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Greetings, we will continue our discussion on the free electron gas in Jellium background

potential. And we already initiated the discussion on this in the previous lectures of unit 3.

What we found is that the self-consistent field Hartree Fock energy for the electron gas and

Jellium potential gets factored into two pieces one is the kinetic energy part and the other

comes from the exchange-correlation.

So, the Coulomb interaction the repulsion electron-electron repulsion due to the Coulomb

potential which is coming from the direct Coulomb interaction not the exchange, the direct

Coulomb interaction that cancels the attractive Jellium potential right, so you will remember

that. And we are now left with these two terms of which the kinetic energy part is given by

this integral.

So, this result we obtained in our previous class and I am just summarizing the essence of this

result. So, you have this angular integration which gives you a factor of 4 pi and then you

have a p squared term here and a p squared term here. So you need to integrate the 4th power

of p and that gives you the 5th power of p divided by 5. 
So, that is the result that we obtained last time. And this was in terms of momentum you can

write it in terms of k which is the 5th power of k. And if you plug in the numbers f is of

course the Fermi energy Fermi level label.
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And what we did was to estimate an average radius which an electron would have compared

to and in consideration of that we have the total volume occupied by N of electrons. So, that

gives us some estimate of an average radius for an electron. And you find that this rs + kf are

inversely related. So, this is our s to the power 3 which is proportional to the inverse third

power of kf.

So, rs goes as 1 over kf as a result of which kf of course is mass times velocity in units of you

know you have the factor h cross over here. So, when you take care of that and put the value

of kf in terms of rs then you get an expression for energy which goes as 1 over rs square.

Now other than 1 over rs square everything is a constant if you determine the energy Ek per

unit electrons.

So, if you divide both sides of this equation by the number of electrons you get the kinetic

energy contribution to the average self-consistent field Hartree Fock energy coming from the

kinetic energy term which goes as Ek over N and we find it to be 1 over rs square into 2.21.

So, I think few days ago, I think Veda on did some calculations to check that this number

actually turns out to be 2.21, so you can do it quite easily.
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Now you look at the second term now which is the exchange-correlation term. The kinetic

energy part is what we did in the previous class the exchange-correlation term require us to

evaluate  this  integral.  And  this  term we have  discussed  earlier  we know what  it  is  this

exchange term is given by this expression which has got this logarithmic term of the  ratio of

pf + p and pf – p.

So, this is the term that you get for the exchange-correlation term for the momentum p. Now

this is what we now have to determine. Now this factor of half cancels the factor 2 here and

you have this integral to be evaluated over p theta and Phi in the reciprocal space in the

momentum space.
(Refer Slide Time: 04:45)

And if you look at this expression here again the angular integration gives you a factor of 4pi

as before and the integration is over p which you can easily translate to integration over k

because p is nothing but h cross k. So, p square dp will become h cross cube k square dk



right. And this substitution gives us this expression for the exchange-correlation. There is a

factor of 1 over pi here which I have factored out in common.

The 1 over 2 also comes out, so this is 1 over 2pi but then you get a factor of 2 in the first

term over here, so that is what gives us 2kk square when you just arrange the term. So, it is

just a little bit of manipulation of these terms it is quite straightforward. So, now this is the

integral over k involving this logarithmic term. Now this is what we have to evaluate and

again this can be evaluated using similar techniques as we discussed earlier.

There are the standard integrals having logarithmic functions and you can refer to these tables

or you can work it out a priority by hand. And you will get the result which is the exchange-

correlation term turns out to be this total volume in which you have box normalized all those

electrons. And then you have -e square k to the 4 by 4 p cube. So, this is the result of this

integration, so we will use this result.
(Refer Slide Time: 06:28)

Now this is the k to the 4 term that you get this is again f represents the value of k at the

Fermi level which is the highest occupied state in the free electron gas. And we have already

seen that kf goes as 1 over rs, so this kf to the 4 goes as 1 over rs to the 4. And there are these

other constants which take care of the balance okay. 
And you can rewrite this expression this volume is nothing but the number of electrons times

the average volume of each electron which is in this bracket 4 third pi r cube with the Wigner

radius rs. And the second factor in this beautiful bracket is what appears away here with k to

the power 4 or kf to the power 4 replaced by 1 over rs to the power 4 and then there are these

other constants which take care of the numerical balance.



Now this is the result that we get the exchange-correlation energy you if you divided by N on

both sides you get the exchange-correlation energy per unit electron. And plug in the values

of all these constants 9 pi e square and everything. Then essentially turns out to be - 0.916 by

rs. So, this is a very simple calculation just the way we did it the previous calculation and got

the kinetic energy term as 2.21 by rs square this turns out to be -0.9 16 by rs.
(Refer Slide Time: 08:16)

Now we can add both the terms, so these are the two terms that we are adding up and the

result is essentially 2.21 by rs square - 0.916 by rs which is the average Hartree Fock energy

per electron for a free electron gas which is described in a potential in which all the nuclear

charges are spread out in a Jellium potential. 

