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Density fluctuations in an electron gas

Greetings, we will discuss the electron gas in the Jellium potential we did it at the Hartree

Fock approximation, we did it using perturbative methods and we found that the result in

perturbation  theory is  the same as what  you get in the self-consistent  field Hartree Fock

method. But then we need to go beyond this approximation and the approximation that we are

going to introduce today is the Random Phase Approximation.

And  the  main  references  for  this  again  are  from  the  article  by  Raimes  and  reports  on

Progression in Physics 1957 and his book Many Electron Theory.
(Refer Slide Time: 01:03)

And what is done in this model is to treat the electron gas as a plasma okay. So, these are the

plasma oscillations that you are going to look at the plasma is often described as a fourth state

of matter  it  is  a  highly ionized  region as such there are  plasmas in  ionized tubes in gas

discharge tubes.

As one knows there is plasma in that atmosphere in the Valan, Alan, Bell's and in various

bells  of the atmosphere,  so the plasma has a place in many places in nature and even in

laboratory. It is a very highly ionized region as such you have positively charged ions in the

plasma and you also have virtually free electrons in the plasma. The whole system is typically

electrically neutral.
(Refer Slide Time: 02:05)



Now our picture of the electrons in metal is similar to that of plasma because you have got an

assembly  of  positive  and  negative  charges  the  whole  system is  electrically  neutral.  The

positive charges are sort of frozen in physical spaces so their vibrations we do not consider at

this point they have far more inertia than the electrons.

So, to the first approximation we can consider them to be frozen in space their oscillations are

not involved. Although when you consider lattice dynamics and so on you can always make

subsequent corrections.  But we begin with the model that  the positive ions are frozen in

space. 

But  beyond that  we also make the Jellium potential  approximation  and so on,  so that  is

something that we have done in the previous considerations. What we are going to do today

is to consider oscillations of the electron gas.
(Refer Slide Time: 03:15)

And I had referred to this picture earlier that you have not positive and negative charge in

balance. You consider a small displacement of the electron gas to the right. So, that you have



a net negative charge on the right side of the figure and the net positive charge on the left

side.

So, there is a net negative charge per unit area which is - e Rho times Xi if Rho is the volume

charge density. And then you have got a net positive charge per unit area on the left side

which is got the same magnitude but it has got a positive sign. The surface charge density is e

Rho Xi.

This is the; I am using Rho bar to represent the average charge density because we are going

to very soon introduce  density  fluctuations  okay. So,  I  am using the symbol Rho bar  to

represent  this  charge density  and the net  electric  field will  be the surface charge density

divided by epsilon zero. So, that is coming straight from classical electrostatics.
(Refer Slide Time: 04:42)

This is the net field and the equation of motion is just mass times acceleration is equal to the

force, so the forces which are you know force per unit area which is the intensity times the

charge which is – e. And essentially you have a simple harmonic motion over here. You have

got an equation of motion for the simple harmonic oscillator.

Which oscillates  at  a frequency which is  given by the square root of this proportionality

which is the spring constant in our usual vocabulary and this is the frequency of oscillations

in CGS units you will find this relation written more commonly as in terms of the natural

frequency omega p, so instead of this Rho e square by m epsilon 0, you get 4pi Rho bar e

square by m.

Now what we have done is we are going to ignore thermal motions at this point except that

we assume that some thermal motion would have caused the initial displacement. Because



you need a region some origin it is not that you have applied an external field to displace the

electron gas okay. So, this is something which happens internally but other than that we are

going to ignore any thermal motion. So, that is our model. 
(Refer Slide Time: 06:13)

So, in this  model you have got the equation of motion for a linear harmonic oscillator  a

simple harmonic oscillator you have the natural frequency of the plasma oscillations given in

CGS units. Rho bar is the number of electrons per unit volume, so this is the number of

electrons  N,  this  is  the  total  volume which  is  the  number  of  electron  times  the  average

volume of each electron expressed in terms of the average radius of the volume occupied by

each electron.

So, the N’s cancel and you have 3 over 4pi r cube, rs cube, So, that is the expression for Rho

bar which is the average density and you can put this in the expression for the frequency

coming from the solution to this differential equation for the simple harmonic oscillator and

you have this relation you can see that the 4pi will cancel. 

