0 of your time scale, so if your 0 of the time scale is at t0 you

have this more general form and for this form you have the t - t0 coming over here. 

Keep track of the fact that there are two exponential operators one containing the unperturbed

part of the Hamiltonian which is H0 that is the soluble part. Here also you have got a similar

term but this is the full Hamiltonian okay. So, you have to keep track of these details okay. 
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So that is where what we have got this is the Schrodinger picture wave function which is

related  to  the  interaction  picture  wave  function.  So,  you  can  write  this  result  for  the

interaction picture in terms of the interaction picture wave functions. So, now this term which

is equivalently written by this term and now you have this left hand side Psi irt coming over

here and at the right hand side you have got this term which comes here.



You have got the middle term which has got the full Hamiltonian which comes over here with

the t - t0 and then the last term is given over here. So, this becomes your time evolution

operator for the interaction picture okay. This is one describes the time evolution from t0 to

time t for the interaction picture time evolution operator. 

So,  this  is  the  time evolution  operator  in  the interaction  picture  and you can explore  its

properties also okay. So, you must remember that you have got the exponential operators in

which you have got the Hamiltonian but you have got the unperturbed Hamiltonian here, you

have got the unperturbed Hamiltonian H0 over here, you have got the full Hamiltonian over

here right. 
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So, we know the usual property when you take the joint of an operator of a adjoint of the

product of an operators you get this relation. So, if you take the adjoint of this operator you

get the adjoint of this then the joint of this and the adjoint of this comes over here. And

essentially you find that this is also a unitary operator okay. So, in the interaction picture also

you have got the time evolution described by a unitary operator.

So, these are you know more or less obvious properties but then you have to demonstrate

their  properties  using  explicit  transformations.  And  the  transformations  have  to  be  done

carefully because you have got the Hamiltonian in the exponential terms but the unperturbed

Hamiltonian here and here with the full Hamiltonian over here. 
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So, this is the equation of motion for the time development operator now and it has got a

formal solution which we have just seen which is given by this product. And this is where I

will  take a break and stop for the day and we will  continue from here in the next class.

Remember that in general the full Hamiltonian does not commute with the unperturbed part.

So, the order in which you carry out this product is critical okay.

That  is  absolutely  important  and that  is  where  I  will  stop  and with  this  platform I  will

introduce the chronological operator which is known as the Dyson's chronological operator in

the next class. If there is any question I will be happy to take otherwise we break here and

resume in the next class.


