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Okay, greetings, and welcome to the unit 3 of this course on theory of atomic collisions and

spectroscopy. We have done the Hartree Fock formalism; we have discussed it in a previous

course on atomic physics on special topics and atomic physics. So, in today’s class we will

discuss,  we will  revisit  some aspects  of  the  Hartree  Fock formalism but  from a  slightly

different angle.

And this  is  specifically  adapted  toward  developing  what  is  known as  the  random phase

approximation  which  is  one  of  the  very  powerful  techniques  used  to  deal  with  electron

correlations  in  many body systems.  So, we are sort  of  essentially  preparing ourselves  to

develop the random phase approximation in this class. 
(Refer Slide Time: 01:07)

Now I will invite you to go through the contents of the lecture on the Hartree Fock or the set

of lectures on the Hartree Fock in the previous course on special topics in atomic physics.

These lectures are available on the internet already and what we will do is to use the methods

of second quantization which we developed in the previous unit, in unit 2 of this course. And

we will use the methods of second quantization.

And our intent of course is to deal with the Coulomb correlations which are left out of the

Hartree  Fock.  The  Hartree  Fock  as  we  know  includes  the  exchange  correlations  or  the

statistical correlations, the Fermi Dirac correlations as we refer to them but not the Coulomb



correlations which are the many-body effects. And our intent is to address these Coulomb

correlations.
(Refer Slide Time: 02:06)

So, let me recall the basic Hamiltonian which we dealt with in the previous course on atomic

physics  and  we  developed  the  self-consistent  field  for  the  solutions  of  the  Schrodinger

equation for n number of electrons. For which the Hamiltonian was written as a set of one

particle  and two particle  operators fqi are the one particle  operators which consist of the

kinetic energy part and the nuclear attractive potential as you can see.

And then you of  course  have the  electron-electron  repulsion term between every pair  of

electrons and you have to exclude i = j from this double summation which is over i and j

going from 1 through n. This is the Hamiltonian as we worked with in the first quantized

notation. 

Now in the second quantization notation the same Hamiltonian is written in this form as we

have discussed in the previous unit, in unit 2 of this course okay, so in the previous unit we

developed  methods  of  second  quantization.  We introduced  the  creation  and  destruction

operators and in terms of these creation and destruction operators we wrote the N electron

Hamiltonian in the second quantization notation.

And this is essentially just a matter of notation in atomic physics we are not dealing with such

high  energies  that  you  really  have  to  work  with  you  know  creation  and  destruction  of

particles. But transitions from one particle state to another particle state can be viewed as

destruction of particle in one state and creation in another.



And that is how we use the very powerful methods of second quantization in atomic physics

atomic and also molecular physics. Now mind you if you look at these arrows q1 and q2 are

the integration variables  and typically  we always consider  the integration variables  to  be

dummy variables so it does not matter whether you write the integration variable as q1 or zeta

1 or x1 or y1 or, or whatever.

Nevertheless it is important to keep track of which variable is associated with which quantum

state. So, q1 is the argument of the single particle function for the quantum state k and q2 is

the  one  for  the  quantum  state  l  because  that  is  associated  with  the  q1  variable  being

associated with the quantum state i and q2 being associated with the quantum state j okay. 

So, one has to keep track of this that these dummy variables are dummies yes you can change

them but then you have to do it in a consistent manner okay. So, ink will have the same

dummy label, dummy variable whichever it is and j and l will have the same whatever it is

and these two can be changed arbitrarily but in a consistent manner. 
(Refer Slide Time: 05:24)

So, this is the Hamiltonian in the second quantization formalism I will like to refer you to the

very nice books by Fetter and Walecka and Raimes and you will find most of the discussion

for today’s class drawn from these two books. And you have the two center integral the i, j, v,

k, l which is this double integration over q1 and q2. 

Each variable  is  actually  a  set  of you know four variables  because there are three space

coordinates and once one spin coordinates. So, integration over one variable is equivalent to

integration over three continuous variables plus the summation over the corresponding spin

index. 