And you have got your plasma frequency given by this relation root of 3 e square by mr cube

right, rs cube, rs is the average radius of the average volume occupied by every electron. So

we have an expression for the frequency of oscillations. We are ignoring dispersion and when

you have dispersion you can make corrections to this term but that is not the main interest in

today's discussion.
(Refer Slide Time: 07:52)



What we found is the solution to the problem in two approximations one is the Hartree Fock

which I write as a superscript here and in the Hartree Fock self-consistent field method we

found the energy per unit electron to be given by 2.21 by r square - 0.916 by rs in units of

Rydberg.  And we got  the  same solution  in  using perturbation  theory  which  I  write  as  a

subscript over here. So, both of these gave us essentially the same solution. 

What we are going to discuss today is go beyond the Hartree Fock method, go beyond the

perturbative method okay and introduce an approximation which is known as the Random

Phase Approximation this was introduced by Bohm and Pines in the mid 50's but I am not

going to attempt to give an exhaustive review of the historical development of the Random

Phase Approximation.

Because there many alternative paths to RPA you know it was developed in nuclear physics,

it was also; there is a green function method, there are other methods and I am not getting

into the historical development of this method from various different points of view. But I

will specifically concentrate on the method of Bohm and Pines.

Because it is this method which explains best, the term random phase which goes into this

approximation okay. So, I am going to discuss the Bohm Pines's approach to some extent.

And in Bohm Pines's approach you get an improvement over the expression you get either

from Hartree Fock or from perturbative methods. 

You get additional parameters in terms of beta which is actually a ratio and this ratio is kc

over kf, kf is our old friend which is the Fermi momentum in units of h cross right. And kc is

a  certain  upper  bound  to  the  wave  number  because  oscillations  get  damped  by  random

thermal motion above it, so I will explain why you have this upper bound. 



So, you will have an electron gas in certain state of oscillations of the plasma. So, these are

the collective oscillations of the electron gas, these are not the individual oscillations about an

electron around a certain equilibrium point. But the collective oscillations of the electron gas

and you will also have a zero point energy of the plasma oscillations just the way you have it

for a simple harmonic oscillator. 
(Refer Slide Time: 10:47)

So, let us develop this model now you have the quantum field operator’s Psi and Psi dagger.

These are expressed in terms of the electron creation and destruction operators which we

introduced  in  an  earlier  class.  Using  these  you  can  write  the  Hamiltonian  the  electron

electronic Hamiltonian in two equivalent forms one in terms of the field operator’s Psi and

Psi dagger or equivalently in terms of the creation and the destruction operators.

The Ci dagger and the Cj and you have the same over here. You have the two center integral,

so we are have dealt with these terms earlier. So you can express the Hamiltonian in these

two equivalent forms. However we did not specify the spin label explicitly in this okay. It is

already sitting over here because q is a set of four variables the three spin coordinates and one

spin variable.
(Refer Slide Time: 12:03)



So, we will now write these operators explicitly inclusive of the spin labels. So, let us do that

so having spelled out the spin label as sigma so you have got two operators over here a1 and

a2 correspondingly you have got sigma1 and sigma2 and these are then the commutation or

anti commutation relations appropriately for bosons and fermions.

For fermions you have gone to anti commutation relations for the creation and destruction

operators for bosons these are the commutation relations. And we will be dealing with the

anti commutator because the particles of our interest are electrons and the field operator now

must be written explicitly in terms of a summation over the spin index alpha.

So, Ci alpha is the destruction operator for the state i and the spin Eigen value alpha okay. So,

these are the good quantum numbers inclusive of spin and you can write the Hamiltonian

which we have written without explicit indication of the spin label. But now inclusive of spin

labels, we can write this Hamiltonian so this summation over ij is over the one electron states

and then there is an explicit summation over the spin levels alpha, beta. 

So, Ci alpha dagger and Cj beta are the corresponding creation and destruction operators. So,

it is the same Hamiltonian but now we have written it fully explicitly inclusive of the spin

labels. We can also write it equivalently in terms of not just the field operators but only in

terms of the creation and destruction operators,  so these are completely equivalent  forms

which we saw in the previous slide as well.
(Refer Slide Time: 14:13)



So,  our  notation  is  well  understood  that  the  label  q  is  a  set  of  4  coordinates’  3  space

coordinates and 1 spin coordinate okay. This is the same notation that we used in the Hartree

Fock theory also. Then you have got the particle density operator which is Psi dagger Psi q

right. And when you integrate this particle density operator you will get the total number of

electrons.

