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Bohm-Pines approach to Random Phase Approximation

Greetings, this is the last lecture of unit 3 in which we are discussing the electron gas in the

random phase approximation. Specifically we are using the Bohm Pines approach there are

various alternative ways of arriving at the random phase approximation. In the next unit in

unit 4 we will be discussing the logramatic perturbation theory. 

But today we will conclude the discussion on the Bohm Pines formalism of the random phase

approximation.
(Refer Slide Time: 00:50)

Now in our previous class we rewrote the transformed Hamiltonian in a certain number of

terms. Now here just for the sake of our discussion and for book keeping this we recognize

already is a kinetic energy term. This is what I will write as a certain interaction. This is an

interaction which is part of the new Hamiltonian.

In  the;  under  the  unitary  transformation  we have  arrived  at  a  new representation  of  the

Hamiltonian. So, this term is what we will write as H interaction and this term over here as K

okay. So,  these  are  just  some book keeping devices,  so that  we can  discuss  these  terms

separately. 
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So, now you have H interaction here and K here and these are the complete expressions for H

and K. Now the Hamiltonian looks more compact that does not mean that we have solved the

problem it only looks a little more compact. Now look at this part we are and some of you are

beginning to recognize this term this term is beginning to look like the Hamiltonian for a

harmonic oscillator okay.

It is looking like that already. Here we have used Mk square, so this is Mk square there is also

a k square here. So, Mk square k square is nothing but 4pi e square by V, so together they will

give you the plasma frequency which is a frequency of oscillations but of course there are

other terms.
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So, let us look at these terms now, let us first have a good look at this term. So, here Mk

square k square is 4pi e square by V which means that the plasma frequency omega square

will be which we know is 4pi Rho V square by  m because Rho bar is nothing but this N by



V. So, this N is coming here, 1 over V is coming from here, so 4pi Rho bar e square by m

gives you the square of the plasma frequency okay.

So, N over V which gives you the average static charge density is here, this is N and the 1

over V is an Mk square. So, Mk square k square is 4pi e square by V and that is what we have

used okay. So, this gives you the plasma frequency and you can just rewrite this instead of in

terms of M square k square you can now write it in terms of the plasma frequency. Here N

over V will cancel this 1 over Rho bar in the denominator.

So, that will give us some further simplification, so N over 2m M square k square because if

you divide this term by 2 then you get half of omega square. So, that is the half omega square

written here. So, we have rewritten this term now it looks a little more familiar and much

more like the harmonic oscillator term.
(Refer Slide Time: 04:53)

Here it is if you combine these two terms you have k less than kc okay. And these two terms

together there is a half common to both the terms there is a P dagger P which is here. Then

you have  got  omega square Q dagger  Q which is  here  these operators  P and Q are not

hermitian but does not matter okay. But they do represent a harmonic oscillator this is the

harmonic oscillator Hamiltonian. 
Then you have this term which is here, you have the interaction Hamiltonian which is here,

you have got a short range term which is here and you have got k which is here and you also

have this minus of 2pi e square Vk square N which is here. So, all the terms everything is

there.
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The  whole  expression  is  exact  the  short  range  part  of  the  Hamiltonian  is  what  we  had

identified earlier. This was the part corresponding to k less than kc. So, these are the exact

expressions, there is no approximation anywhere as yet its exact okay. Now it perhaps occurs

to some of you looking at these terms because we have done this earlier, when we dealt with

the classical model.

We dealt with the electron gas in the classical model or what did we do we use the random

phase approximation,  we did the linearization,  we threw off the quadratic  terms and it  is

because of certain terms which were coming in. There were phase terms cos theta sine theta

they were coming from this e to the i theta expressions right. We recognize that they are like

vectors in a two-dimensional surface.

And when they are randomly oriented the sum total of all these vectors will vanish okay the

cos theta sine theta terms and you have them in the term K. The interaction represented by the

term K is  here this  is  the complete  form of  K.  And here you have got  terms which are

quadratic in Q and you have got these phases you are summing over k and you are also

summing over l.