Now notice that there is a minus sign here okay; this is the minus sign I am referring to which

means that in relation to the energy per electron you would get from the kinetic energy term

alone. This Hartree Fock self-consistent field energy is actually lowered it is actually reduced

and this is.
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To begin with it might appear to be a large slightly strange result because you have got a kind

of term coming from the kinetic energy part and then you add an electron gas. Which you

obviously know are going to consist of a lot of repulsion between every pair of electrons and

you expect the energy to be raised instead you find the energy to be actually lowered. Now

that of course should not surprise you.

Because the origin of the reduction comes from the fact that there is a positive Jellium and if

you  remember  how  we  arrived  at  the  Hartree  Fock  self-consistent  field  relation.  The

attractive Julian potential this term cancelled the electron-electron Coulomb repulsion and the

only thing that was left with is the exchange-correlation term which gives you this lowering

of the energy. So, that is the origin of this reduction term. So there is nothing very mysterious

about it.
(Refer Slide Time: 10:00)



So, this is the result that we get for the Hartree Fock self-consistent field free electron gas.

Now it turns out that if we did this using perturbative methods we get actually the same

result. And I am going to show it in the next class, so in the meantime I just want to anticipate

this result and you know inform you that the first order perturbation treatment will actually

give the same result.

But then if you do second-order and higher order Corrections according to a perturbation

theory  then  the  perturbation  series  does  not  converge  what  happens  is  that  the  electron-

electron Coulomb interactions term it gives you a divergence. So, up to first order there is no

problem but second order and beyond you start getting diversions. 

Now the reason you get divergence is because there is something missing in our model. And

that is what we are going to have to address.
(Refer Slide Time: 11:05)

So, what is missing in our model are the Coulomb correlations. And every time we discuss

the Hartree Fock we always must remember that there are correlations of two kinds. There

are the exchange correlations which come from the Fermi-Dirac statistics because the system

wave function of an N electron system must be an anti symmetric function.

So, they all these things go hand in hand the anti symmetry of the wave function the Pauli

Exclusion Principle the presence of electron exchange terms okay. So, these are verily called

as  exchange  correlations  or  Fermi  correlations  or  Fermi  Dirac  correlations  or  Pauli

correlations  because  they  are  associated  with  the  Pauli  Exclusion  Principle.  So,  these

correlations are included in the Hartree Fock.



Because the Hartree Fock wave function is an anti-symmetrised N electron wave function.

So, it takes care of the statistics part the Fermi-Dirac statistics satisfactorily. It of course takes

into account  to  the Coulomb interaction  which must  be distinguished from the Coulomb

correlation in the context of the discussion we have. So we are referring to correlations of two

kinds. 

The  Coulomb  correlations  which  are  ignored  in  the  Hartree  Fock  and  the  exchange

correlations which are actually included in the Hartree Fock, the Coulomb correlations are

ignored. And because these correlations are ignored there is something missing in the model

and that is part of the reason that you begin to get divergence when you deal with second-

order perturbation theory and higher order perturbation theory.

So, perturbative methods actually do not work and we need to find a completely different

kind of approach to solve this problem. And that actually requires a many-body theory that is

where you use feel theoretical methods, formal many-body techniques and using them you

are then able  to address the Coulomb correlations  not exactly, that  we know because no

many-body problem has exact solutions.

But you can develop excellent approximations and that is the challenge for theorist that you

make an attempt to develop as good an approximation as you possibly can. Because exact

solutions are beyond you there are existence theorems we tell you that you cannot get exact

solution  but  at  least  it  offers  a  challenge  that  you  can  develop  certain  approximation

techniques or nothing wrong.

There  is  no  reason  to  feel  embarrassed  about  using  approximations  they  are  necessary

intrinsic to the existence of the many-body problem but then the challenge lies in developing

good approximations.  So,  one of the most  powerful  approximations  which people use to

address the electron correlations is the random phase approximation this was developed in the

mid 50's by Bohm and Pines.

I will not get into the historical development of the RPA because there are different routes to

RPA, I will mention some of this after a few classes. But in particular I will like to discuss the

approach of Bohm and Pines  a little bit because that gives us some understanding of why this

approximation is called as the random phase approximation. So, what are the phases that are

involved, what is random about these phases?

And what is this phase cancellation that is being referred to in the RPA. So, these are some of

the questions that I will discuss in this and in the next few classes. Now this is a technique



which goes beyond the Hartree Fock, it addresses some of the Coulomb correlations it gives

you a Bohm Pines energy per electron which has these terms 2.21 by rs square and .916 by rs

but then there are certain corrections.