But you must integrate over all the space coordinates and also sum over all the spin levels

because now we have chosen to indicate that explicitly. And you can easily see that these

expressions and this notation is appropriate because if you now insert a delta function and

carry out this integration. This delta function is the product of the delta function for the space

arguments and the Kronecker delta for the spin.

Because the spin coordinates are discrete so you can now separate the summation over the

spin over here followed by integration over the space coordinates right. And if you contract

these summations you get essentially the particle density. So, this is a particle density which

we began with right.

So, this is the notation that I will be using okay. So, this is our particle density operator what

we are going to do is to develop an equation of motion for the particle  density operator

because we will essentially be led to density fluctuations in the electron gas. 
(Refer Slide Time: 15:59)



So, you can see that this particle density operator is essentially a sum of the Dirac delta’s is

because if you integrate this, if you integrate this, then on the right hand side you will get

essentially  the total  number of  particles.  So,  the particle  density  operator  is  essentially  a

summation of the Dirac delta r okay. You can also use a Fourier expansion of the density and

then this Rho k is a Fourier transform.

And this is the Fourier expansion of the particle density operator notice that 1 over volume

comes explicitly over here, so this Rho, Rho k the Fourier transforms will be a dimensionless

quantity in our notation okay. So, this is our, you know particle density expansion in terms of

its Fourier components.
(Refer Slide Time: 17:06)

What we have done is to smear the positive charge throughout this box at a uniform density.

So, now you also have the electron-electron interaction which we have expressed earlier in

terms of all of these this complete set of basis of the momentum vectors in the reciprocal



space right. Notice here that the coefficient c will have dimensions of charge square over

length square okay. 

Because this will have a dimension of charge square over length, so this is charge square over

length square and then there is a volume over here, so this is charge square into L square

divided by L cube, so you will get charge square over length. So, those are the dimensions of

the coefficient ck, this is actually a triple sum because every k has got three components the

kx, ky, kz. So, you must sum over all the components okay.
(Refer Slide Time: 18:17)

So, this is our expression for the Coulomb expansion we first consider the case when the

momentum vector k is not equal to 0. Now when this is the case if you multiply both sides by

this term e to the ik prime. So, the dummy index over here is k that is the reason I choose a

different wave vector over here which is k prime and I multiply both sides by this term. 

So, let us do that I multiplied e squared over rij by this exponential function on both sides

okay. And now you see that the right hand side I can move this is; these two arguments are

very similar except for the fact that this is k and this is k prime. On the other hand this is ri -

rj this is rj – ri. 

So, if you take the dot product of k - k prime with ri - rj you get an equivalent correspondence

over here okay. So, this is your expression that we will now note that there is a - sign over

here and if you integrate this result. So this term is now integrated over volume, you carry out

a volume integration, so you have a volume integration of the right-hand side. 
(Refer Slide Time: 19:49)



And now you can see what this volume integration is going to lead you to because all I have

done here is to extract the is e square out of the integration symbol and then this is nothing

but the Fourier transform of the Coulomb potential right. So you get 4pi e square into 4pi

over k prime square k prime because you have a k prime over here okay. So, this is the

Fourier transform of the Coulomb potential.

And our result is that 4pi e squared over k prime square is equal to this integral but when you

look at this volume integral along with the 1 over V you are essentially looking at the Dirac

delta which we have used in the previous class okay. We have used this explicit form of the

Dirac delta. So now you have got a Dirac delta and you have to sum over all values of k. So,

the only term under the summation k that will survive is the one corresponding to k prime.

So, that is your result. So, on the right hand side only Ck prime will survive because of the

Dirac delta and Ck prime is 4pi e square by k square k prime square and you can drop the

prime now. So, this is your general expression for the coefficient Ck which is 4pi e squared

over k square except when k = 0 okay. Because when k = 0 this term seems to blow up, so

that we will deal with separately.
(Refer Slide Time: 21:31)



So, this is our expansion for the Coulomb potential okay. So, this is a Coulomb potential of

the ith electron in the field of the jth electron. What is the value of ck when k = 0 okay. We

once determine the values of Ck in general but we have to find out what is its value when k =

0. So, what you do is if you integrate this expression, this is your complete result okay. We

know that you have a Dirac delta on the right side.