But these are random phases and you expect them to cancel each other which is what gives

you the random phase approximation. If you ignore the term K completely which is to go

ahead and linearise ignore the quadratic term in Q okay. Ignore this term do the linearization

keep track of these phases and these phases being random. They allow a cancellation  of

vectors on a two-dimensional surface.

Because these complex numbers are can any complex number can be represented as a vector.

So, the vector sum of all of these would vanish. This is exactly the same argument as we did



in the previous case. So, in the land of phase approximation K can be ignored. This term can

be thrown off. Yes (Question time: 08:39- not audible) it is the same argument as we did in

the classical model. In the previous class we had exponential functions.

We had each of the theta e to the Phi which is cos theta + i sine theta and cos Phi + i sine Phi

and you had a cos theta + i sine theta multiplied a cos Phi + i sine Phi. All of these cosine and

sine terms are of modulus 1, the maximum value is 1. The value of the products is less than 1

okay and when you sum over all of that all of these sine and cosine waves in random phases

they will cancel each other.

You can think of it as a vector diagram because a complex number A + iB can be written as

Rho e to the i theta, the phase theta is sine inverse of the ratio of x over y right. So, you can

write it as a vector and these vectors on a plane are randomly oriented. So, there is sum of all

these randomly oriented for every vector which is in this direction there is a vector in the

opposite direction, the sum of these two vectors will 0, will give you 0.

So, all of these vectors in pairs will cancel each other which is why it seems like such a good

approximation. So, you are certainly throwing out the term K certainly the motivation to do it

is I am sure that it is such a complicated term. But the justification for doing it is the fact that

all of these vectors will cancel each other which is the random phase approximation. So, the

name random phase approximation is extreme be appropriate.

It  is  completely  justified because it  is  coming from the cancellation  of these oscillations

which  are  in  random  phases  they  all  cancel  each  other.  So,  in  the  random  phase

approximation you have a linearization process you are ignoring these quadratic terms and

this is then cancelled. So, the term K which contributes to this transformed Hamiltonian can

now be thrown off okay. So, this is the random phase approximation.
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Now let us write the Hamiltonian, the rest of the Hamiltonian and we do not have K anymore

in this okay. What is this short range interaction term, now let us see what kind of a system

does this Hamiltonian represent what is the physical system? What is the meaning of this

physical system? We have cancelled a term namely the term K, the net Hamiltonian you have

now has got these pieces and we will interpret them.

First let us have a look at this short range term what is it? What is it telling us? The explicit

form of the short range part of the Hamiltonian is this. This is the; you remember this was the

term T2. In the previous class we discussed the term T2 in the original Hamiltonian.  We

recognized that when you transform the Hamiltonian you transform the term T2 which is

actually invariant. 

But the invariant T2, we wrote in two parts and this is the short range part of T2. This is

essentially the short range part of T2 and what it represents is a set of quasi particles which

are interacting via a short range. These are not the real electrons, these are quasi particles.

Now let us have a look at these terms a little closely Mk square is this term okay. 

So, you write instead of Mk square you have a factor of half here. So, you have a half here

and a 4pi here, so that gives you a 2pi, so this is 2pi e square over Vk square. This is your

short range Hamiltonian,
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Now let me remind you that the potential energy of the ith electron due to all the electrons

and the positive background is given by this term. We have discussed this explicitly in one of

the previous classes may be just one or two or three classes earlier  right.  So,  this  is the

potential energy of the ith electron.

What is it  energy due to it is because of all the other electrons, all  the electrons and the

positive background. What about this? If you now add, U ri sum over i going from 1 through

N. So, that you sum over all the electrons. Now all the electrons are summed over. So, there

is no single electron which is separated out. So, you are counting the all the energy.

But the energy potential energy between one electron and the other is the same as a potential

energy between this electron and the first. So, that is the reason you must take a factor of half

over here. So, that you do not do any double counting. So, this is the total potential energy

due to the Coulomb interactions of all the electrons and the positive background. 