In which, these corrections are parameterised in terms of the ratio of kc over kf, so that is beta

is just a ratio of kc over kf, kf is our old friend which is the value of k at the Fermi level and

kc is  an upper  bound to wave number in  what  turned out  to  be plasma oscillations  and

corresponding to that there is of course a lower bound to wavelength. 

And  this  bound  the  lower  bound  of  the  wavelength  comes  because  the  oscillations  get

damped  by  a  random  thermal  motion  of  the  electrons.  So,  I  will  tell  you  what  these

oscillations are and what is causing them and how to get these parameters.
(Refer Slide Time: 16:02)

So, we will begin with a very simple classical model. So, let us think of electrically neutral

system you have a positive charge and negative charge in balance okay. Both are exactly

equal and opposite the red are the positive charges the blue are the negative charges and there

is an equal amount of positive and negative charge. 

Now we will not be referring to thermal motion for some time at least except for the fact that

some thermal motion would have caused a little bit of fluctuation okay. So, you have and on

an average a volume charge density which is smeared out. So, the total charge divided by the

total volume will give you an average volume charge density. 

This is imbalance between the red and blue in their equilibrium positions. But then due to

some trigger it could be a thermal source, due to some trigger we would not worry too much



about the origin of this trigger it can be of thermal nature. But beyond that we will not refer to

the thermos factor very much at this point of the discussion. 

So, let us say that there is a little bit of tiny little displacement of the electron gas to the right. 
Now once that happens you will have a lot of electron charge on the right face and a lot of

positive charge on the left face okay.  In the inner size everything will get cancelled. So, you

are left with a charge on the two faces.
(Refer Slide Time: 17:41)

Now once you have that this is our classical model you have got a little bit of displacement of

the whole electron gas to the right. Now that gives you a surface charge density and negative

surface charge density of e Rho times Xi, Xi is the displacement mind you right, on the right.

And on the left hand side there is a surface charge density which is plus e Rho Xi. So, these

are equal and opposite surface charge densities with opposite signs.

And with that kind of a surface charge density which is written here as sigma which is e Rho

times  Xi,  you  can  get  from simple  plain  classical  electrodynamics  that  the  net  field  in

between will be just the surface change density divided by epsilon zero so that will give you

the intensity of the field in between those two regions right.

Yes (Question time: 18:37 –not audible) charge to be it is a Jellium potential; yes, smeared

over it, yes now how are we having like it looks like a lattice arrangement I know it is like

you have positive and negative then does it you are talking about displacement; yeah actually

what you are doing this lattice is shown just to show the displacement.

Necessarily you have got the free electron gas okay. And then you have got the positive

charges which are completely smeared out, so nothing is discretized neither the electrons not



the positive charges. And these two generate charge densities which are uniform and that

charge density is this Rho.

So these are the uniform charge densities but you have displaced the electronic density to the

right. And that leaves the Jellium at the back and that is what generates this electric intensity

between them which is 1 over epsilon 0 times the surface charge density.
(Refer Slide Time: 19:44)

Yes (Question time: 19:45 –not audible) how we are making displacement that it is smeared

out in whole space you just leave that behind and the whole electron gas most of the right it

could  be  because  of  some  thermal  noise  okay. So,  you  have  got  a  background  Jullium

potential which is positively charged.

And then you have got an electron gas and due to some thermal noise the whole electron gas

is displays to the right, the jellium potential remains where it is. That is also heavier because

it is high to the nuclei. So, you consider a slight displacement of the electron gas and then you

are left  with a net effective surface charge density on the right side which is of negative

charge and a net positive charge on the left. 

So, that gives you an electric field in between. And with that electric field you can set up the

equation of motion because mass times acceleration will be the electric intensity times the

charge, so that is the equation of motion that you get. And you immediately see that this

relationship is nothing but the equation of motion for a simple harmonic oscillator okay. 
You have got the displacement and force, the restoring force which are proportional to each

other. So, it is nothing but a linear harmonic oscillator, simple harmonic oscillator. So, we

immediately know what will be the natural frequency of oscillation for this that will be given

by the square root of Rho e square by m epsilon zero.



This is the relation that you get in SI units. In many books you will find that atomic units are

used and in CGS units 1 over 4pi epsilon zero is written as 1. So, 1 over epsilon zero goes to

4pi, so the plasma frequency is root of 4 pi Rho e square over m. So, this is just a matter of

detail whether you are reading literature which has used CGS units or SI units. 

So, you will get the oscillations coming from this particular source. Now we have ignored the

thermal  motion of the electrons  except  that we attribute  the initial  displacement  to some

thermal noise but other than that we are not concerned very much. At the same time we know

that at any finite temperature there will be some thermal noise.