And for whenever k prime = 0, you have you put this k prime =0, so this will be e to the

power i k dot ri - rj because k prime is now set = 0, so this will be delta k - k prime but k

prime = 0, so this becomes a delta function again but not of k - k prime but delta of k because

k prime = 0. 
(Refer Slide Time: 22:52)

So, this is our result here that you have delta of k and this means that when the only term that

will survive under this summation is the term corresponding to k = 0 right which is C0. So,

that is your coefficient C0 now. What is C0? What is this? This is nothing but the potential of



the ith electron in the field of the jth electron as if the jth electron is smeared over the whole

box. 

The jth electron is not at a particular location it is smeared the whole box. The potential

energy of the ith electron due to just one electron but that one electron is smeared over the

whole box at a uniform charge density, so that is what we get for C0.
(Refer Slide Time: 23:56)

Now this is the expression now for the potential energy of the ith electron due to the jth okay.

Now what will be the potential energy of the ith electron, how many electrons are there?

There are N electrons. So, you have to sum over all the remaining electrons. The potential

energy of the ith electron due to all the other electrons all the electrons not just the jth, so you

must sum over j going from 1 through N except for j = i.

So, this is the net potential energy of the electron due to all the other electrons. You have got

1 over V this is it is this term, you have got this term which comes here and you are summing

over j going from 1 through N and avoiding j = i and we know what Ck values are, Ck is

given by 4pi e squared over k square whenever k is not equal to 0.

And whenever k = 0 it is given by this okay. So we have got everything that we need all right.

So, having gotten this, this is just the potential energy of the ith electron in the field of all the

remaining  electrons.  We  have  still  not  considered  the  Jellium  potential.  We  have  not

considered the positive nuclei. 
(Refer Slide Time: 25:26)



What we do know that if you consider the positive background okay. Then you have various

effects  coming  because  of  the  background  Hamiltonian  and  there  is  another  part  of  the

Hamiltonian which is the electron background interaction. But we have already found that the

k = 0 term okay cancels the positive Jellium. We have discussed this in an earlier class okay.

So, if you take this for all values of k but if you leave out the k = 0 term.

Because that is the term which is going to cancel the positive Jellium effects then you have

got the potential energy of the ith electron in the field of all the remaining electrons and the

positive background okay. And that is then given by this expression on the right hand side

inclusive of the summation over k except for the k = 0 term because that is the one which

goes into the cancellation of the Jellium okay, all right.
(Refer Slide Time: 26:44)

So, this is our potential now which is the potential energy, energy of the ith electron due to all

the remaining electrons and the positive background okay. Now you have got the potential



and if you have the potential, you can find what is the force acting on it? Because force is the

negative gradient of the potential, so let us write the force which is mass times acceleration

which is mass times the time derivative of the velocity.

And this will be the negative gradient of the potential the potential U is given by this relation

at the top. This is a net force which the electron experiences,  of course if charges are in

motion they will generate magnetic fields. And the magnetic field will in turn exert a force on

this charge which will go as v cross B that is the Lorentz force right. So, that is typically lot

weaker than the forces we are considering.

And those weaker magnetic forces we are ignoring in this analysis. So, the expression for the

acceleration because you have to divide everything by mass so you have got 1 over m coming

here,  and  1  over  m  coming  here,  so  you  have  essentially  the  negative  gradient  of  the

potential. So, you have to take the gradient the negative gradient of the potential. 

Now what is dependent on r because gradient will take space derivatives with respect to the

coordinates i and the only thing that depends on i is sitting over here okay, the 4pi e squared

over  mk square does not  respond to the gradient  operator. So you have got  the gradient

operator which I have written in a bracket along with the term for where it really matters. So,

this is the acceleration of the ith electrons.

So, this is still a classical model and today I am going to discuss the classical model and then

tomorrow we will get into the quantum model. So, now we have to take the gradient now

what is the gradient? Gradient of this term with respect to the ith coordinate is ik right. And

then you have got an exponential function. This i of course is square root of -1 okay. 

And this  ri  which is  the subscript  on the position vector  is  referring our discussion to a

particular ith electrons. I am using the symbol i for two things one is the index of the electron

and the other of course is the square root of -1, so there is. 
(Refer Slide Time: 29:40)



So, this is our result for the acceleration of the ith electron which I write at the top of this

right now. Now notice that this is a summation over j going from 1 through N but j = i was

avoided. On the other hand if you look at this term which is in the box and analyse this term

and ask yourself what would happen to this box? This box is what I will call as a summand.

