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Greetings, we will continue our discussion on the random phase approximation and we are

getting  very  close  to  the  point  that  we can  actually  introduce  the  RPA and the  primary

references for our discussion will be the book by Fetter and Walecka quantum theory many

particle systems.

And the book by Raimes many electron theory by Stanley Raimes and his review which he

wrote in 1957 in the reports of progress in physics and there are a few other references which

I will refer to as we go along.
(Refer Slide Time: 00:53)

So, this is the picture we had before us. So, we have the electron-electron terms in this part of

the  Hamiltonian.  And  then  you  have  the  nuclear-nuclear  interaction  terms  which  is  the

interaction between all the positive charges of the Jellium plus the interaction between the

electron and the positive charges which are smeared out in the Jellium potential.

So,  these  are  the  three  pieces  of  the  Hamiltonian  and  you  have  the  1  over  mu  square

divergence coming from these two terms from the combination of these two terms is what

you get over here. Now, before we proceed we should inquire if any part of the electronic

Hamiltonian which is the first term.



Also has some contribution which goes as what you see in this circle in the circular loop you

have got a term which goes as N squared over mu N squared over V 4pi over mu square. So,

there is a term which is sitting inside this anywhere and that is something that we have to

search for. Then there is a possibility that there would be a cancellation of this mu square

divergence. So, that is something that we are going to examine.

And we promise ourselves that we will do that. So, let us look at this particular expression

here, what we have now done is to we can write the electronic Hamiltonian in the second

quantise form inclusive of the spin and we are going to inquire by rearranging the terms in

the electronic part of the Hamiltonian if there is any cancellation. Now we have to remember

that the in the electronic Hamiltonian there is a Kronecker delta over here.

So, that is going to put some constraint, so all the, there are four momentum indices k1, k2,

k3 and k4. But all of them are not independent because k1 + k2 must be equal to k3 + k4. So,

there is one constraint and that will reduce the number of momentum variables that we have

to work with. So, we will write the momentum transfer which is k4 - K2 which is the same as

k1 - k3 as q. 

And then we will look at various terms for the momentum transfer. When the momentum

transfer is 0 and when the momentum transfer is non-zero. So, we will examine these terms

very carefully and ask if any of these terms leads to a cancellation of this 1 over mu square

divergence coming from the background terms.
(Refer Slide Time: 03:30)

So, this is the Hamiltonian now and as we pointed out you have got the constraint which is k1

+ k2 which is equal to k3 + k4 which means that you really do not have for momentum

variables and if you write these four momentum variables in terms of a new parameter k, q



and p. So, k, q and p, so these are the three new variables that we introduced, so we write k4

= p, k1 = k3 + k. But k3 we set equal to k.

So, now instead of k1, k2, k3 and k4, k2 becomes k4 - q which is the same as p - q. So,

instead of these four parameters we know that there are only three independent parameters

because of the constraint. And these three parameters r, k, p and q okay. So, k1, k2, k3 and k4

are given by these relations and we really have to work with only three parameters instead of

four because of the constraint which we have.
(Refer Slide Time: 04:43)

So, let us exploit this now, so we will write rewrite this Hamiltonian not in terms of k1, k2,

k3 and k4 but in terms of the three momentum levels. Now what are these so you now have

summations over these three k, p and q. We exploit the Kronecker delta, so that we are left

with out of these four summations only one will be taken care of through the contraction

coming from this Kronecker delta.

So, now you have summation over three indices k, p and q. And now you have 4pi k1 - k3

this over here you will have q square + mu square. So q is the momentum transfer okay, so

this is the term that you get for your electronic Hamiltonian. Now, we will first examine this

kinetic energy part of the Hamiltonian. 

So, the kinetic energy part of the Hamiltonian is this here the summation index is k + q, it

really does not matter because you only start summing from some index and turn over all the

indices. So, whether you start with k or start with k + q it really does not matter effectively it

is the same summation. So, now what we will do that we examine this electronic part the

electron-electron part and over here you have summation over q.



And in this  we separate  the term corresponding to zero momentum transfer and then the

remaining terms in which q is not equal to zero. So, we will separate this in two parts one is

this q not equal to zero and this part is q = 0, when q = 0, here this term which is 4pi over q

square + mu square becomes only 4pi over mu square this is because q = 0. 

In the other term which is corresponding to q not equal to 0, you have q square + mu square

okay. So, I have rewritten the electron-electron term which is the second term the kinetic

energy part is separately taken care of and then in the second term in the electron-electron

term you have the separation of the q = 0 term and q not equal to 0 term. 
(Refer Slice Time: 07:17)

So, this is rather straight forward algebra but we will do it carefully. And we will make use of

the  commutation  or  rather  the  anti  commutation  relations  further  Fermion  creation  and

destruction operators. So, these are the relation for the anti commutation relation the plus sign

is for the fermions that the minus sign for the bosons. So, these are the general commutation

relations inclusive of spin.