And that is something which you are going to have to take into account. And I will not go

into the details of the classical theory of plasma oscillations but only remind you that as a

result of this thermal motion you get a dispersion you get a k-dependent omega. And there is

this correction you get because of thermal motion. So, this is the relation that we get okay.
(Refer Slide Time: 22:42)

Now just to remind you that this is the Jellium potential, this is the point we were discussing

a little while ago. You actually do have these discrete positive charges in a lattice in a metal

okay which is what we are trying to solve the problem for and these positive charges can be

thought of like these jelly beans. And you smash them into a pudding or into what is called as

a Jellium or whatever other desert you like okay.

And smear it out so this is a uniform charge density, so we do not consider discrete charges at

discrete locations in the lattice. But charges which are smeared out in uniform charge density

the whole system however is electrically neutral. So, this is our picture and in this picture we



are using electron waves which are box normalized. So, you have got this positive charge

density in this entire box.

This entire box has got a uniform positive charge density which is simply Ne by V this is the

net positive charge the total  number of electrons multiplied by the charge of the electron

divided by V, this is the net charge density I am referring to the positive charge density the

charge of proton and electron is the same okay. So, this is the net positive uniform charge

density.

And now we write the total Hamiltonian for the system and what is what is it going to consist

of it will have the electron part of the Hamiltonian it will have a part coming from the Jellium

background and it will have also an interaction between the electron gas and the background

which is written by el – b, b stands for background el are the electronic terms. 

So, you have got the electronic Hamiltonian the background Hamiltonian and the interaction

term between the electron and the background. So, this is our total Hamiltonian, so let us

work with this Hamiltonian now. Let us look at the first term in the Hamiltonian, so you have

got the kinetic energy term which is the usual one. 

You have got the usual e-square over r term in the Hamiltonian but what we have done here is

we have introduced a  convergence  factor  instead of 1 over  distance,  I  scaled the 1 over

distance by e to the - mu distance and eventually I will take the limit mu going to 0 okay.

Now this has got certain advantage and you will begin to see these advantages very soon.

So, this is just a mathematical device which is necessary to avoid certain divergence that we

otherwise get. But with this mathematical tool we can handle the divergence very nicely. So,

this is the first term in the Hamiltonian the second term is the Hamiltonian corresponding to

the Jellium background which has the uniform charge density. 

So,  you will  have the  interaction  between the uniform charge density  at  x  with uniform

charge density at x prime. And you will have the 1 over distance term in the potential. And

here again I have introduced the e to the - mu times distance factor which will take care of the

divergence.  So,  this  is  the  second  term  for  the  background.  So,  it  is  just  the  Coulomb

interaction basically.

But  it  is  Coulomb interaction  between uniform positive charge density  between different

locations of the charges, between each other.  What about the third term third term is the

electron background interaction. So, you still have the charge density over here. Here again



we have used the e to the - mu distance term okay. In every case eventually we will take the

limit mu going to 0, so, this is the third term.
(Refer Slide Time: 26:54)

And let us have a look at the second term now. Now we are going to analyze all of these

terms one by one and then put it all together and then try to solve the Schrodinger equation

perturbatively okay that is what we are going to do. So, this is the second term which is the

Hamiltonian corresponding to the Jellium potential. Now what do you get in this you have

Rho at x multiplying Rho at x prime. 

And each of these is  equal  to N over V because you have a uniform charge density. So

obviously you will get a term in N over V Square which is what you see now. And then you

have the rest of the integration okay. So you will get the square of N over V. Now to handle

this integral I will introduce a new variable which is z which is the difference of x prime - x.

So, that at a given value of x dx prime will be the same as dz okay.

So,  this  transformation  makes  it  very  easy  for  us  to  evaluate  this  integral.  So,  now this

integral is now written in terms of instead of x and x prime integration is over x and z where z

is  defined like this okay. Now this is a straightforward integral  to evaluate.  Because this

integral if you evaluate using the usual techniques, integration of product of two functions it

comes out very neatly and you will find that this turns out to be 4pi over mu square. 

So, that is the result we will plug in. This integral is just the total volume right, this is the

integration over the whole space of the volume elements, so you get the total volume over

here. And then you have 1 over volume square coming from here and you have got a volume

in the numerator, so you are left with N squared over V. You have got a 4pi over meu square

and then of course you have the half e square which was here to begin with okay.



So,  that  is  your  result  for  the  background  Hamiltonian.  Notice  that  this  background

Hamiltonian it actually diverges in the limit that mu goes to zero. So, we will have to be

concerned about it because we promised ourselves that we are going to exploit the fact that

we will let mu go to zero which is good to get the Coulomb term out of the screen Coulomb

term. But then you also have to worry about what it does to the energy.

And if there is any divergence resulting from that we are going to have to handle it carefully,

so we will do that okay. So, this contribution of this term per electron it diverges in the limit

mu going to 0, this is referred to as mu square divergence because it is coming from the

square of mu in the denominator.
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Let  us look at  the third time this  was the electron background interaction.  So this is  the

electron background interaction this Rho is nothing but N over V. So, we have this term and

we already know how to evaluate this integral, we just did in the previous slide. So, that we

know is 4pi over mu square, so this is our result now okay. So, the electron background

interaction term this also has got mu square divergence.