Why is a positive background involved because you have dropped the k = 0 term. That is the

term which cancels the background effects okay and the background terms are of two fold

one is the background-background interaction in the original Hamiltonian and the other is the

electron background interaction. So, that is also taken care of. 
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So, this is the total potential energy due to the Coulomb interactions of all the electrons and

the positive background. Now if you add and subtract the j = i term because here j = i was

eliminated. Now if you add and subtract the j = i term. So, now j = 1 through N is included

here. But j = i has been added, it was not there in the original some right. Then you must

subtract the corresponding extra term that you are mathematically added.

What you have to subtract is this term, we have discussed this earlier right. Because for j = i,

you get ri = rj, so you get e to the 0, so you get 2pi e square over k square which you must

add to itself N times right. So, you get N there is a 1 over V here so that gives you N over V

times this summation k not equal to 0 2pi e square by k square. What is this? This is coming

from the self energy because for j = i you have essentially the self energy right.

So, what you have added is what you are subtracted and what you have subtracted is the self

energy. So, this is the term that you have to subtract and here you have got the components of

the Fourier components of the charge density. So, you can rewrite this expression in terms of

Rho k star okay. This is k e to the ik dot ri times e to the i k dot rj but the exponent is with a

minus sign here.

So, you get Rho k star Rho K you are summing over i and j both from 1 through N nothing is

missed out on because the j = i term is included in this summation and the corresponding

effect of self energy is subtracted over here. So, if you now combine these two terms you

have 2 pi e square by k square summed k common in both the terms. So, you have 1 over V

which is common to both the terms.

You have got 2 pi e square by k square which is common to both the terms and you must

subtract Rho k star Rho k - this N to get the net result. So, this is the total potential energy



due to  the Coulomb interactions  of  all  the electrons  on the  positive  background the  self

energy term is here okay. This is the self energy term, so that is taken care of all right.
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Now this is our result which is the total potential energy due to Coulomb interactions of all

the electrons all the pair interactions are taken care of, the background is taken care of. What

was  our  expression  for  the  short-range  Hamiltonian?  We  had  separated  the  term

corresponding to k greater than kc which is the short range part of the Hamiltonian. And look

at these two relations they look so much the same right.

But there is some difference, the difference is here that in this k must be greater than kc right.

So, this is the difference and this if you remember the Fourier transforms of the Coulomb

interaction and the screened Coulomb interaction, the difference is here because if you write

mu square + k square as kappa square if you okay, this is where I have written then whenever

k is greater than kc it amounts to having a kappa which is greater than or equal to mu.

So, you can write this as 4pi over kappa square which is similar to the Coulomb interaction

itself. So, the difference is the same as that you have between the Coulomb interaction and

the screened Coulomb interaction. So the short range part of the Hamiltonian the HSR what it

represents is the total potential energy due to short range interactions. 
This is the screened Coulomb interaction not between the electrons but between these quasi

particles. So, that is the term corresponding to the screened Coulomb potential.
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So, now you have got the short range identified the term K is ignored in the random phase

approximation but you still  have to worry about the H interaction term. Now can you do

something like RPA to get rid of this term okay and because of the presence of these terms it

is not obvious that you will be led to cancellations but in fact it can be done.

And that is a little more detailed involved algebra which I am not going to do in this class or

in this course. I will only mention the result that it is not obvious that this gets cancelled. But

what you can do is to carry out a further transformation and we have used these tricks earlier

on in interpreting the Dirac equation. We did the Foldio Dyson transformation then we did

another Foldio Dyson and transformation.

So, a cascade of transformations leads you to certain terms which become amenable to easy

physical  interpretation.  And  in  this  case  you  need  to  carry  out  another  canonical

transformation okay. So, obviously there will be more terms to keep track off and you know a

little more cumbersome mathematics not difficult just a little bit cumbersome. 

So, if you do a further transformation and this was carried out by Bohm Pines which enables

you to take into account major effects of the H interaction term by ignoring certain terms

again there will be a linearization process. There will be some more auxiliary coordinates and

momenta which are introduced in the second transformation right. And in that you will have

new quadratic terms which you could ignore just the way you did over here.
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So, you can carry out this process of RPA to another level which we will not do in this course.