Now always remember that one has to keep track of the order of these operators cl, ck these

are destruction operators for the lth and the kth state respectively. But this order is important

for fermions it is not important for bosons because the commutation and anti commutation

rules for the creation and destruction operators for fermions and bosons are different as you

are well aware. 

We certainly work with electrons and we will work with electron wave functions the spin

orbital’s as they are called. So, you write them as a product of the spin part Chi and orbital

part Psi. And the spin part is either in alpha or beta which is corresponding to either a spin up

state or a spin down state with the m quantum number being plus half or minus half. 
(Refer Slide Time: 07:13)

Now we work with the field  operators  these are  linear  superposition  of  the creation  and

destruction  operators.  And this  is  part  of the reason this  methodology is  called  a second

quantization because in first quantization you replace the classical dynamical variables by

operators. And now instead of the wave function Psi you work with the Psi on the left hand

side which is actually an operator rather than just a scalar function.

So, these are the field operators Psi and Psi dagger and the subscripts i are a set of quantum

numbers. They come from the complete set of quantum numbers which are appropriate for

describing the single electron states. If it is a free electron these are the momentum Eigen

states. So you have got the three momentum Eigen values in units of h cross = 1. 

These are k1, k2 and k3 and there is the spin quantum number which is ms. And if you have a

Hydrogenic potential these are the n,l,j,m quantum numbers. So, these are the spin orbital’s

for the electrons you have the corresponding adjoint spin orbital’s which you get simply by

taking the transposition of the basic spin orbital’s. 



(Refer Slide Time: 08:45)

So, what we have to do is to solve the Schrodinger equation for the N electron system. Now

we work with determinantal functions in the Hartree Fock formalism in which you specify

the number of electrons occupying each one electron quantum state. And that number for

fermions is either 1 or 0. 

So,  the occupation numbers for all  the infinite  set  of Eigen one electron Eigen states n1

through an infinity each can be either 1 or 0, the sum of all the ones will add up to the total

number of electrons in the system. And the ones which are occupied are those which are

labelled by the quantum states a1, a2 up to an. These are the N single particle quantum states

which are occupied with occupation number one.

The occupation number of everything else being 0, so what we do is to line them up in a

certain order and with reference to this order, we have got the first n which are occupied in

the ground state of an N electron system. So, this is the Slater determinant wave function that

we shall work with and these provide you with a set of one electron orthonormal complete set

of basis okay.
(Refer Slide Time: 10:25)



So, this is the summary of what we have got, we have got the field operators in terms of this

creation  and  destruction  operators.  You  can  now  go  ahead  and  write  this  more

comprehensively and completely with explicit reference to the spin. Because when you have

a spin j you have got 2j + 1 components okay.

So, depending on j being either integer or half integer you will have an appropriate number of

2j + 1 number of components, j is always an integer for bosons and half integer for fermions.

So, you will have a multi-component spin-orbital away function okay. And Psi iq where you

had written the quantum state i as a single index will now need to be specified with two

indices one is i and the second is alpha which will go from 1 through 2j +1.

Because there are 2j+1 components, so the field operators Psi i will now be written explicitly

in  terms  of  these  2j  +1  components  corresponding  to  the  spin.  And  this,  these  are  the

expressions for the field operators, so you do have a summation over i but this is how it is for

each component alpha, alpha going from 1 through 2j+1. 

So, you can write the commutation and anti commutation relations for the Fermi and Bose

field  operators  inclusive  of  the  spin  index  and  they  are  obvious  extensions  of  the

corresponding expressions that you have seen before, except for the fact that spin has now

been explicitly pointed out. Yes Ankur (Question time: 12:27- not audible) yeah it is just the

fact that each quantum state corresponds to a spin which is j.