So,  both  the  backgrounds  Hamiltonian  as  well  as  the  electron  background  interaction

Hamiltonian both have got 1 over mu square divergence. Both have got the factor e square N

square over V and 4pi over mu square. But this is plus half and this 1 is -1, so you have to

sum them up okay. 
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So, this has got plus half this has got -1, if you combine the two you have a net term which is

-  half  e square N square over V 4pi over mu square.  And this  term also has mu square

divergence okay. We perhaps would have been happy if these two terms had cancelled each

other but that has not happened but that is not a worry because there is more to come and that

will give us the tools to take care of the mu square divisions okay.

So, what we do is we will take the limits l going to infinity or the volume going to infinity

and then take the mu going to 0 because these are artificial parameters at our disposal and we

should do it,  so that mathematically you do not get any unphysical result.  So, that is the

advantage of doing it but before we take these limits we should inquire if this mu square

divergence does it cancel with any part of the electronic Hamiltonian which is here okay.

We have to look at the form of the electronic Hamiltonian very carefully okay. We have not

only packed all the electron-electron interactions in that term okay. But it is made up of so

many different pieces, there are the Coulomb interactions, there are the exchange interactions

okay. There are so many terms in it.

And we must first examine if there is any cancellation of the mu square divergence with

respect  to any term or part  of  the term which is  coming from the electronic  part  of  the

Hamiltonian which was our first term in the total Hamiltonian. So, that is something that we

will examine. 
(Refer Slide Time: 32:35)



So, (Question time: 32:35- not audible) yes why should we take the limit  l tends to infinity

first and mu going to zero sir, if you first take the limit mu going to zero you already hit the

infinity. Now that you are going to have to avoid at any cost and these because you should

not get any unphysical result you do not want the catastrophic okay.  

As there was that as was there in the analysis of blackbody radiation or other things also you

want to avoid any catastrophic divergence.  If you have the energy blowing to infinity for

example okay. So, that is part of the reason and these are just mathematical tools and how we

use this mathematics is then at our convenience. So, this is the order in which we take these

limits but before we take these limits.

We should also find out if the mu square divergence is cancelling any part of the electronic

Hamiltonian.  So,  let  us  use  the  second  quantization  methods  which  we  have  developed

earlier. So, in the first quantised notation our electronic Hamiltonian has this usual familiar

form the superscript key C stands for the Coulomb interaction between electron at qi and at

qj, so that is the Coulomb interaction.

And when this  is  the form of the first  quantised Hamiltonian for the electron N electron

system, the corresponding second quantised form we wrote in terms of the electron creation

and destruction operators. So, you had the one electron terms and you have the two electron

terms.  And  you  had  this  two  center  integral  consisting  of  the  Coulomb  interaction  v

superscript c.

And this Coulomb term this two center integral, is this integral that you will remember okay.



So, this is the Coulomb interaction term that we have used earlier in second quantized form.

Now what we have chosen to do is not use the Coulomb interaction but the screen Coulomb

interaction which is scaled by this e to the - mu distance right. 

So, instead of this v superscript c, we have v superscript screened Coulomb sc okay. And

corresponding  to  that  this  is  our  first  quantized  Hamiltonian  and  the  second  quantized

Hamiltonian which we do not have to develop from first principles anymore we have done

that in our earlier exercise. 

We straight away take this result and just replace this vc by the v screened Coulombs. So, this

to Center integral becomes the screen Coulomb interaction here okay. So, it is directly we

exploit the result that we have obtained earlier.
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So, this is what we have got, now let us analyze these terms further. Here these are h, i and j

is a set of four quantum numbers that includes summation over spin. And summation over the

remaining three quantum numbers which are the wave vectors okay. This is the free electron

gas right, so you have got summation over the vector k1 and the vector k2. And then there are

summations over two spins Sigma 1 and sigma 2.

So, k2 sigma 2 is the detail that go into summation over j and k1 sigma 1 is the detail that

goes corresponding to summation over i. So, I am now writing the summations over the spin

variables explicitly okay. Now I do the same with respect to the second term which is the two

center Coulomb or screened Coulomb interaction.

This is the screen Coulomb interaction here and now you have summation over for wave

vectors k1, k2, k3 and k4. And you have likewise summations over for spin labels which are



sigma 1, sigma 2, sigma 3 and sigma 4 okay. So, these are the four summations which come

in corresponding to these four summations i, j, k and l. 
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Let us examine the first term now which we know is the kinetic energy term okay. Now in the

kinetic energy term we certainly know that there will be a Kronecker delta corresponding to

parallel spins because the kinetic energy term will not connect spins of opposite which are

oppositely oriented.  So, this  integral  is  the matrix  element  of the kinetic  energy operator

which is -h cross square del square by 2m.