But when you do that what happens is in the first RPA you can already ignore K and in the

second RPA you can carry out this transformation of the full Hamiltonian once again after K

is dropped. 

This is not the original Hamiltonian this is the transformed Hamiltonian not even the exact

transformed Hamiltonian.  But the transformed Hamiltonian from which K is dropped. So,

you drop K and then carry out this transformation and the result is that these two terms get

modified. 

This is the thing which looked like an oscillator. But you cannot live with it anymore because

it is going to get modified. If you want to ignore H interaction term the price that you will

have to pay is that these terms get modified. These two terms get modified and what is that

result what is the modification
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the modification is this that the sum of the first two terms has to be rewritten as a result of

this second Bohm Pines canonical transformation of the Hamiltonian and instead of this P

squared over 2m you get P squared over 2m which is scaled by the factor of 1 - beta square

by 6 where beta is a new parameter which is a ratio.

Which is defined by this kc over kf and you get another a different Hamiltonian over here

which again happily looks like a harmonic oscillator. But with a slightly different frequency

which is not omega p square. But omega p square + a function a quadratic function of k. So,

this becomes dispersal, so it is weakly dispersal. But you get a harmonic oscillator again

okay. 

So, this  is  the transformation which is  useful this  is  the second canonical  transformation

carried out by Bohm Pines it includes slight dispersion. So that the frequency of oscillations

of the electron plasma, now becomes k dependent, so it becomes dispersive and the kinetic

energy term is no longer just this p squared over 2m. But it is scaled by a factor of 1 minus

beta square by 6.

And then detailed calculations can be done, so I will just quote a result for one of the metals

like for sodium atom beta turns out to be nearly equal to .7 and the kinetic energy because

you have to subtract the kinetic energy from this 1 you have to diminish this term beta square

by 6. So, the kinetic energy is diminished by about 8 percent. 

So, there is a certain small correction that you are led to because of this second canonical

transformation.  So,  the  first  canonical  transformation  already  gives  you a  handle  on  the

system and now you carry out a second transformation and you get an 8 percent reduction of

the energy.



(Refer Slide Time: 25:29)

So, now with having discussed how we account for all the terms. How we account for the H

interaction term? How we can deal with it using an additional canonical transformation? We

can now throw these two terms okay. And interpret the rest of the Hamiltonian. So, this is

what we have the new Hamiltonian then has this term the P squared over 2m the kinetic

energy term. This is a harmonic oscillator kind of term.

Then you have got this 2 pi e square over Vk square which is here and you have got the short

range  interaction  term,  which  we  have  identified  as  the  short  range  interaction  between

particles or quasi particles which are interacting through this screened Coulomb interaction

well. Now we can answer this question what kind of a physical system does this Hamiltonian

describe.
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So, let us first of all rearrange the terms a little bit I combine this term with Hsr okay. So, I

can look at these two terms together okay. So, these two terms were written in the same

summation. So, we are not doing any approximation or anything we are only interpreting this

term and this term together. This we already know what it is? This is coming from the self-

energy right. 
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So, let us have a look at the transformed Hamiltonian. We have now ignored K, we have

ignored H interaction ignored in the sense yes and no ignored because we are not going to

discuss it here. But not ignored because we have mentioned if not analyzed in details how

that  term  can  be  handled.  It  can  be  handled  by  carrying  out  a  further  Bohm  Pine

transformation of further canonical transformation okay.

We know that its effect is to lead to a slight reduction of the kinetic energy term. We know

that it will involve a further approximation which is again a random phase approximation

which  will  involve  linearization.  It  will  involve  ignoring  certain  quadratic  terms  of  new

auxiliary coordinates which have to be introduced in the transformation right.
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And everything is reference to a subsidiary condition that the new momenta which change

under the transformations. They do not when they act upon the wave function you get a zero

and now we can really describe this system. So, you have got an oscillator which looks like

the  simple  harmonic  oscillator  over  here.  This  is  the  typical  expression  for  the  simple

harmonic oscillator and this represents essentially the plasma oscillations.