And what  we have  over  here is  this  relation  but  this  Cp and Ck we swap their  relative

positions and that is what gives us a minus sign here, so that is the first thing we do. Having

done that we get a minus sign here and now we interchange these two. So here p and k are

different sigma2 and sigma1 are also different. So, we will get a delta sigma1 sigma2 delta kp

and then you have this additional term right.

So, this term these set of four operators two of them are creation operators and two of them

are destruction operators together will give you these two terms now. So, these two terms

take  the  place  of  this  single  term  and  the  electron-electron  Hamiltonian  in  the  second



quantized notation the second q is written as a superscript in the second quantized notation

becomes the first term is the same which is 4pi over q square + mu square.

And  these  creation  and  destruction  operators  and  the  second  term,  the  first  term  is

corresponds to q not equal to zero but it is the q = 0 term which is now written in these two

pieces okay. 
(Refer Slide Time: 09:09)

This is  the complete  picture you have got the full  Hamiltonian which is  made up of the

electronic part of the second in the second quantized notation of the Hamiltonian and these

are the terms which comes from the background, from the background, background and from

the electron background of the Jellium potential. 

Then you have got the kinetic energy part and then you have got the electron-electron part

which is now written in terms of q not equal to 0. But the q = 0 term now is written in these

two  pieces  by  rearranging  the  creation  and  destruction  operators  by  using  their  anti

commutation relations. So, that is what we have got at the top of the slide.
(Refer Slide Time: 09:49)



Now let us see, let us look at these terms carefully. So, there are two terms in the second part

corresponding to q, q = zero one is what I indicate by the red Star and the other by the blue

Star. And what I will do is rewrite this expression with these two terms written explicitly

spelled out. Instead of putting them together in a bracket I will write them as two separate

terms.

So, I have got the first term corresponding to q not equal to 0 which is this q not equal to 0

then this is the term coming from the term for which we have the red star and this is the term

which comes with a minus sign for the blue star. So, these are the three terms which come in

the  electron-electron  part  of  the  Hamiltonian  of  the  second  quantized  electron-electron

Hamiltonian okay.
(Refer Slide time: 10:42)

So, now let us look at this further you have got these two terms the first one is with a plus

sign the other next with a minus sign. Look over here what is this, these two are nothing but



the number operators C dagger C right. So, this is nothing but the number operator, so is this.

This is the number of for the state k sigma1 and this is the number operator for the state p

sigma2 okay, C dagger C is the number operator.

What about this term this also has got the C dagger C but the subscript here is k sigma1 and

the subscript here is p sigma 2 but no problem because sigma1 must be equal to sigma2 and k

must  be  equal  to  p.  So,  because  of  this  Kronecker  delta  this  is  also  actually  in  number

operator okay. 

Because when you carry out these summations over k and p you will necessarily be left with

terms for p = sigma and for sigma2 = sigma1 right. So, you will have a number operator

coming from here as well. So, let us carry out those summations, so let us sum over sigma2

and we also sum over p. So, instead of having these four summations you now have only two

summations because of the kronecker delta contractions.

And then you have a number operator here as well, so now you have got a number operator

here, a number operator here and again a number operator here. So, these are the three terms

and the last two this term and this term both correspond to q = 0 the q not equal to 0 terms are

sitting over here.
(Refer Slide Time: 12:28)

So, this is just a matter of you know rearrangement of terms and I will do it a little carefully

and  walk  you  through  all  the  steps,  all  the  important  steps  so  that  we  make  sure  that

everything is accounted for appropriately okay. Now this is the term corresponding to q not

equal to 0 and the lower two terms in the second line over here these correspond to the q = 0

contribution, this is coming from q = 0 contribution. 



This is also coming from the q = 0 contribution but for this you are summing over all values

of k and all values of sigma1. So, that is really the total number operator right, you get the

total number operator when you sum over all the states. So, essentially you get from here one

total number operator capital N.

From here you get another total number operator which is capital N, so you get N square

okay, from these two terms. And from this you will have only one total number operator

coming from this term which is written over here. And both of these are coming from the q =

0 terms. 
(Refer Slide Time: 13:51)

So, let us take this result to the top of the next slide and you have got N squared over here and

N over here. And whenever you are dealing with occupation number space, vectors then the

number operator will be diagonal in it and therefore whatever quantum algebra you do, you

will be able to replace the number operators by their Eigen values. So, the Eigen value of the

total number operator is nothing but the total number of electrons.

So  this  N  operator  square  is  replaced  by  N  square  effectively  this  is  also  an  operator

multiplied by the unit operator. But now we have anticipated the results that all the operations

have been carried out. So, you have got the n square operator over here minus from the

second term you have got the minus half e square by V 4pi N over mu square. 