In plane waves these are the plane wave solutions which are box normalized. So, you have

got the 1 over square root V in as a box normalization okay. So, what do you get, you get

from this 1 over root V and 1 over root V, you get a factor of 1 over V, you guess this

Kronecker delta between the two spins sigma 1 and sigma 2 you have - h cross square over

2m and then you get the matrix element of the del square operator.

And  essentially  you  get  you  have  to  evaluate  this  integral  now  some  of  you  possibly

recognize this integral already it is the Dirac delta function okay. So, the only thing you

would notice is that normally you define the Dirac delta with 1 over 2 pi cube. We are defined

it by 1 over V.
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And this again would not surprise you because mind you our wave functions are really not

continuum plane waves which expand the entire infinite space which is available to them but

these are box normalized pseudo discrete states. So, the continuum is really pseudo discreet

because the plane waves are box normalized. So, as a result of that you have got the volume

of the box which goes as L cube.

And your plane waves are 1 over root V times the e to the ik dot x that is coming from the

Box normalization. And then because of these boundary conditions which are the Born Von

Karmann boundary conditions as they are referred to. You have a quantization which is the

pseudo discrete quantization as we get for box normalization, so this is the Box normalization

condition.

And this immediately tells you that in the k space if you go from one allowed state to another

allowed state in that discrete spectrum then the volume of each state will be 2 pi over L whole

cube because you go from one to the next simply by changing these nx, ny and nz by one

integer value. So, the volume of each state is 2 pi over L whole cube and that is the reason

instead of this 1 over 2 pi cube over here.

You have a 1 over L cube over here which is the result that we are using okay. So, now we

have  this  term in  our  previous  result  which  is  the  matrix  element  of  the  kinetic  energy

operator we had this term over here. And this is the Dirac delta which is V times k1, k2 okay.

So, now this we will cancel this V and you get this result for the matrix element of the kinetic

energy part of the operator okay.
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We have got the first term done okay. This is the first term the kinetic energy part; now let us

look at the second term which has got this two center interaction. These are not the Coulomb

interactions but the screened Coulomb interactions. So, this is the term that we will now work

with which is the screened Coulomb term.
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Now here again because the Coulomb interaction or the screened Coulomb interaction does

not tamper with the spin, so you will have a delta sigma1 sigma3 delta sigma2 sigma4, the

kronecker  delta  contraction  over  those  to  spin  variables.  And  we  can  carry  out  that

contraction because of we can exploit  these kronecker deltas,  this  is the screen Coulomb

interaction. So, you get the e square e to the - mu distance over distance so that is the screen

Coulomb interaction.
And you plug in the plane waves which are box normalized as 1 over root V, so you got one

over root V coming from 4 plane waves. This is the complex conjugate of one,  this is a

complex conjugate of another and these are the third and the fourth plane waves. So, you get



1 over root V four times. So that gives you a 1 over V square you have got the e square

coming from here and now you have these integrals.

Now that I am going to do a little bit of you know simple mathematical manipulation which

is very straight forward but just to make sure that there is no mystery about how we are

handling those terms. I will point out to you how this manipulation is done, it is very simple.

It is like undergraduate mathematics nothing more than that.
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But it is nice to see that we are not mixing up the terms okay, so we have got 4 plane wave

functions 1, 2, 3 and 4 each coming with a factor of 1 over root V. So, you get 1 over V

square and then you have got  the e square coming from here the two Kronecker  delta’s

designed over here. 

And then we are left with these plane waves I have combined k3 - k1, k3 will comes with a

positive sign, k1 comes from this complex conjugation. So, it comes with a negative sign

which is  why you have k3 – k1 here and likewise you will  have k4 -  k2 because k2 is

campaigning from the complex conjugate okay. So those are the terms that we are going to

work with okay. 
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Now we will do a little bit of you know variable change instead of r2 and r1 we will use x

and y. So, x will stand for r2 and y will not stand for r2 but why will stand for the difference

between r1 and r2 okay. What it does to r1 is it expresses r1 as y + r2 which is y + x okay. So,

these are simple transformations of the variables but they make it possible for us to extract

the terms that we can handle very easily. 

So, eventually we are going to hit the Fourier transform of the screen Coulomb potential as

you can possibly anticipate. But to extract that term these transformations are very handy. So,

this is what we have got we have now read it in this integral in terms of x and y instead of r1

and r2, you can work out these things in details. So, I will just point out how this is done but

then these slides will be uploaded at the course webpage anyway.

So, all the relations will be there, so you do not have to write down anything right now okay.

So,  these  are  the  transformations  that  you  will  be  using  and  in  terms  of  this  the  other

manipulation I do is I just multiply and divide by some terms over you are which is why this

k3 - k1, I multiply it by e to the ik4 - k2 and then I divide it by the same term. So, this is e to

the minus ik4 - k2.

