
Select/Special Topics in ‘Theory of Atomic Collisions and Spectroscopy’
Prof. P.C. Deshmukh

Department of Physics
Indian Institute of Technology-Madras

Lecture 18
Exchange, Statistical, Fermi-Dirac correlations

Greetings  let  us  continue  our  discussion  on  the  electron  gas  in  the  Hartree  Fock

approximation which we started recapitulating in our previous class. Which was of course a

different approach to the Hartree Fock self consistent field then what we did in our previous

course on atomic physics. 

So, this was a slight variant of that approach and specifically this approach is geared toward

introducing the random phase approximation in particular the Bohm Pines formalism of the

random phase approximation and that is what I hope to get into in the next couple of classes.

So, today our focus will be on the treatment of the kinetic energy part and the exchange

energy part which is involved in the electron gas interactions.
(Refer Slide Time: 01:12)

So, we wrote the Hartree Fock self consistent field equation which is a condition which must

be satisfied, so that you get a self consistent field according to the variation principle. And

this relationship we arrived at in our previous class. So, this would be an appropriate time you

know point to begin discussion in for today. So, you have got the kinetic energy term and

then the exchange term.
Notice that epsilon is used twice in this equation one is in the second term on the right hand

side, on the left hand side, second term on the left hand side which is exchanged term. And

epsilon is also used on the right hand side but on the left hand side you have got k as a



subscript where is on the right hand  side you have got k as an argument and these two stand

for different things.

So, epsilon subscript k on the left hand side is the exchange term and epsilon argument k is

the term that you get from the Lagrange multiplier in the Hartree Fock formalism, so that is

something  to  be  kept  track  of.  And  we  also  found  in  our  previous  class  the  complete

expression for the exchange term which is -4 pi squared over L cube and you must sum over

all the states.

And you have got one over the modular square of the difference between k and k prime when

you sum over all the states k prime. Now this is the subscript k corresponding to the exchange

term and the argument which comes from the Lagrange multiplier term in the Hartree Fock

formalism, so just remember that. So, there is no reason to get confused by the two epsilons

which appear in this.

So, essentially you have got the ek plus the kinetic energy plus part plus the exchange part

which give you the Hartree Fock energy for the electron gas in the Jellium potential.  Of

course we have already made some approximation this is an electron gas and the positive

nuclear charge which is there in the middle.

Is smeared over the entire region of the metal of the whole area it takes the whole expanse

with a uniform charge density. So, that is the Jellium potential which we are making use of.

Now we have to determine the kinetic energy part and also the exchange part. So, let us focus

on the kinetic energy part for which the k appears as a subscript. 
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Now this is the model that we have you got a positive charge. The entire positive charge at all

the lattice sites is smeared over the entire region of this metal.  And the charge density is

uniform it is the number of electrons times the electron charge divided by the total volume so

that is the average charge density, the volume of the box let us say is Lq each side being of

length L.

What we have done and this is with reference to the discussion in the previous class. We have

done a box normalization of the free particle  free electron waves. So, that is the kind of

normalization we have done. We estimated the number of wavelengths that will fit in a box.

And we get a quantization condition so this is the discretization of the continuum in a certain

sense and that gives us a condition on the wave vector.

And essentially  what you find that you can talk about an average volume for each state.

Because you get from one state to the next by changing the integer quantum numbers and the

average volume for each state will be the cube of 2 pi over l as you can see quite clearly from

this. 
(Refer Slide Time: 05:26)

So, this is the term that we want to work with. We have found that the volume of each state is

the cube of 2 pi over l but we are dealing with a sum over all the states. But when we go to a

continuum model  because  you know the electron  wave vector  if  when you take the free

particle states which is what we are using e to the ik dot r type of solutions for free particle

states.

Then of course you need to carry out integration over all the states rather than summation

over  the  discrete  states.  So,  you  have  to  change  over  from  this  discrete  summation  to

integration. So, this will be an integration over all the states and you must integrate over the



entire volume and divided by the average volume of each state which is 2pi over L whole

cube right.

So, that is what the summation k prime will be replaced by. So, let us go ahead and do this

integration now. So, what you have as a summation here effectively becomes you have the

same term -4 pi e squared over L cube over here and instead of this discrete sum you now

have the corresponding equivalent integration okay. How this is integration in the k space but

it is not over all the values of k.