But these N do not have that carrot symbol on top which we had over here. Because this and

this are operators whereas this and this are the Eigen values okay. So, we replace the number

of  operators  by  their  respective  Eigen  values  okay.  So,  this  is  just  like  a  numerical

contribution but both of these terms have got the 1 over mu square divergence and this is

what we had anticipated.



That some part of the electron-electron term may have 1 over mu square divergence. And it

could  cancel  the  divergence  which  was  coming  from  the  background  terms,  from  the

background, background Hamiltonian and from the electron background Hamiltonian, so they

were right. So, both of these are coming from the q = zero terms. 
(Refer Slide Time: 15:39)

So,  these  are  the  two  contributions  these  are  the  C  number  contributions  these  are  just

numerical contributions okay. These are just numerical contributions first one is with the plus

sign here second one is with a minus sign. But mind you the first term has got N square and

the second has got N okay. 

So, you have to be careful with that and if you remember the mu square divergence coming

from  the  combination  of  the  background-background  Hamiltonian  and  the  electron

background Hamiltonian was -half e square N squared over V 4pi over mu square this was a

part, this is a mu square divergence that we were concerned with. And we find that because

this comes with a minus sign this term comes with a plus sign.

This is this term is quadratic in N, so is this. So, these two terms will cancel each other okay.

So, let us go ahead and cancel them and you are still left with this term. You are still left with

this term but now what we will do is, you have if you look at the Hartree Fock energy per

unit particle per particle. So, you divided this by N, so this n will go to the left side when you

divide both sides by the total number of particles.

You get a contribution which is minus half e square by V 4pi over mu square this is the

contribution that you get which has got mu square divergence as such. But then we know that



we can first take the limit V going to infinity and that already takes care of this term okay.

And the limit mu going to 0 will be taken later okay. 

So, it is a mathematical construct that we had introduced mu was the parameter which we

introduced to make the potential screened Coulomb instead of the Coulomb potential.  So,

instead of the 1 over r, we had the e to the - mu r over r. So, that what that is the origin of mu

and you can take mu going to 0 in that term but that can be done at a later stage. 
(Refer Slide Time: 17:59)

So, we have the q = 0 terms this  part  of the divergence cancels the background and the

electron background Hamiltonian. This part is taken care of when you take the limit V going

to infinity right. Having done this now this term is also lost and now we take mu going to

zero  okay. Note the  sequence  it  is  very important  that  you follow the  sequence  because

otherwise the 1 over mu square will already give you a divergence.

So, this sequence of this is a mathematical procedure which is strictly correct but the order of

taking the limits must be maintained. So, now you take the limit mu going to zero and when

you take this limit mu going to 0, you have this mu square over here which will go to zero

right. And if you now write the electron-electron Hamiltonian after taking these limits then

you have the full Hamiltonian in which you have got the kinetic energy part.

And then you have got the electron-electron interaction term in which you have q not equal to

zero because q = 0 terms have already been taken care of because they cancel the background

right,  the  Jellium  background,  the  background-background  parts  and  also  the  electron

background part. And then in this term for q not equal to zero because you are now taking the

limit mu going to zero.



Instead of this q square + mu square you have only q square in the denominator but this q is

not a null vector it will never be zero in this term right okay. So, this is the advantage of

carrying out this mathematical construct and this procedure of taking the limit.
(Refer Slide Time: 20:06)

And we now have the Hamiltonian for a bulk electron gas in a uniform positive background

Jellium potential  everything is  taken care of now the electron-electron terms the electron

potential term, electron Jellium potential term and the mutual repulsion between the positive

charges of the Jellium. Everything is taken care of, so this is the full Hamiltonian for the

system for a bulk electron gas in a uniform positive background Jellium potential.

And these are the terms that you get mind you; you have got q not equal to 0 here. And now

we do a little bit of you know simplification of these terms because the total volume which

comes over here is nothing but the volume occupied by the number of electrons. And we had

defined an average radius per electron which is rs, so that this is the average volume occupied

by each electron.

These times the total number of electrons will give you the total volume. So, rs is the average

radius of each electron and we do a little bit of scaling here, we rewrite this expression in a

certain new set of scaled parameters. And the scaling is done to recognize that we could use

perturbation theory as such. 
Because if you look at this Hamiltonian over here there is; it is not obvious that you can solve

this problem perturbatively by treating this part as the unperturbed Hamiltonian and this part

as a perturbation. Because to be able to use perturbation theory you need to recognize that

what you would add to the original unperturbed Hamiltonian is a small term okay. 



So, the size of the second term of the electron-electron term is by no means is obviously

small but it will turn out by rewriting these terms into using the scale variables we will find

that you can actually use perturbation theory. Let me show you how, so we use new variables

what we do is do some scaling through the Bohr radius. So, the length scale is now rs divided

by a0, so this becomes a dimensionless length parameter right.