This is something which is being summed over right.

Like the integrand is what gets integrated but summand is what gets summed up. So, what is

sitting in this red box is going to be summed up for different values of j, j going from 1

through N but we are avoiding j = i, so j not equal to i specified explicitly over here. But what
is being summed up is this term which for j = i will give you a 0 here ri - rj will go to 0 for j =

i because rj - ri will go to 0. So, you get e to the power 0 over here which is 1 okay.

And you are then summing the rest of the vectors the summoned on the right hand side for j =

i is this. And this is of course 0 because there you are summing over all  the momentum

vectors and there are as many momentum vectors in one direction as there are in the opposite

which are exactly equal and opposite. 

You have got the entire Fermi’s, Fermi surface which is a spherical surface and there are

vectors in opposite directions in this Fermi surface whichever direction you look at right. So,

they will all cancel each other and you have got the vector sum of k summed over k, k is not

equal to 0 and this will give you a null vector. And therefore it really does not matter whether

you include j = i or you do not include j = i.

Because the term corresponding to j = i gives you a zero anyway. So you are only adding a 0

coming from j = i terms and it really does not matter.  So, we have no real need to exclude the

j = i item. So, now we write this summation over j going from 1 through N but we do not



specify any further that j = i has to be avoided. So, this j not = i is not written over here we

are letting j = i as well because it really does not matter okay. 
(Refer Slide Time: 32:32)

So, this is our expression for the acceleration. What is the electron charge density? We had

this relation earlier with us. We know that when you integrate this charge density you get the

total  number  of  electrons  we discuss  this.  We have the  Fourier  expansion of  the  charge

density  in  terms  of  the  Fourier  components  Rho k  which  in  our  system of  equations  is

dimensionless.

This, the left hand side has got a dimension of whatever volume it is the number per unit

volume. And the inverse volume dimension is taken care of by 1 over V over here. So, the

equation is essentially balanced dimensionally. 
(Refer Slide Time: 33:18)

So, these are our expressions for the Fourier expansion of the charge density. The Fourier

components  can  be  written  in  terms  of  the  inverse  transforms  right.  And this  density  is



nothing but the summation over the deltas, delta functions. And if you write this summation

symbol because this is summation over i, this is the integration over space, this is a particle

index, this is space integration.

So, these are completely independent operations, so you can write this behind the integration

and then you carry out this integration over here. So, that essentially what you will find is that

the Fourier component is given by sum over i going from 1 through N. And under this Dirac

delta integration the only term that will survive is e to the -ik for r equal to ri because of this

delta r must be equal to ri otherwise the integral will vanish.

So, this is the expression for the Fourier component of the charge density. For k = 0 you of

course  get  the  total  number  of  electrons  okay. So,  now let  us  analyze  these  expressions

further. It is the k not equal to 0 terms which will be involved in the density fluctuations over

the average. 

So, you have got a certain static every charged density which is smeared over the whole space

but then you can have density fluctuations on top of it and these are the ones which were not

included in the Hartree Fock if you remember. Because the Hartree Fock approximation is

essentially a frozen orbital approximation you do not consider these density fluctuations in

the Hartree Fock.

And the Hartree Fock we have also seen is completely equivalent to what you get from the

first order perturbation theory. So, of the as we are going beyond the perturbative method, we

are also going beyond the Hartree Fock. 
(Refer Slide Time: 35:37)



So, this is our expression for the acceleration of the ith electron. You have got sum over j we

are now admitting j = i it does not matter. And I have simply rewritten these terms this is just

bookkeeping. But I factored this exponential function into e to the i ee to the ik dot ri term

which is here and e to the there is a - sign here - ik dot rj, so that comes over here. 

So, I have separated these two terms and I have confined the summation over j over here

because this is the only thing which is affected by j. So, what does it tell us that this term you

have e to the ik dot ri when you sum over i going from 1 through N and this is exactly the

same term right. This is nothing but the Fourier component Rho k right. So, in the expression

for the acceleration which is the time derivative of the velocity?

 These terms remain the same, you have got i, you have got sum over k, k not equal to 0 all

that is fine, you get k over k square here, you have got e to the ik dot ri which is here and this

is nothing but the Fourier component Rho k is appearing here. Now we are developing the

equation of motion look at this. Now if you want to develop an equation of motion for the

Fourier components you must take the first derivative which will give you the velocity.