But the j will have 2j + 1 components, so all those 2j + 1 components are being written out

explicitly as alpha going from 1 through 2j + 1. So, alpha is the index which keeps track of

which particular component amongst the family of 2j + 1 component that you have because



when you do space quantization you have 2j + 1 components of the spin index. So, alpha

keeps track of that. 

So, you have got these commutations and anti commutation relations for Fermi and Bose

field  operators,  yes (Question time:  13:30 – not  audible)  which one is  the operator  field

operative Psi q yeah written as summation Psi i q ci and Psi i is a matrix written like this then

the ci  then that multiplication ci  can be written as matrix  that is  the standard that is  the

product.

Yes, because ci will also have the corresponding spin components so you have to handle them

consistently because that will also have because i,  will  now have to keep track of all the

quantum states and if there are different multiplicity of components coming from the spin that

will be explicitly referred to in this. 
(Refer Slide Time: 14:12)

So, it is just writing it more fully it is the same expression but written more explicitly taking

into account all the components of the spin index. So these are the field operators, so now the

commutation and anti  commutation relations for the Fermi and Bose particles I have my

interest over here is specifically for electrons which we of course know are fermions. 

So, we have got two states ms = + half and ms = - half corresponding to which alpha is 1 and

2. So, these are the two indices that we will have to keep track off. And this single particle

creation and destruction operators which we used in the expression for the Hamiltonian, we

can now write the same Hamiltonian in terms of the field operators okay. 

So,  this  is  the  expression  of  this  Hamiltonian  in  terms  of  the  creation  and  destruction

operators, the single particle creation and destruction operators. This is the expression that we



did arrive at fully in our previous unit okay. And in terms of the field operators for which the

commutation relations are now we just discussed and they are what they are as you see on the

screen.

And in terms of these field operators the same Hamiltonian is now written as the expression

that  you see  at  the  bottom of  this  slide.  So,  you have  got  the  integral  Psi  dagger  f  Psi

corresponding to the one electron operators. And then you have got a double integration work

q and q prime corresponding to the two particle interactions. 

Now we can very easily show that these two forms are completely equivalent both our second

quantization forms except that the first one is in terms of the creation and destruction single

particle operators. And the one at the bottom is in terms of the field operators and these two

are completely equivalent and that is more or less obvious but we can see it explicitly in the

next slide. 

Here again let me remind you that q and q prime are dummy labels. But it is important to

keep track of which label is associated with which operator and they must be written in a

consistent fashion for exactly  the same reason that we discussed earlier  because the field

operators for bosons commute whereas those for fermions anti commute. 
(Refer Slide Time: 16:46)

So, now this is the form that we have proposed and if you simply plug in the expansions of

the field operators Psi and Psi dagger which we have with us and all you do is to plug in these

explicit forms and rewrite the Hamiltonian you find that it is nothing but the same form the of

the Hamiltonian which you had written in terms of the creation and destruction operators.



So, if we have just very it is almost trivial but it is important to convince ourselves that the

expression in terms of the field operators is pretty much the same is exactly the same as that

in terms of the creation and destruction operators. So, now we have got the Hamiltonian in

terms of the field operators as well.
(Refer Slide Time: 17:35)

And we have we can write them explicitly in terms of the spin components. So, now we have

taken it to the next level of detail so it is the same Hamiltonian for the field operators but now

we point out the summation over alpha okay. And the summation over alpha will go from 1

through 2j  +  1 and accordingly  you have  a  number  of  summations  specially  in  the  two

electron term. 

So, the summations are doubled because there are two components of spin for half which is

corresponding  to  alpha  and  beta  or  spin  up  and  spin  down  okay.  So,  it  is  the  same

Hamiltonian now but written explicitly in terms of the components corresponding to the spin

multiplicity. 
(Refer Slide Time: 18:34)



Now just for completeness let me remind you that these operators which have been primarily

introduced as destruction and creation operators are hermitian conjugates of each other okay.

So, our first introduction was in terms of creation and destruction operators. So, if you have

got an n + 1 particle state okay and which is Phi a. And another state which is an n particle

state which is Phi b.