Because in the ground state the uppermost k level which is filled is the one which is at the

Fermi level right, so you have to carry out the integration only up to the Fermi level. So, if

the Fermi level corresponds to a momentum in units of h cross which is given by kF then

integration over the variable k prime will go from 0 through kF.
And then in the spherical polar coordinate system in the momentum space you will have theta

going from 0 to pi and Phi going from 0 to 2pi and then of course you have the modular

square of this  difference vector which is  k minus k prime which I have written as a dot

product between this vector with itself. 
(Refer Slide Time: 07:59)

So, this is the integration that we have to carry out which I bring to the top of this slide now

and I transfer the variable explicitly from k2p and the difference is only this h cross so that

tells us that the differential increment dk is dp over h cross. So, you make corresponding

changes over here.

And write this integration over the momentum from zero to the momentum at the at the Fermi

level. And then of course the rest of the variables are appropriately adjusted scaled by the



factor h cross right. So, let us carry out this integration in the momentum space over the

variable p.
(Refer Slide Time: 08:44)

Now here the integration over the Phi variable because there is nothing that will depend on

Phi, so this will give you a factor of 2 pi over here then you are left with integration over

theta and p. And as you would have done in a large number of exercises it is very easy to

carry out this integration.

By changing the variable put mu equal to cos theta and then change the way integration over

theta to that over cosine theta which is over mu. And that gives you this integral okay. So now

you have integration over mu going from -1 to +1. There is a minus sign here which takes

care of the cosine theta correctly. 
(Refer Slide Time: 09:41)

And we will now work with this integral you have to integrate over mu going from -1 to +1

make sure that you have the correct signs and what do you get. So, you have the integration



over cosine theta which is to be done first followed by integration over momentum going

from 0 to the Fermi momentum to be done next okay.

So, now this is a straight forward  integral to be done you get a logarithmic term and then you

have to put the limits -1 and +1 right. So, you get the upper term and the lower term which

you must subtract for mu = -1 will be the lower term in mu = +1 will be the upper term right.

So, this is integration over cos theta which is integration over mu.

So you have a minus sign here in a minus sign here so you can drop both of them and now

you have a rather simple expression but you have to put these  limits  okay.  I will,  after

putting these limits then you have to carry out the integration over the momentum. Now this

is fairly straightforward mathematics but I will take you through some of these steps. 
(Refer Slide Time: 11:05)

So, this is what we have got in our effort to get an estimate of the exchange term. So, now let

us put the limits mu =  +1 will give you the logarithm of p square + p prime square -2 into p

into p prime with mu = +1, so that is the first term that you get. And from this you subtract

the second term corresponding to mu = -1 which multiplies this -1 and gives you a plus sign

over here. 

So, this is what you get after the integration over mu or cos theta has been completed. Now

notice that there is a p prime square here and you have got a p prime in the denominator, so

one of these powers can be reduced. And you simplify this expression a little bit, having

reduced one of the powers you get p prime over p this p coming from this common p in the

denominator in both the term.
(Refer Slide Time: 12:11)



So, we have this integration over p prime going from 0 to the Fermi momentum and then you

have got this logarithmic term. And you can play with this log logarithmic term a little bit and

write it in this form. These are straight forward substitution you have got logarithm of the

modular square, so you get a 2 log over of that ratio. And you can strike out the factor 2 now

and then without the two you have the rest of the term.
(Refer Slide Time: 12:57)

And that is what gives you the expression for the exchange term as this okay. All right we can

simplify this further because we want to bring it into a form which is one of the standard

forms for integration. So, now we have it as a difference of two integrals and we use this

standard form of the integration for x log x + a, which is a well known integral formula. So,

we use this in the above expression.

And that gives us a number of terms over here, so we get similar to this x square -a square by

2 log x + a, we get this term over here. And then for this x - a whole squared over 4 we get p



prime + p whole square over 4 from this term. And likewise we get two terms from this okay.

Now you do not have to write this down very quickly because you will have access to the

PDF file in which all these formulae are available okay.

So, they will be uploaded at the course website but you need to follow how the derivation is

being done okay. So, now you have to put the limits because you have an upper limit p prime

equal to the Fermi momentum and the lower limit is p prime equal to 0. So, you have to write

this expression for the upper limit and subtract from it the corresponding expression for the

lower limits.
(Refer Slide Time: 14:54)

So, let us do that so we have the upper limits and the lower limits to be respectively the Fermi

momentum and 0, so we get this expression with p prime equal to the Fermi momentum, so

you instead of p prime square - p square you get pf square - p square and the corresponding

terms with pf fermi momentum over here. 