So, that is all there is to it, so I have just multiplied and divided by this term okay. Now this

is, this particular term we can again separate out into those parts which contain x alone and

those parts which contain y alone, so you just separate out the factors this makes it very easy

to handle these terms. So, I have now separated the terms because the first exponential term

has on y + x.
So, I separate it out into this term you know which has got x alone and then this term which

has got y alone. So, you are left with only k3 - k1 dot y when you take the balanced correctly



okay. So, that is what we have got. So, this whole two Center integral for the screen Coulomb

potential now has this term. But now all this screen Coulomb interaction takes a rather simple

form this goes as e to the - mu y over y okay, in terms of the variable y okay.
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So, this is now the integral to be evaluated and the variables x and y we separate we first

carry out the integration over y and then integration over x. So, let us evaluate this integral

this  we  already  know  is  the  Dirac  delta  it  is  coming  from  conservation  of  momentum

relationship okay. 

So, we know it is V times the Dirac delta as we have defined. What about this term so this is

the delta this V over V square gives us only 1 over V, so that is the only thing we have done

in this step okay. This V over V square giving us 1 over V, this V is coming from the Dirac

delta definition because of box normalization.

And here you see that you have to determine nothing but the Fourier transform of the screen

Coulomb potential  and  that  is  something  which  you  would  have  probably  done  in  your

mathematical  physics  course  okay. So,  this  is  just  the  Fourier  transform of  the  screened

Coulomb potential.
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And I would not do it in any detail because I assume that you are familiar with this. But I will

just show the path of how it is done very quickly without getting into too many details. So, I

will have a very tiny digression without getting into too many details because you have the

general definition for Fourier transforms.

And the problem is that when this particular integral does not converge you can do it by

introducing and mathematical convergence factor. So, when this integral does not converge as

it  does  not  in  the  case  of  the  Coulomb interaction.  You can  evaluate  this  in  terms  of  a

mathematical device, introduce this e to the - mu r and then take the limit mu going to zero.

So, the Fourier transforms work quite all right using this technique.
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So, the other thing that is, that we exploit in this case that when this function f of r whose

Fourier transform you are interested in, if this has a rotational symmetry then the Fourier

transform has got a rotational symmetry in the momentum space or in the k space. So, that is



again a theorem which you can work out and I will not discuss that in any detail. But I will

use these results.

And the entire derivation of the Fourier transform of the screen Coulomb potential is based

only on these two very simple Conservation's one is to use the mathematical device of mu

taking the limit mu going to zero and second is to exploit the rotational symmetry of the

Coulomb potential.
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So, using this result you can get the Fourier transform of the screened Coulomb potential

because the Fourier transform of the Coulomb potential this goes as integral 0 to infinity of

this sinusoidal wave. So, this sinusoidal wave will just keep oscillating no matter how far you

go and the integral does not converge. 

So, that is the reason you have to use this device, so the Fourier transform of the Coulomb

potential will not converge but that for the screen Coulomb potential it does converge. And

you can evaluate it using the technique that I just showed you. 
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And we will use the result which is 4pi over mu square +k square. So, these are some of the

straight forward intermediate steps which you can work out or look at the details on the PDF

file which will be uploaded and the course website. So, this is the Fourier transform of the

screen Coulomb potential  when you take the limit  mu going to 0 you get the 4pi over k

square for the Coulomb potential itself.
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So, this is the result that we are going to use because we needed the Fourier transform of the

Coulomb potential  to analyze this  term okay. This is  the Fourier transform of the screen

Coulomb potential. So, we have got everything evaluated now this to Center integral has been

evaluated, here you have got the Kronecker Delta is coming from the spin, here you have got

Dirac delta coming from the Box normalization right.
And here you have got the Fourier transform of the screen Coulomb potential that we have

just evaluated, so we have got everything now. So, just put in all the values, so here you get

4pi over here, the factor is k3 - k1, so you have got the modulus of k1 - k3 whole square right



+ mu square, so this is your two center term. And now we have the expression in second

quantized form for the electronic Hamiltonian okay.

Now this is the second quantized form of the electronic part of the Hamiltonian you have

these summations. And then you do have these summations over various momenta k1, k2, k3,

k4 and so on right. Now when you deal with these there will be certain momentum transfer

and you may be able to separate out certain terms. How much momentum is transferred, what

are the terms corresponding to zero momentum transfer.