So, there is only one single electron state which is occupied in excess in the n + 1 state and let
this be the single particle state with label i okay. So, the occupation number of i in Phi a, is

one where as occupation number of the state i in Phi b is 0 and except for this all the other

occupation numbers of all the single particle states and there are infinite of them. So, all the

other occupation numbers are essentially the same.

So, you go from one to the other by adding or subtracting one electron and you can do this by

way of creating and destructing the corresponding electron. So, you can use the creation and

destruction operators to achieve this. So, these are the two states that we will work with you

can use the destruction operator on Phi a, and you will get Phi b.

And naturally you can say, you will have the normalization integral because you can destroy

a particle  from Phi a, in the ith state and you will  get Phi b. So, essentially you get the

normalization integral for the quantum state Phi b okay, so this is the normalization integral.
Now if you now have a Hermitian conjugate or operator for ci which we anticipate will be the

same as ci dagger but till we demonstrate it I represented by the superscript H.

So, this is the Hermitian conjugate of ci which is cih. And we now work with the Hermitian

conjugate because you have the normalization integral you take the Hermitian conjugate so



you get ci h Phi b complex conjugate Phi a. And this integral is nothing but the complex

conjugate of the integral of the corresponding complex conjugates. 

So,  you have  the Phi  a  star  and then  the ci  h  Phi  b  okay and this  is  the corresponding

normalization integral and this tells us that this cih operator must be nothing but ci dagger

okay. So,  we  know that  what  were  introduced  as  creation  and  destruction  operators  are

actually Hermitian conjugates of each other.
(Refer Slide Time: 21:47)

So, we now proceed to discuss the Hartree Fock method for an N electron system but now we

are going to work with the free electron gas. And this is what we will develop further we will

use the free electron gas is the model system for which we will develop the random phase

approximation and then develop it further will other applications. 
So, most of this discussion again is from the book by Raimes called many electron theory

from chapter 3 of this. So, you now have the atomic Hamiltonian but instead of the nuclear

potential which was in the atomic case we will now work with free electrons okay. So, further

we will now specialized for the free electron Hamiltonian. 

You will nevertheless have the Hamiltonian, the N electron Hamiltonian written as a sum of

two parts one is the one electron part which will of course have the kinetic energy of every

electron and then you will have the two electron part which is coming from the electron-

electron Coulomb interaction or what we are going to do to this is to add and subtract a single

particle operator okay.

Now the choice of the single particle operator is going to be the main focus of discussion for

today’s class. What you see from the relation in front of you is that you have added a certain

term you have subtracted the same term so you are okay mathematically. What we are going



to do is discuss the choice of f. Now f is to be so chosen that it will have most of the two

electron term two electron interactions built into it.

It cannot have all of it but a certain approximation to it which will get as close as possible to

the  two electron  term.  So,  that  the  difference  between  the  term this  term and  this  term

becomes very small and the smaller it becomes the better is it because then the first two terms

represent most of the Hamiltonian and they are both single particle operators okay. 

What is left is the difference between the term v and the term F and if this difference is small

we can hope to treat it perturbatively. So, that the requirements of perturbation theory will be

satisfied, so that will be one criterion to choose F and the question is how do we choose F

okay. So, you have a modified one electron operator modified because to the first term which

is the actual kinetic energy term.

You have added a certain term which is yet to be found and you have subtracted the same

term from the two electron term. So, it becomes a modified two electron term. So, you have

got the modified interaction and the modified one electron operator. What we are now going

to discuss is how to choose F.
(Refer Slide Time: 25:11)

Now quite obviously F is to be chosen, so that the difference, so that the modified residual

interaction  is  very weak that  we certainly  know. And the one electron term includes  the

atomic potential in the atomic case in the free electron Hamiltonian the term Z over r will be

missing okay. Because these are free electrons and the N electron Hamiltonian I am using a

notation little f for the sum over F.



So no need to get confused about it I am just simply pointing out to the notation over here.