And you have the same expression for the p prime = 0, but notice that this term simply

vanishes. So, there is nothing that is left of it and now you have only the upper expression

which you have to be working with okay. 
(Refer Slide Time: 15:43)



So,  now you have an expression  for  the exchange term which is  in  terms of  this  Fermi

momentum this will depend on the value of the Fermi momentum. This you can simplify

because there are common terms over here you get - twice p into pf and from both of these

terms. So, you get -4 into p into pf which you divide force you get p into pf and the other

terms will cancel each other because there is a minus sign here and a plus sign here.

So, the only thing that is left from these terms the last two terms is this - pf into p okay. So,

this is a little bit of further simplification this -p into pf has been factored out as a common

between the two terms inside this rectangular bracket. So, you get plus one over here and you

have a minus sign sticking out over here and then you have this p into pf in the denominator

which takes care of the factorization. And this is the exchange term as we have got okay.
(Refer Slide Time: 17:09)

Now here this is the expression that we got from the Hartree Fock equation, this is the kinetic

energy part and this is the exchange part. We found out after substituting this term over here.



We have this general form and it is very often customary to write this in terms of the ratio

Rho which is the Fermi momentum.

Over the momentum variable p which simplifies this or enables you to write this term in an

equivalent form. So, there is nothing new with this except that it is being written in terms of

the ratio rather than p and pf okay. So you get Rho square - Rho over here and here inside

you will get 1 + Rho and 1 - Rho. 

Now pf over h cross gives you the kf. So, that is all there is to it, rest of the terms being the

same. And it is often you will find in some of the literature especially we in the books by

Raimes or the articles by Bohm that he writes this factor inside this box as f of Rho because

then it becomes simple to write and one can even examine the behaviour of f as a function of

Rho.
(Refer Slide Time: 18:53)

So, this is the result that we have got keep track of the sign you had a plus sign here and a

minus sign here which essentially means that the exchange term has got this minus sign, Rho

is pf over  p but the variable  p is  always less than the Fermi momentum because all  the

electron states are occupied only up to the Fermi level. So, by definition this p is always less

than pf which means that Rho is always greater than or equal to 1 okay.

So, Rho being always greater than or equal to 1, Rho square - 1 will always be positive and it

is you can see that the exchange term will be essentially negative. So, it reduces the energy

with reference to the kinetic  energy term okay. It  does not add to that energy it  actually

reduces it. 



Now this is a result  that we have actually  met before because when we did the previous

course and atomic physics we discussed the singlet and the triplet states and we quoted from

Landau–Lifshitz that the triplet state is less punished by the Coulomb interaction because you

have this exchange interaction.

And in the triplets, the triplet state for a two electron geminal wave function always has a

lower energy than the singlet state. So, it is the same kind of result and we let me remind you

of this result a little bit because the singlet wave function has got an anti symmetric spin part

and the orbital part is symmetric okay.
(Refer Slide Time: 20:39)

So, this is the singlet state and as you can see from this what happens that as r1 tends to r2 as

these two arguments get close to each other. The first term and the second term would add

and double each other right. So, it is like you know you will have a doubling of that wave

density and you will be stacking the charges together. So, you generate a heap of electrons

this is actually called as Fermi heap.

And what it will do is that in this heap the electrons the two electrons will get closer to each

other and as a result of that there will be increased repulsion okay. Because the closer they get

the force of repulsion goes as you know 1 over r square. So, there will be increased repulsion

and that will make this state less stable. So, that is the reason it has got higher energy.
(Refer Slide Time: 21:47)



And correspondingly if you look at the triplet state you have got an anti-symmetric space

part. So, you have got the argument r1 and r2 in this geminal wave function and what will

happen as r2 tends to r1 then you will have the orbital part practically vanish. And that is part

of the reason that the triplet state if it has to exist will tend to keep the particles separated and

it once they are separated that will reduce the repulsion between them.

And that will stabilize that particular state, so you have essentially the exclusion principle and

the anti symmetry of the wave function which is influencing these dynamics. So, it is as if

there is a cavity around each electron which prevents any other electron from the same with

the same spin enters that space okay. 