And likewise we scale the momentum volume this is just h cross divided by k will give you

the momentum. And also the q everything is scaled by the factor rs which is the radius of a

sphere, which has got an average volume occupied by a single electron. So, this is; these are

the scaled variables that you introduced and in terms of these scaled variables, let us ask what

is the value of h cross square k square by 2m, which is the kinetic energy.

Let us ask what is the value of this term which is half e square by V times 4pi over q square,

so what is half e square by V multiplied by 1 over q square in terms how do we write it in

terms of the change variables okay. So, this is just rewriting the same term but in change

variables and that is what will help us recognize that we can treat this problem perturbatively

okay. 

Earlier, remember previous classes we discussed how the problem of electron gas in a Jellium

potential is solved using the Hartree Fock self-consistent field method okay. So, using the

self-consistent field method we found the solutions exactly right. Now we are showing how

this problem is done perturbatively.

And before we do that we are actually demonstrating that perturbation theory can in fact be

used at all okay. So, we are going to show that perturbation theory can be actually applied.
(Refer Slide Time: 24:18)



So, these are the new variables, the new variables are represented by this tilde on top this

wiggle  is  the  tilde  symbol.  So,  you  have  got  new variables  and  in  terms  of  these  new

variables you can write this term h cross square k square by 2m and you simply carry out

these transformations. 

Plug in the corresponding substitutes and you get this result for h cross square k square by 2m

okay. So, you get a transformation over here and similarly the other term that we wanted to

examine was half e squared over V 1 over q square and this in terms of the new variables

which  is  tilde  and  q  tilde  is  given  by  this  relation.  And  we  will  put  these  two  in  the

Hamiltonian and rewrite the Hamiltonian in terms of the new variables.

Which are the tilde variables okay. So, all of this of course will be uploaded at the course

website so you do not have to write down all these intermediate steps but just concentrate on

how the analysis is done okay. Because the actual terms you can work out yourself or look at

the detailed transformations when these slides are uploaded at the course website. 
(Refer Slide Time; 25:46)

So,  these  are  the  two  results  that  we  will  use  to  substitute  in  the  expression  for  the

Hamiltonian. So, this is very what we wanted to substitute or write this is the term we want to

substitute in terms of the tilde variables and then e squared over V 4pi by q squared is what

we want to substitute in terms of the tilde variables. So, let us do that, let us replace all of

these by these tilde variables.

So, these are the substitutions that we know and in terms of these substitutions we factor out e

squared over a0 r0 square which is common in both the terms okay. So, that is written outside

the  bracket  and  the  rest  of  the  terms  are  over  here.  Now this  suggests  something  very

interesting and some of you have possibly already spotted it that.



(Refer Slide Time: 26:31)

If you now look at this term okay, these are the two; these are the terms you find that the

second term which is  the electron-electron interaction term has got r0 factor okay which

means that if r0 becomes small  the second term which is in this red loop can be treated

perturbatively okay. And r0 going to 0 is the high density limit because when you have a

large number of electrons per unit volume right. 

The average radius will become small right. Your scaled parameter r0 will shrink and in the

high  density  limit  you  immediately  see  that  the  electron-electron  term  can  be  treated

perturbatively. And now we can use perturbation theory on a remark that we had made earlier

was that  the result  of  the  Hartree  Fock self-consistent  field  method and the  perturbation

method turns out to be the same.

So,  we  are  showing  it  now we  have  already  got  the  results  for  the  Hartree  Fock  self-

consistent field method for the electron in the Jellium potential and what we are doing here is

developing a perturbative approach and we will find that the end result will turn out to be the

same as what we got from the self-consistent field. 

But of course we had already remarked that second order and higher order terms diverged

which is where you have to use many-body theory and the RPA was developed to address

those issues. So, we are getting to that now, so first let us work this out perturbatively. So,

you have got an unperturbed part which is just the kinetic energy part this is straight forward

there is no big deal over here.

And this is the electron-electron part which is to be treated perturbatively. But everything is

taken care off the background is taken care of, the background-background repulsion is taken



care of, the electron background attraction is taken care of okay. The q = 0, terms are taken

care of, they are the ones which cancel the background divergence right. 

So, that is taken care of and the only terms that remain to be taken care of are the terms

coming from q not equal to 0, q is the moment of transfer of q not equal to 0 these are the

terms to be taken care of and these terms go these are scaled by a factor r0, which means that

this can be treated perturbatively. 
(Refer Slide Time: 29:21)

So, let us do that so now this is your expectation value of the Hamiltonian in the ground state

in  the  unperturbed  ground  state.  And  this  is  the  part  coming  from  the  unperturbed

Hamiltonian and the first order perturbation theory correction will  nothing but the matrix

element of the perturbation Hamiltonian H1 in the unperturbed ground state which is Phi 0

okay. This is just the plane result of first order perturbation theory.

So, the first term is easy to evaluate because the kinetic energy part of the Hamiltonian is just

the sum over k and sigma, so you get the kinetic energy of each particle right. But then you

have  to  sum  over  sigma  as  well.  So,  you  will  get  a  factor  of  2  because  this  term  is

independent  of  spin.  So,  both  spin  up  and  spin  down  they  will  give  you  the  same

contribution. 