So, their quanta are the plasmons that we talked about okay. Then you have the short range

interaction between these quasi particles okay. So, this is like any other Hamiltonian you have

got a kinetic energy part plus a potential energy part okay. It is of certain interaction so this is;

what  is  the  interaction  now? This  is  the  short-range interaction  this  is  not  the  Coulomb

interaction.

The  Coulomb  interaction  we  these  transformations  enable  us  to  separate  the  Coulomb

interaction into a short range part which is sitting in this box here in the Hsr. And a long-

range part whose effect has been taken care of, it is buried in the plasma oscillations okay. It

goes into these terms, so the long-range part of the Coulomb interaction has been handled

separately.

The short  range  part  of  the  interaction  is  what  you are  left  with.  This  is  the  interaction

between quasi particles which are interacting with each other only through short range terms

like a screen Coulomb potential.  And then you have got a term over here which is just a

constant term which has to be added because it is corresponding to the self energy part which

is not accounted for in the plasma oscillations.

So, there is a certain self energy part which is in this last term. So, all the terms are now taken

care of and we know exactly what this new Hamiltonian tells us. Notice that we had a mess,



we had so many terms and we needed to take a break, we had lots of terms and they looked

so terribly messy. 

But then it requires somebody like Bohm and Pines to think of these transformations carrying

them out effectively to a new set of auxiliary coordinates and momenta. In terms of which

you can get to address those terms that you had left out in the Hartree Fock theory. These are

coming from density fluctuations okay. These are the density fluctuations of the electron gas

Hartree Fock theory does not deal with it.

It is as if you have got a static electron density in a Hatree Fock gas okay we does not change.

So, if a particle if one of the electron is going to move rapidly from one point to another what

happens to the remaining charge density. We pretend in the Hartree Fock approximation that

it does not change. So, that is the frozen orbital approximation which is underscored in the

Hartree Fock.

Those  would  generate  density  fluctuations  what  was  ignored  in  the  Hartree  Fock,  other

density fluctuations because you feel have got a rapid transit of a charged particle over there

in the medium. Then of course it will change the local density and that will then generate a

wave  these  are  the  waves  which  we  are  now  talking  about.  These  are  the  collective

oscillations of the electron gas.

This is coming from the electron correlation which was missing in the Hartree Fock model or

in the first order perturbation theory model. The second and higher order perturbation theory

does not converge. So, perturbative approach does not work but these methods work. There

are alternative ways of doing quantum theory. One is method of canonical transformations as

was done by Bohm Pines.

There are some other ways also but this is one of the very powerful ways of doing quantum

theory which so carry out canonical transformations. And this one is a particularly useful one

because  the  resulting  Hamiltonian  now looks  so  neat  okay. You  have  got  the  harmonic

oscillators over here, so you have got the collective oscillations of the electron gas. You have

got a Hamiltonian for a set of particles.

But these are not the original particles, so these are called as quasi particles these are like the

elementary excitations which interact through a short range interaction and then you have got

a self energy correction. And the long range part of the interaction is accounted for in the

plasmons and the short range terms are over here. So, it is not that there is a new interaction

there is no external perturbation that we have added to the system.



These are all interactions which are internal intrinsic to the system, it is intrinsic to nature.

But what the mathematical model has enabled us to do is to interpret these interactions by

going beyond the single particle model, the Hartree Fock model is a single particle model it

expresses the solution as a Slater determinant made up of these N particles. But there is a

single Slater determinant.

The product wave functions are, you know the anti symmetrised wave function is made up of

products of these one particle wave functions but there is only one set that you use. Of course

you  can  deal  with  these  correlations  in  some  other  way  also.  You  can  do  a  multi

configurational Hartree Fock that the Hartree Fock wave function which is a single Slater

determinant does not give you the correct solution.