So, that cavity is called as a Fermi hole, so as opposed to a Fermi heap of the previous case

you now have a Fermi hole. So, these terms are sometimes used and you have, it is called as a

Fermi hole, it is also called as an exchange hole and what it does is it reduces the repulsion

and it stabilizes this state. 
(Refer Slide Time: 23:20)



I will now refer to the Hartree Fock equation which I recapitulate from the previous class

which was on slide number 54 of the previous class. This is the Hartree Fock equation for the

electron, for the free electron gas. This is very similar to the Hartree Fock equation that you

have in atomic physics with the difference that the term over here was the nuclear attraction

between an electron and the nuclear attractive potential.

In this case this is the Jellium on potential in the present case this is free electron gas in a

Jellium potential. So, this is not an atom we are working with so the relationship is similar

but of course there are important differences which we have to keep track of. You have got a

Jellium on potential and as we discussed in the previous class the electron-electron Coulomb

repulsion which is the direct interaction term.

Now this direct interaction term and then you have got an exchange term. So, these are the

two terms which are similar to what we have in the atomic case as well. But in the present

case these two terms which is the Jellium attractive potential term and the electron-electron

repulsion term they are exactly equal and opposite. This one is attractive, this one is repulsive

and they are exactly the same so they will cancel each other okay.

So, the Hartree Fock equation for a free electron gas is now left with only this kinetic energy

term and this exchange term okay. These two happily cancel each other, so these are the two

terms this is the kinetic energy part and this is the exchange part. So, this is now the Hartree

Fock equation as we have.
(Refer Slide Time: 25:03)



And we have already seen that in the momentum space; now let us try to get some numbers

for the exchange term, for the kinetic energy term and exchange term. So, because eventually

we  will  have  to  do  some  calculations  for  these,  so  we  already  know  that  the  discrete

summation  is  equivalent  to  this  integration  over  the  momentum  space  up  to  the  Fermi

momentum divided by the average volume of each state.
In the momentum space of course there is an extra factor of h cross right. So, the momentum

summation over p prime will give you a corresponding term over here. So, we are now going

over to integration over a momentum space rather than integration over the k space. They are

linear with a factor of h cross.
(Refer Slide Time: 26:00)

And we will get expression for the Hartree Fock in the, for the electron free electron gas in

the Jellium and potential by simply looking at the comparison between the corresponding

expression for  the  atom which we have  done in  considerable  detail  in  the  unit  4  of  our



previous course.  And these are the references  which are available  to you. So, this whole

lecture is available at this link and the corresponding PDF files are also there.

So, this is the expression for the Hartree Fock in the atomic case but now we have some

differences here because this term which was a single particle operator for in the atomic case

which consisted of the kinetic energy operator and the nuclear attraction. Now we do not

have that instead of that we have the Jellium potential right. So, we are going to have an

electron gas and a Jellium on potential.

So, the one electron part will be somewhat different it has to be modified and we will simply

you borrow this result and adapt it to the electron gas in the Jellium potential  by making

corresponding changes. So, we have first of all the electron gas and a Jellium potential and

we also know that this term which is coming from the Coulomb term right. 

This would go because this is the one which cancelled the electron-electron direct Coulomb

repulsion term this would cancel the attractive Jellium potential as we have seen, as we have

discussed right. So, these are the two changes that we shall remember and therefore all we

have  to  do  is  to  replace  the  summation  over  these  discrete  states  by  integration  over

continuum states going up to the Fermi momentum. 

Now once we make these changes we can straight away adapt to this result of the previous

course from unit 4 and write this expression for the energy for the Hartree Fock energy not

for  the  atom  but  for  the  electron  gas  in  the  Jellium  potential.  So,  now  you  have  this

integration over the momentum space. You have got in this the kinetic energy term which is

here which is p dot p over 2m right.

You do not have this term anymore because this is the one which has cancelled the Jellium

potential. But you do have the exchange term which is here okay. So, this is straight away and

a direct adaptation of the Hartree Fock result of the previous course. So, instead of spending

extra time and re-deriving this expression I chose to adapt to this relation for the electron gas,

for the free electron gas.
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So, here we are this is what we have got this is the Hartree Fock energy for the electron gas in

the Jellium potential. And this is now a sum of these two terms the kinetic energy part which

is coming from here the p dot p over 2m the p squared over 2m. And then you have got the

exchange terms. 
So, this is the kinetic energy part which I have now written the two integrals separately Ek

the  first  one  which  is  with  a  subscript  k  for  kinetic  energy part.  And the  second  is  the

exchange correlation term and these are the two integrals that we have to work with.
(Refer Slide Time: 29:33)

So, let us have a look at this here you just have an integration over the solid angle okay which

will give you a factor of 4pi. And you have p square and then p square over here, so you will

end up integrating a 4th power of p. So, that gives you p to the 5th and the Fermi momentum

over Phi and this is the expression for the kinetic energy term you get h cross square after

simplification of all the terms.