So, when you sum over sigma as well as sum over k you get a factor of 2. But then C dagger

C  is  just  a  number  operator  which  will  give  you  a  non  zero  value  if  and  only  if  the

momentum states that you are referring to are those which are occupied states. And only

those states are occupied which are at or below the Fermi level. 



So, that is the reason this summation must be restricted to k values which are less than or

equal to the momentum at the Fermi level okay. So, this is a summation over all possible

momentum states but that is now limited because of the c dagger c factor which is the number

operator. And the number operator is going to give you a non zero Eigen value only for

occupied states. 

For unoccupied states like in value 0, so it will make 0 contributions to the total sum. Now

the other thing we are going to do because we have a quasi continuous discrete spectrum we

have done box normalization of the plane waves alright. So, you have got a quasi continuous

discrete spectrum.

And the summation over k we have seen earlier in the 18th lecture of the unit of this course

from the unit 3 we have shown already that the summation over k is completely equivalent to

integration in the momentum space. But then you have got this factor 2pi over L whole cube

that comes from the boundary conditions in which you have the plane waves which are not to

be found all the way to infinity but they are confined to the length of the box. 

So, that is the reason you have this 2pi over L whole cube coming here. And we will now go

over  from this  summation  this  discrete  summation  to  integration.  This  integration  in  the

momentum space will have integration over the angles in the momentum space which are the

angles in the reciprocal space.

But you will have the sine theta sine theta d theta d Phi type of term in the volume element

which you integrate over all the angles of theta and Phi in the reciprocal space will give you a

factor of 4pi which is here. And then you have to carry out integration over the momentum

with actually integration over k.

Which goes from 0 to the value of k and the Fermi surface because here we know that the

summation must be restricted to values of k less than or equal to the value of k at the Fermi

surface right, so, the integration is from 0 to kf, k = 0 to k = kf then k squared dk comes from

the volume element right.

It is 4pi k squared dk is the volume element, so this 4pi here and then you have got this h

cross square k square by 2m over here right. So, V over 8pi cube is nothing but this term L

cube is the same as V, so V over 8pi cube is just this term. So, this is the result for the

expectation value of the unperturbed Hamiltonian.
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So, we now have got the result for the unperturbed part of the Hamiltonian we have this result

which goes as k squared dk you have got h cross square k square by 2m. So, you have to

integrate k to the power 4 which gives you a k to the power 5 when you put the limits k equal

to 0 to kf.

You get k to the power 5 for the value of k at the Fermi level which is kf okay. So, this is the

result of the unperturbed part of the Hamiltonian. And if you now put in all the values okay

evaluate the result for energy per unit electron this we had evaluated, this is the same term as

we got when we discuss the Hartree Fock technique. 

And this is nothing but 2.21 by rs square in Rydberg units. So, this we have discussed earlier

in  our previous classes you can refer  to  the earlier  slide to  look at  this  results  how this

translates  into  2.21  by  rs  square  okay.  So,  this  you  will  remember  from  our  previous

discussions. So, this is the same as the result that we got from the Hartree Fock. 
(Refer Slide Time: 34:57)



Now what  about  the  perturbation  okay let  us  evaluate  this  using  first  order  perturbation

theory. So, this is the term H1 we have written explicitly over here in this term this is the

perturbation Hamiltonian. You have q not equal to 0, I have taken the 4pi e square over 2, 2q

square  V factored  out.  So,  that  I  have  got  only  the  matrix  element  of  the  creation  and

destruction operators.

Now what we do know is that there are two destruction operators over here Cp and Ck and

two creation operators C dagger p - q and C dagger k + q. Now certainly you will get a 0,

when you operate by Ck on this unless the kth state is already occupied which can be the case

only if it is at or below the Fermi level right not otherwise same thing over here. So, you must

destroy two particles from below the Fermi level.

And then create the corresponding two particles otherwise you will get a 0 contribution from

this matrix element this is simply because you cannot destroy a particle unless that state is

filled  and you cannot  create  a  particle  unless  that  state  is  empty  these  are  Fermi  Dirac

particles, so that is all there is to it.

So,  this  would  be  0  unless  p  and k  are  below the  Fermi  level.  And these  two creation

operators create particles in the very same empty states after the holes have been created after

the particles have been destroyed okay. 
(Refer Slide Time: 36:59)



So, let us recognize that there are two possibilities now, one possibility is that this k + q

sigma1 is the same as k sigma1 because then you destroy a particle in the k state and create in

k plus qth state right. So, this is one possibility the other possibility is that k + q creates where

this  particle  Cp  has  destroyed  that  these  are  the  other  possibility.  So,  there  are  two

possibilities one is that k + q sigma1 = k sigma1.