What are the terms corresponding to non zero momentum transfer and when you analyze

these terms carefully you will find that some of these terms actually cancel the 1 over mu

square divergence, we were getting from the background Hamiltonian and from the electron

background  Hamiltonian  okay.  So,  that  is  something  that  we  are  going  to  see  after

rearrangement of these terms.
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So this is the mu square divergence that we were worried about. This is the second quantized

form of the electron Hamiltonian that we have now got. We have got the Fourier transform of

the screen Coulomb interaction; we have got the remaining you know the whole Hamiltonian

is written in second quantized form in terms of the creation and destruction operators. 
And the Kronecker delta over here tells us that k1 + k2 must be equal to k3 + k4 which is a

statement of momentum transfer that k4 - k2 must be exactly equal to k1 - k3. And these two

momenta  differences  must be exactly  equal.  So,  what  we will  do in the next  class is  to

rearrange  these  terms.  We will  analyze  the  terms  for  different  values  of  q  which  is  the

momentum transfer okay.



And  what  are  the  terms  corresponding  to  zero  momentum  transfer,  what  are  the  terms

corresponding to non zero momentum transfer because obviously when k4 = k2, k1 = k 3 and

the momentum transferred is 0. So, we will look at these terms carefully and we will find

happily that the zero momentum transfer terms actually cancel the mu square divergence. But

that is something we will do in our next class.

So, we will, when we do this analysis we will proceed to get the perturbative expression for

the energy of this system. There is any question I will be happy to take otherwise goodbye for

now until  the next class.  (Question time:  54:40- not audible)  Jobin and yes,  here we are

dealing with free electron gas function corresponding to the RPA .

Yes when it comes to that atomic system is there any distinction or a there any difference; not

really the model is the same because ultimately what we are going to use in the atomic case is

how the electron terms are handled. And how the electron terms are handled, there are two

parts  to  it  one  is  how  the  exchange  correlations  are  handled  and  how  the  Coulomb

correlations are handled. 

Now as we develop this technique further in the next few classes it will take us another four

classes before we get to the end of this Bohm Pines method which is the random phase

approximation, which is also why it is called as a random phase approximation. What this

technique is going to tell us is that how are these electron correlations to be handled and there

is a certain prescription which a certain recipe which comes out of this. 

Now that recipe is something that we are going to use in the atomic case. Now it is not

guaranteed that it will be always successful in the atomic case nor is it guaranteed that it is

always successful for a metal.  In both cases it is conceded that electron correlations cannot

be dealt with exactly. 
So, to the extent to which RPA correlations will account for the correlations we go ahead and

use this model whether it is in the solid state case or in the atomic case. But then we find that

when you are applied to real systems you do run across situations in which the correlations

are not adequately accounted for by the RPA.

What you do in that case you have to develop a different many-body theory. You have to

develop  a  different  approach  to  deal  with  correlations  and  these  different  approaches  to

correlations they are sometimes based on configuration interaction methods in the atomic

case we use a multi configurational Hartree Fock or the relativistic multi configuration of

Dirac Fock and so on.



That is because the usual techniques that we use for it,  in using the RPA if  they are not

adequate  you  need  to  go  beyond  the  RPA.  So,  you  are  quite  right  that  it  is  not  at  all

guaranteed that this will be applicable in the atomic case, in every single atomic case. It is

applicable in a large number of cases though it is one of the most successful many-body

theories. 

So,  that  is  where  lies  its  strength  but  at  the  same  time  there  are  limitations.  So,  the

approximation  certainly  means  there  are  approximations  at  so  many  steps.  The  Jellium

potential  itself  is  an  approximation  that  is  not  the  real  potential  okay.  Then  the  whole

procedure of using the screened Coulomb potential and so on to develop this approximation

and then as we proceed further, we will deal with certain terms.

And some of the terms you are simply going to throw okay. Theorists are very good at that

that when they cannot handle a term they just throw it okay. And the experimentalists love to

find a flaw in that but the point is that with all  these approximation steps which go into

developing a model. I think the smartness of the theorists and that is something which Bohm

and Pines did so beautifully.

But Bohm Pines did was to identify what term should be thrown and having thrown those

terms they found some justification for it which is the cancellation of certain terms which are

not in phase with each other that is a point that we will discuss in the next few classes. But

they threw those terms and arrived at a result which has turned out to be extremely powerful

and successful in going beyond the Hartree Fock.
Having conceded that the Hartree Fock does not account for the correlations you have to go

beyond the correlations. Then the RPA gives you a very powerful many-body theory to go

beyond the Hartree Fock. Now that is its strength but that does not mean that it does not have

limitations, of course it has limitations. Every many-body theory has limitation that is a point

we often quote Brown Fock.

That if you are looking for exact solutions having no body at all already too many. So, there

will not be any exact solution. The best that you can do which is good because that is where

the  challenge  lies  that  you develop good approximation  techniques.  That  is  what  we all

struggle to do, so we use RPA productively successfully where it works at very does not work

we need to go beyond the Hartree Fock beyond the RPA.

You know we do the RPA to go beyond the Hartree Fock but then you want to go beyond the

RPA and address some non RPA correlations which is what you know we and some of our



colleagues Boya and others have developed this multi configuration time Dankoff and so on.

So, these are various techniques to go beyond the RPA right, goodbye.