Because it has left out electron correlations, so you can write to the system wave function as a

linear superposition of a number of wave functions and that is one way of taking into account

correlation. So, there are various alternative paths to doing many-body theory. There is no

unique path but this  is one of the very promising paths. This is the method of canonical

transformations; this is the method of Bohm and Pines.
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And what it is based on is a linearization process and this is the heart of the RPA, of course

there are other things which go into the RPA. This is not the only thing but this is the heart of

the approximation that the quadratic terms are ignored because these terms which have got

random phases they represent a vector addition of a large number of vectors of equal and

opposite which are equal and opposite so their sum total goes to 0.



There are other paths to RPA there is a method known as the equation of motion method,

there is a greens function method, there is diagrammatic perturbation theory. So, there are

various alternative ways of arriving at this. Why are the equivalent, because they all involve

the heart of the RPA which is the linearization process. 

The tools are different the details are different but all of them involve one common feature

which is the process of linearization. There is also the Hartree Fock method but you have to

go beyond the Hartree Fock. But follow the Hartree Fock approach and this is done in the

time-dependent Hartree Fock.

This was developed by Delgaarno and Victor and there is the time-dependent Hartree Fock

which also you can use. But there again you will have to do some linearization. So, this was

done by Delgaarno and Victor. And relativistic version was developed by Walter Johnson

which is a relativistic random phase approximation.

So, this is an alternative way of doing a linearization approximation which is also therefore

call  as  a  random phase  approximation.  But  the  approach  is  different  and  in  this  unit  I

discussed the Bohm Pines method specifically because this method explains the term random

phase approximation. 

Why what are these phases but when you are dealing with other methods like time-dependent

Hartree Fock or the equation of motion method right. You are not going to meet terms of this

kind okay. You will have some linearization process, so you will have a process which is

mathematically equivalent to this. 

So, which is why many books and research papers refer to the to these approximations as

RPA but they simply say that the term RPA only has a historical importance and it is not

because you need to look for what phases are cancelling each other because they are random.

So, the terminology comes from the Bohm Pines method of canonical transformation.

And we have discussed that in unit 3 in considerable detail. We spent many classes to develop

this  only  to  explain  this  term random phase  approximation.  And  in  the  next  unit  I  will

introduce the diagrammatic perturbation theory the Feynman diagrams and there also we will

develop the Feynman diagrams.

And we will see that a certain class of diagrams correspond to the RPA. So, the Feynman

diagrams have got various shapes and there are diagrams which we will write as what are



known as ring diagrams. And these are the diagrams which we can retain ignore some of the

other diagrams. We do that also in the linearized time-dependent Hartree Fock. 

In the non relativistic RPA or you do the same thing in a linearized time-dependent Dirac

Fock, when your starting point is a Dirac equation rather than the Schrodinger equation. So,

that  is  approach which was taken by Walter  Johnson. And you have the linearized time-

dependent Dirac Fock formalism which is also the random phase approximation. But when it

is based on the relativistic equation it is a relativistic RPA.

So, thank you very much if there is any question I will be happy to take otherwise we will go

over to the next core, next unit which is the diagrammatic perturbation theory. Yes (Question

time: 39:54-not audible) yes Jobin; I have question when you factorise this Hamiltonian  is it

okay to say that the gas one oscillation is a correlation  thing and the other, the second term is

it okay to say that or it is not so.

Well it is like a Hartree Fock the second term corresponding to you are referring to the short

range part of the Hamiltonian right. Yeah that quasi particles in a short range yeah you are

referring to this term, yes, you can think of this as interaction between single particles just as

you do in the Hartree Fock. The difference is that these single particles are no longer the

physical elementary particles of nature.

These are dressed particles these are pseudo particles these are quasi particles they are not

particles of nature the sum i going from 1 through N is over a certain number of particles

which are like quasi particles and they interact with each other. So, if there is any further

correlation between them that is not included so in that sense you can think of it as a Hatree

Fock system of quasi particles okay.