And then you must  take  the second derivative  which will  give  you the acceleration  and

actually equation of motion as we know is the relationship between position, velocity and

acceleration. So, we have to get up to the second time derivative. So, the first time derivative

we give you the Rho k dot. So, let us do that, so you have to take the time derivative of this

summation.

So Rho k dot will give you the time derivative; this is just an exponential function and then

you  must  take  that  the  derivative  of  the  exponent.  So  which  is  ik  dot  ri  and  k  is  time

dependent  so you will  get k dot  r  dot which is  k dot  velocity  term.  So, this  is  the time

derivative of the Fourier component Rho k right.
(Refer Slide Time: 38:19)



Now we can take the second derivative because then we will be led to the equation of motion.

This is all classical; it will be tomorrow that we will discuss the quantum treatment and the

second derivative according to Newton's law which is involved in the equation of motion. So,

the  second derivative  of  the Fourier  component  will  give you the  time derivative  of  the

velocity term which is Rho dot. 

So, which is - i summation over i going from 1 through N which is coming from here then

you have got the time derivative of the product of these two functions okay. There are two

functions  over  here  both  have  got  a  time  dependent  term,  ri  is  time  dependent  and  the

velocity will also be time dependent okay. Because the velocity of the ith particle depends on

time its time derivative will give you the acceleration of the ith particle right.

So, both of these terms are time to dependent and you will therefore get two terms the first

term times the time derivative of the second plus the time derivative of the first term times

the second term, so you have these two terms now. So, you have got the time derivative of the

first term which is e to the -ik dot ri times the time derivative of the exponent which is -ik dot

ri dot right.

And then the second term has got the first term times the time derivative of the second which

gives you know acceleration of the ith coordinate. So, these are the two terms which appear

in this equation of motion for the kth Fourier component in the charge density. Now you can

write e to the -ik dot ri common in both and you have got these two terms okay. So, that is

what you have got.

Now it  is  a  very  interesting  kind  of  situation  now because  look  at  these  terms  do  you

recognize some familiar terms in this. If you look at this ri double dot this is we already have



this result. And this was expressed in terms of the acceleration of the ith particle which we

obtained just a little while ago okay. And this is from a previous slide just few slides prior to

this one. 

And in this one we have got the acceleration term of the ith electron for which we obtained

this result and we can plug in this expression over here. Let us do that so we have got the

second derivative of Rho okay. You have got the first term which is written exactly as it is

over here. The second term you have got - i sum over i going from 1 through N which is here

then you have got k dot and now you have this acceleration of the ith particle.

And that for that we use this right hand side over here which is put in this beautiful bracket

and then of course you have this e to the - ik dot ri which comes here all right okay. Notice

that there is a minus sign over here and a minus sign over here, so that will give you a +1

factor but then notice that there is an i over here and i over here, so that will give you i

square, so you will have a -1 popping out of it.

So, you take care of all of these signs and the i square, so you get a minus sign coming

because of the i square okay. The first term is written as it is now these two minus signs have

been taken care of. The i square is taken care of, you have got the 4pi e square over mV over

here, you have got the summation over i going from 1 through N over here. And now you

have got the summation over k prime, k prime not equal to 0.

You have this k dot k prime right, so that is coming over here in the numerator, you have got

k prime square in the denominator, you have got the Fourier component Rho k prime and

then you have got the product of these two exponential functions which gives you i to the

power k dot k prime - k dot ri okay. 
(Refer Slide Time: 43:12)



Now let us bring this to the top of the next slide it is the same essentially the same expression.

And now this summation has; is a summation over k prime and I break this summation into

two parts one corresponding to k prime = k and the remaining set of terms corresponding to k

prime not equal to k. Because in some cases k prime will be equal to k, so that is the term I

separate out.

So, now only these two terms are in the equation in the first row over here but the summation

over  k  prime  is  written  with  one  of  the  terms,  the  term corresponding  to  k  prime  =  k

separately and the other terms in which k prime is not equal to k. In both cases k prime is not

equal to 0 right. So, this is the term corresponding to k prime = k and this is the term it is

corresponding to k prime not equal to k.

So,  now what  were  three  terms  two terms  in  the  first  expression  appear  as  three  terms

because this summation is now separated to right one term explicitly for k prime = k and

these are the remaining terms, so these are the three terms now. Let us take these three terms

and you notice that this k dot k by k square is nothing but unity because this will give you k

square by k square right. Then if you look at this sum over here e to the power 0 is 1.