The second is k + q sigma1 = p sigma2, now the first possibility is ruled out because q is q =

0 are the terms that we are looking for right. So, q not equal to 0 means that this second

possibility must be correct and not the first right, so now the second possibility being correct

you have k + q sigma1 p - this is the second operator is C dagger p - q sigma2 p - q sigma2 is

the same as k sigma1 right.

So, this operator C dagger p - q is replaced by C k dagger sigma1, this is Cp sigma2, so Cp

sigma2 is replaced by Ck +q because if p - q = k then p becomes equal to k + q, so that the k

+ q that comes here. And the corresponding spin variable is sigma1, so you have got sigma1

everywhere and then you have got the delta sigma1, sigma2 and k + q must be equal to p. So,

k + q must be equal to p and sigma1 must be equal to sigma2.

So, that is the only condition when you will get nonzero contributions. So, that identifies the

terms and now you can interchange the positions of this creation and destruction operator by

using the anti commutation rules again. So, when you do that when you interchange these

two positions right.
You interchange you swap these two positions, you get a minus sign and you get Ck + q

sigma1 C dagger k sigma1. Which is this term moves to the right instead of the left but then

you pick up a minus sign.
(Refer Slide Time: 39:46)



So, let us write it at the top of the next slide which is here okay. So, this is the term we are

looking at.  And this was just a part of the matrix element  the full  matrix  element  of the

perturbation Hamiltonian has got all of these summations to be taken care of. Then you have

got this factor of half 4pi over q square e squared over V.

And  then  you  had  the  matrix  element  of  the  creation  and  destruction  operators  in  the

unperturbed ground state. So, this part of the matrix element which is the matrix element of

the creation and destruction operators in the unperturbed ground state is evaluated over here.

You have got a minus sign here, you have got the kronecker deltas over here and we can now

use the right-hand side of the first equation which is at the top of the slide.

And use it to replace this term okay, what does it give us you get the matrix element of the

perturbation Hamiltonian. Then you have got the sum over k, the sum over p, you have got q

not equal to 0 which is here right. You sum over q only for q not equal to 0 and now you have

got double summation over sigma1 and sigma2 which is written over here explicitly. 

But then you also have the kronecker deltas, k + q must be equal to p and sigma1 must be

equal to sigma2. So, this will help you contract some of the summations okay, that is coming

because of the fact that we are dealing only with q not equal to 0 terms. yes (Question time:

41:24 not audible) yeah we have already considered that q not equal to 0, correct whether we

have to write explicitly again that q not equal to zero. 

Absolutely because you are summing over q, you are summing over q and you must carry out

summation over all values of q except q not equal to 0 okay. Now the operators over here

look at this is C dagger C and the indices are exactly the same this is k + q this is also k + q



and this is sigma1 this is also sigma1. So, this is the number operator look at the second one

this is also C daggar C and look at the subscripts this is k sigma1 this is also k sigma1.

So, these are nothing but the number operators n corresponding to the state k + q and sigma1

and this is the number operator corresponding to the state k and the spin label sigma1 and

now if you can go ahead and recognize that this operator, the number operator will give you a

value 0 unless the corresponding momentum state is occupied.

And what are the two momentum states which are being referred to there are two number

operators one for momentum k and the other for momentum k + q. So, the first number

operator spells out that this matrix element will be equal to 1 for this k + q less than or equal

to the Fermi momentum in units of h cross and the second condition should also be satisfied

because if either of these gives you a 0 the matrix element will go to 0.

So, one condition is that k + q must be equal to less than or equal to kF and the second

condition is that this k the magnitude of this k must be less than the Fermi momentum in units

of h cross in which case this matrix element will be equal to 1 and if either of them is greater

than the Fermi momentum then this matrix element will go to zero right. 

So, this matrix element of the creation and destruction operators is going to contribute either

0 or 1. And the conditions when it will contribute a nonzero value are determined by when

the sum of k + q and the magnitude of k itself is whether or not it is less than or equal to the

momentum at the Fermi surface or greater than that so those are the determining factors.
(Refer Slide Time: 44:17)

So, these conditions I  have rewritten at  the top of this slide there is  nothing new in this

relation at the top of this slide. And now you have a term whose; which can take only two



values either 1 or 0 and you are perhaps familiar with a function which has got two values,

which can have only two values either 0 or 1. And this is nothing but the Heaviside step

function okay. So, this is the condition which we have written.

So,  k  + f  must  be less  than or equal  to kF or if  you subtract  k from both sides  of  this

inequality k + q - kF should be less than or equal to 0 and this condition becomes k - kF less

than or equal to 0. So, it is the same condition written differently and this is the Heaviside

step  function  which  is  popping  up.  Here  Heaviside  step  function  has  got  a  value  of  0

depending on a certain condition being satisfied.