You have got 2pi h cross to the power 3 and then you had p to the power 5. So, there was an h

cross to the power 5 sitting over here. So, that is what leaves you with h crossed to the power

2. So, when you take care of all of these terms this is what you get for the kinetic energy part.

Now the subscript f of course is a Fermi level corresponds to the k value at the Fermi level.

And L cube is the volume of the box which is what I have written here, you will this result is

straight from the book by Raimes which I strongly recommend for this part of the course

okay. 
(Refer Slide Time: 31:14)

So, this is let us try to estimate what it will amount to this is in the k space we already know

that the volume of each state is the cube of 2pi over L the total number of electrons is N and

since there is one electron per state there are those many states that are that we have to work

with. So, this will be twice the number of single electron states in the volume spanned by the

Fermi sphere and this volume is 4 by 3 pi k cube right.
 
So, this is twice this number so you have twice 4 by 3 pi k cube which is this Fermi sphere

divided it, divided by the volume of each state which is 2 pi over L whole cube. And then you

can rearrange these terms do a little bit of simplification okay. Which is quite straightforward

and you find that this N turns out to be given by the cube of this k. And k turns out to be the

third, one third power of N over V which is the density okay.
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So, this is what we have got, these are the two forms that we get. We have; if you now

consider rs, r subscript s to be the radius of a sphere whose volume is equal to the average

volume per electron just have some variable for that which is the average volume that you

have per electron. So, this average volume multiplied by the total number of electrons will

give you the total volume and this we have found out to be what it is.

Now that gives you rs this radius of a sphere whose volume is equal to the average volume

per electron to be given by this relation. And that tells you that this rs you find a mechanism

to find what this value of rs is. What it gives us is the expression for this term Ek in terms of

rs. But this is Ek in terms of the total number of electrons, so it is best that we normalize it for

the number of for the average Ek per electron. 

So, you divide Ek by n that gives you an estimate for the kinetic energy contribution to the

average Hatree Fock ground state energy per electron because you have divided it by the total

number  of  electrons  and  that  turns  out  to  be  this  particular  value.  And all  of  these  are

universal constants. So, you can find out the corresponding values in appropriate units okay. 

And in terms of energy units it turns out to be 2.21 over rs square Rydberg okay. And the RS

itself will be in the bore units. Now this gives you a good estimate of the average energy per

electron. Now is this really correct, now we already know that we have to make a correction

for the exchange because this is just a contribution coming from the kinetic energy part okay. 

So, when you make a correction for the exchange you get a better estimate but then even that

is  not enough.So, that is what many-body theory is about that is  what the random phase

approximation is about.
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So,  first  of  all  we  have  to  make  correction  for  the  exchange-correlation  term  on.  This

exchange-correlation so we already knew that the Hartree Fock energy is  the sum of the

kinetic  energy  part  in  the  exchange-correlation  part.  And  we  know  that  the  exchange-

correlation is given by this term.

We have this result from our previous analysis. Exchange term we got an explicit expression

for this okay. And we will use this to get an estimate of the exchange part, so that will be our

subject for discussion in the next class. And what we will find is that when you make an

estimate of the exchange term you do get a better estimate of the average energy per electron.

You improve upon it but even that is not enough.

Because what we have done in the Hartree Fock is we have taken care of the kinetic energy

part we have taken care of the exchange interaction, in other words we have taken care of the

Fermi-Dirac statistics. But we have still left out something which is the Coulomb correlations

that is where you will need a many-body theory. You will need, you know where you know

some new and powerful techniques.

You can try if it can be done with perturbation theory it will turn out that perturbation theory

is not adequate for that. But we will get an estimate of the correction, we get by taking into

account this exchange term in our next class and subsequently we shall proceed to account

for the Coulomb correlations which are left out of the Hartree Fock.

By following the method of Bohm and Pines technique which is known the random phase

approximation, so that is what we will discuss in the next class. So thank you very much for

today.