So, you are adding 1 to itself N times so you will get a factor of the total number of electrons

over here okay. Which means that the next time you write this result you can drop this k dot k

by k square because it is just multiplying everything by 1. And instead of this factor sum over

i going from 1 through N e to the power 0 you can write the total number of electrons. So, let

us do that which I have written over here.

I have dropped this factor of unity and I have written N over here so this term becomes -1

over V 4pi Ne square this is the N and this is the e square and this is the m and then this is the



Rho k which is the Fourier component right. And the third term is written just the way as it is

okay. 
(Refer Slide Time: 45:55)

So, let us take this term now to the top of the next slide which is here all right. What is this?

This is the equation of motion for density fluctuations of the Fourier component k. Now this

looks a little messy but we will see that it can be really simplified because if you now carry

out this summation over i okay, where does i appear? I appear only over here. So, carry out

the summation over i, i going from 1 through N.

And then you have got this summation okay, what does it give you? That looks very much

like this right. What you have in this beautiful bracket is just a term similar to this except that

you have got an argument which is k prime - k and that will give you the Fourier component

k - k prime. So, this will Fourier component Rho k and this is the Fourier component Rho k

and this will be the Rho k - k prime component right.

Now this is the equation of motion for the Fourier component. This is the second derivative

of with respect to time of the Fourier component Rho k. And this has got all of these terms 1,

2,  3.  Now this looks messy but we are going to develop an approximation  which is  the

Random Phase Approximation which will help us write this equation in a very simple form.

And you can already see what is the most simple form that you can extract from this.

If you were a mathematician and you were looking for what terms look familiar; you have got

acceleration on the left hand side and you have got one term on the right hand side which is

proportional to the displacement itself which is this term okay. The second time derivative is

proportional negative to the displacement Rho right. Now that is the situation you have for a

simple harmonic oscillator. 



But what you have is not that just that but you have additional terms. Now what if these other

terms do not matter if you can find some way of throwing them out, not just because you do

not want to solve such a complicated mathematically equation but because there is some good

physical  reason for it.  And in fact  as you might begin to suspect  there is in fact  a good

physical reason for this which I will be discussing in the next class.

But what this reason will help you do is to ignore these terms these terms you will be able to

ignore because of an approximation which is the Random Phase Approximation. And you

will find some additional reason to ignore this term as well and then what you will be left

with is the second time derivative of Rho k which is directly proportional to the displacement

Rho k itself and always directed inward okay.

Which is what you have in a simple harmonic oscillator, so it is just the equation of motion

for a simple harmonic oscillator F - kx for one-dimensional linear harmonic oscillator k is the

spring constant,  so that is precisely the equation that you will  get.  So, Bohm Pines finds

found a very good reason to ignore these terms and I will discuss this reason in tomorrow's in

the in the next class in some details.

And they found a good reason why this term can be ignored notice that this is the quadratic

term okay. There is only a one linear term in Rho over here. There are two terms in Rho, so

this  term that  you are going to  ignore is  the quadratic  term in rho and the heart  of  this

approximation is this linearization process. The nonlinear term is thrown out, so the heart of

the RPA lies in this linearization process.

So, this is the approximation which gets to be known as the Random Phase Approximation

and you can already see that the phases in picture are coming from these phases because you

have got these exponential functions. So, e to the i theta, theta is the phase right, so it is the

sum of cosine and sine terms and you have got these quadratic terms. So, they will cancel

each other because of the cancellation of the random phases.

But I will discuss this in some details in the next class. There is any question on what we

have done so far in today's class I will be happy to take it, questions? Essentially what we did

was a classical model we have not really not done any quantum theory okay. What we did

was the expression of the charge density resolved dated Fourier components.

Found out the position vector of the ith electron, found its velocity found its acceleration

okay and using that we set up the equation of motion for the density fluctuations okay. So, it



is a classical model or a semi classical model if you like because we did use the Hamiltonian

earlier in some part of the discussion. So, it is like semi classical but mostly classical model

we are still using you know the equation of motion.

We are still using Newton's laws F = ma, so this is all classical argument but then in the next

class we will also get into the quantum method which will also develop by Bohm and Pines.

So, if there is any question I will be happy to take otherwise thank you for today and we will

meet at the next class. 