If the independent parameter is less than or a certain value this value is 0 if it is greater than

that  value  its  equal  this  value  is  equal  to  1.  So,  we  can  write  this  condition  using  the

Heaviside step function that this matrix element of the creation and destruction operators

which now manifests itself as a matrix element of the number operators. 

This becomes a product of these two heavy side step functions. So theta is the Heaviside step

function okay. So, we can rewrite this matrix element in terms of the Heaviside step function.
(Refer Slide Time: 46:05)

So, let us do it here this is the product of the Heaviside step function. Notice that it has to be

product because if either of these two Heaviside step functions is 0 then the product goes to 0.

So, this matrix element of the perturbation Hamiltonian in the unperturbed ground state is

given by this minus sign is over here. 

All of these summation indices this term is here you have got the kronecker deltas and instead

of the matrix element of the number of operators you have now the product of the Heaviside



step functions. Now this delta sigma2, sigma1 when you sum over sigma2 will give you a

term only when sigma2 is equal to sigma1 right.

 But then you have a further summation over sigma1 but the terms are identical for spin up

and spin down. So, when you do this further summation over sigma1 the half will be taken

care of because you will get an equal contribution from spin up and spin down right, so that

will be taken care of. And then when you sum over p only the term for p = k + q will survive

right. 

So, when you carry out all of these summations do the Kronecker delta contractions your

result becomes minus sum over k sum over q not equal to 0, sum over p has been taken care

of. The only term that is going to survive is when p = k + q and that is the only term that

survives and now you have the product of the Heaviside step functions.

So, this is what you now have to sum up right okay. So, let us do that, so you have the result

for the perturbation correction according to first order perturbation theory.
(Refer Slide Time: 48:18)

Now this is what we have to evaluate but we are not going to carry out a discrete summation.

We are going to carry out an integration in the momentum space right. So, the summation

over k goes over to this integration in the momentum space with this factor because of the

volume occupied by every state right. 

So,  that  is  the  term  that  was  coming  from,  so  this  summation  over  k  goes  to  the

corresponding integration. This summation over q also goes over to the integration over the

momentum space okay. But here we were taking care that q is not equal to 0 right. Now we



do not have to worry about it because the 1 over q square is what would cause the divergence

right. Now when you do the integration you are not worried about it.

Because you have got the q squared dq in the volume element and that q square will cancel

this 1 over q square. So, when you carry out this the corresponding integration you do not

have to worry about it  okay. So, q = 0 now can be included because you are doing this

integration and you get the q square dq term in the volume element in the momentum space

of course you will get a factor of 4pi.

So, that will come, when you carry out the integration over the solid angle. So, now we have

this minus sign over here, you have got the 4pi e square, 4pi e square then you have got a 2pi

to the cube and 2pi to the cube, so you have got 2pi to the 6 okay. Then you have got L cube

which is V, this is also L cube which is also V, so you get V into V but there is a 1 over V over

here, so you are left with one V in the numerator.

So, all those factors are taken care of right. You see that so you have got 4 pi e square V over

2pi to the 6. Then you have got integration over k, you want integration over q, you do not

have to worry about q going to 0 which is included in the volume of integration. And then

you have got the product of the two Heaviside step function.
(Refer Slide Time: 50:56)

Essentially what you have to do now is if you do a change of variable okay. Now this is a

very nice trick which is very nicely discussed in Fetter and Walecka’s book that if you change

the variable from k to k + half q which I now write as capital P. So, k + q becomes you are

adding another half to the left side, so you add half to the right side, so this becomes P + half

q right. 



The integration you all you have done is to change the variable from k to P. So, you have got

the same integration over the whole space for momentum the Heaviside step function will

take care of the appropriate part of the momentum space to be dealt with. And the first order

perturbation correction is now given by this term 4pi e square V over 2pi to the 6.

You have got integration over q d3q over q square which is written over here and instead of

the integration over k you have integration over uppercase P of the product of these two

momentums, these two Heaviside step functions. Now the advantage of changing the variable

from k to k + half q is that in the Heaviside step function you are subtracting a term is certain

magnitude of a momentum term.

From the  magnitude  of  the  momentum  term  at  the  Fermi  level  I  am referring  to  k  as

momentum knowing of course that it is in units of h cross okay. So, kF from kF you are

subtracting P + half q and in the second Heaviside step function again you are subtracting

from the momentum at the Fermi level not P + half q but P - half q. So, instead of P + half q

you have P - half q over here.

So, there is a certain symmetry and that enables us to evaluate this integral using very simple

elementary geometry, I  will  show you how it  is  done.  So, this  is  an evaluation over the

momentum space okay, this is just a number which is either 1 or 0. So, there is a certain part

of the momentum space.  And we have to find the volume of that part  of the momentum

space. 

So, if we identify that part of the momentum space correctly. Then we will know what the

corresponding volume in the momentum space is? Which is the reciprocal space? Which is

going to give you this integral?
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So this is the integral to be determined. This is the volume in the momentum space that we

have to determine. Now let us consider the vectors P, this is a vector P and let this be the

vector q okay. Let us begin with this geometry what I do now is I take half of q, I look at this

q as half q + half q because in one case I am adding half q here in the other case I am

subtracting half q because of the symmetry.