So, they are treated as single particles but these are not the original particles. So, one has to

be  careful,  so  they  are  interacting  particles  but  they  are  not  correlated,  so,  any  further

correlations between these quasi particles is not contained in the Hamiltonian which is Hsr.

So, if there is any residual correlation between these quasi particles it is not included over

here.

So, in that sense you can think of them as a Hatree Fock gas of pseudo particles. This is the

collective oscillations of the electron gas. So, any residual correlation of these particles is not

included in this Hamiltonian. So, this is the transformed Hamiltonian in which the term K is

dropped because of the random phases. The term H interaction is dropped in how we have

written it, where it does not mean that it has to be completely ignored.



Because  some  part  of  it  can  be  accounted  for  by  carrying  out  a  further  canonical

transformation. So, that is a matter of detail and one of the consequences that we mentioned

was the reduction of the kinetic energy by about 8 percent in the case of sodium atom. Any

other question (Question time: 43:28- not audible) what is the physical reduction of kinetic

energy for sodium; 

That it is just a net result; then how physically like kinetic energy is reduced yeah your no

more and you are not talking about the particles, these are pseudo particles. So, that it is just a

mathematical  reorganization of the total  energy. So, you have got the total  energy of the

system. But it is like having plenty of food in this hall right. And there is that much of energy

which is available in this hall and if some of us eat some of it the energy gets reorganized.

The total energy remaining the same, so because you have carried out a transformation of the

Hamiltonian you interpret certain terms to have a kinetic energy which is reduced in relation

to the earlier one it is not that the energy is lost because it is taken care of in some of the other

terms.  So, there is  some energy which goes  into the plasma oscillations  okay. These are

simple harmonic oscillator excitations. 

So,  what is  excitation spectrum of a simple harmonic oscillator  it  is  N plus half  h cross

omega. This omega is a plasmon and frequency it is either omega P or the one with dispersion

which is a different frequency. So, there is some energy over there, there is some energy in

the self energy term right. So all of this put together, so what is reduced over here, is not lost

it goes into some of the other terms.  

Otherwise  where  will  the  energy  form  the  other  things  come  from.  So,  it  is  just  a

redistribution of the energy but you interpret the physical system not in terms of the original

electron gas but in terms of collective behaviour of the electron gas. So, though you do not

say that this is electron A,B,C,D electron1, electron2, electron3.You do not do that in Hatree

Fock as well.

But there you do not do it only to the extent that the statistical correlations are taken care of.

You do not do it because of the identity of the particles because of the Fermi Dirac statistics.

So, there is a certain correlation because of the Fermi Dirac statistics that is taken care of in

the Hartree Fock. But over and above that there is additional correlation this is what we call

as the Coulomb correlation okay.



Very often when we discuss the Hartree Fock in our earlier course on atomic physics there

also  we mentioned  that  we make  a  technical  difference  in  the  term in  the  usage  of  the

expression Coulomb interaction and Coulomb correlation. So, Coulomb interaction of course

is taken care of in the Hartree Fock along with the exchange. 

But the Coulomb correlation is what are left out of the Hartree Fock that over and above this

there is a certain correlated dynamics. Because if you create any disturbance in the charge

density you got an electron gas and you remove a certain charge density or you add some

charge density over here you are pretending as if nothing is happening to the environment.

How is it possible if you create a hole over here right. 

Then another electron part of the electron gas which is around it, will tend to move in you are

not allowing that movement in a frozen orbital approximation. Which is why this is a method

which allows you to take into account the electron correlations. So, this is the fully many-

body method which allows you to address the electron correlations all right. 

Any other question yes Moorthy (Question time: 48:07- not audible) how to call that random

phases are leading to cancellation or random phases leading to linearization. It is same, it is

same linearization  involves;  the ignoring cancellation  of the random phases,  ignoring the

quadratic terms you cannot do linearization without the cancellation of the phases or vice

versa they are part of the same term okay.

The quadratic part under phase terms which kill each other because of their random nature is

the same term okay. So, thank you very much and in the next unit we will do diagrammatic

perturbation theory.