So, I write this q as twice half q, so this is the q vector which is twice half q, so this is the

geometry now. And what it tells me is that this vector is P + half q and this vector is P - half q

this is just from the triangle law of addition of vector. So, see how this transformation of

vectors enables us generate the recognition of the volume element that we have to find okay.

What is the total volume of which goes into this integral?  That is all the question is.
(Refer Slide Time: 55:00)

Now this is a very nice trick and by carrying out this transformation you find that this is the

geometry that we have to work with. And to this geometry we what we do now is to take this



as a center and draw a circle of radius kF take this point as the center of another circle of

radius kF so, at both of these points one which is at the tip of the vector P + half q.

We have seen how you get this vector this is and the tip of the other vector which is P -half q.

At the tip of this vector you choose the center and you draw this circle over here.
(Refer Slide Time: 55:41)

And essentially what it tells us that if you look at this region of intersection of these two

circles you have this condition satisfied that P + half q is less than k F and P - half q is also

less  than  kF. So,  this  carrying  out  this  integration  this  is  the  integral  that  we  have  to

determine. 
This integration now becomes a problem in geometry all you have to do is to find the volume

of intersection of these two circles okay. So, this is a very nice trick and having done this you

now proceed  to  determine  the  volume  of  intersection  of  two  spheres.  With  this  kind  of

geometry.
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And that result comes straight from geometry. So, I will not work out through those steps you

can work it out. And that result is 4pi by 3 kF cube and instead of writing in terms of q I am

writing the result in terms of x which is defined as q over twice kF okay. So, this is the result

of the volume and we can now put this back over here.

So, you had a q square dq over here, you have a factor 4pi q squared dq which is the volume

element right. So, the 4pi is here which is coming from integration over the angles in the

reciprocal  space  the  q  squared  dq  the  q  square  cancels,  this  1  over  q  square  and  this

integration of this volume which is the volume of intersection of the two spheres is given by

this result over here.

In terms of x but now you have to integrate over q over whole space but mind you x must be

less than or equal  to 1 because of the Heaviside step function here okay. So, this  is  the

Heaviside step function and if you now proceed to evaluate this integral because this whole

space integration now reduces to integration only from 0 to kF.
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Which will  correspond to  integration  from you can find the corresponding limits  on the

variable x and those limits are x going from 0 to 1, you have got the twice kF coming over

here, the 4pi is coming from here okay. So, here you will now have the result having some

perturbation theory this is the first order perturbation correction to the unperturbed energy

which you got from the kinetic energy part of the Hamiltonian alone.

Interestingly  we  were  actually  able  to  use  perturbation  theory  despite  the  fact  that  the

electron-electron interaction is quite strong and that is because we took the high density limit

okay. In the high density limit this is perfectly valid and now we can rewrite this result in

terms; so you carry out this integration this is just integration over x.



From between limits x = 0 to 1 of 1 - 3 by 2x + half 3x cube and if you put in these values use

the appropriate atomic units okay. So, you carry out the transformation write the result in

atomic units or which is the Hartree or you can write this result in with Rydberg’s and write

this value of energy correction to the first-order perturbation energy coming from the kinetic

energy part alone and this turns out to be 0.916 upon rs.

And we have seen this  result  earlier  it  came from the  Hartree  Fock self-consistent  field

method and now we get it from perturbation theory. So, this is a very happy coincidence that

Hartree Fock self-consistent field method and the perturbation theory gives you essentially

the same result. 
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So,  this  is  the  result  from the  Hartree  Fock  self-consistent  field  method  which  we  had

obtained in our previous classes this is the result from perturbation theory both are exactly

identical okay. If you plot energy of course it goes as a function of rs, this term is positive,

this term is negative. So, you can when the first term is equal to the second term you will get

a 0, which come happens at this value of rs.

You can  find  the  derivative  and  find  at  what  value  of  rs  will  this  have  a  minimum by

determining de by dr = 0. So, you find the minimum and then after this minimum this rises

again and as are the value of rs increases okay. So, then it becomes a very thinly populated

gas right. So, what a high density limit which is as rs tends to 0 and a low density limit that rs

becomes very large. 

So in the high density limit you get what is called as a Wigner solid which I will not discuss

because that is not the region of interest. We are, we will deal with the, this limit and in this



limit you can go through Wigner’s article in Physics review 46 which was out long back. And

you get what is called as a Wigner solid.

But this is how the energy behaves as a function of rs by and large and we have found that the

self-consistent field method of Hartree Fock and the perturbation theory gives exactly the

same result. But our worry is going to be that the second and higher-order terms do not give

you convergence that is where we will introduce RPA the random phase approximation in the

next class.