So, you have F + h2 is your Hamiltonian and you have added and subtracted the term in F

which is actually a sum over all the single particle operators which are yet to be chosen and

we need to find what appropriate criterion we should use to select F.

Obviously F should be chosen so that  the total  energy is  minimized okay. So, that is an

obvious criterion that the total energy must be minimized because if F does anything which

does not minimize the total energy then it will not be very helpful (Question time: 26:38 – not

audible) where is the H1 defined H2 is the two particle interaction term right and where is the

h1 defined separately what is the h1then; h1 is just a single particle operator.

It is just a single particle operator and explicitly it is the sum of all the single particle operator

in the free electron case it is will be the sum of all the kinetic energy operators for each

electron. For the atomic case it will include the nuclear attractive potential as well. So, F is to

be chosen so that the total energy is minimized.
(Refer Slide Time: 27:14)

And what we will do is to work with a Slater determinantal wave function, so now we have a

determinantal  wave function  which  would be the correct  unperturbed ground state  if  the

second term which is the modified interaction were completely missing, if it were neglected

okay. When it is to be introduced you will have a different Slater determinant. But when you

do not include the modified interaction you will have a Slater determinant.

Which is a determinant of wave function for the N electron state, which is coming from the

solution from the self-consistent field solution for the N electron Hamiltonian which is made

up of the little f + the capital F which is the modified single particle interaction. So we are

still working with the Hartree Fock. 



But  as  you can  already  see  this  approach  is  slightly  different  from what  we  did  in  the

previous course. So, the size which I have used in this Slater determinant these are Eigen

functions of the modified one electron operator f little f + the capital F. And these are Eigen

functions of the single particle operator’s f + capital F.

And please  keep a track  of this  relationship.  I  am going to come back and refer  to  this

equation as the discussion progresses today further and spin orbital’s are either Psi i up or Psi

i down okay. Depending on the state being up or down and if you have an N electron system

each single particle state is doubly degenerate.

With reference to the two spin states of the electron. So, you have got n by 2 states each being

the  being  doubly  degenerates.  So,  Psi  1  up  and  Psi  1  down  would  correspond  to  the

degenerate Eigen functions okay. So, that is the notation I have used over here.
(Refer Slide Time: 29:30)

So, now you have the Slater determinant but before we proceed what I will do is I will re-

designate these one particle wave functions which I had designated as Psi  up and Psi1 down.

So, Psi1 down I will  give a different  number I  will  call  it  2 okay. So, I  will  simply re-

designate them. So, you will have n labels and the Slater determinant will be written in terms

of Psi1 through Psi n okay.
(Refer Slide Time: 30:11)



So, these are the lowest n by 2 Eigen values which we are referring to as occupied states so

far as this n particle system is concerned each single particle state being occupied by a spin

up electron and a spin down electron. Now what about the excited state now an excited state

will  also  be  an  Eigen function  of  the  same equation  which  is  a  single  particle  equation

however at least one Eigen value epsilon i will be greater than epsilon for n by 2 okay.

These are you have an ordered set, so I have stack them with the lowest one first and in this

ordered set the uppermost which is n by 2 has been occupied by the N electron on system in

doubly degenerate single particle states and if you now have an excited state of the N particle

system.

In the excited state you will have at least one possibly more Eigen values epsilon i which are

greater than n by 2. But we consider at least one and what our discussion which will apply for

at least one can be very easily extended if you have more than one. So, we will have the

excited states with at least one epsilon i which is greater than epsilon n by 2.
(Refer Slide Time: 31:46)



And what  we are  going to  do  is  to  choose  the  operator  F  such that  the  total  energy is

minimized. Now it turns out and that is what we are going to show shortly in this class that

the operator which will minimize this. Concurrently will be such that the matrix element of F

in the Slater determinants q and p. In which q has got one state different from the previous

one this matrix element is given by the expression that is on the right hand side.

So, let me show you that particular determinant yeah, so this state this operator, the criterion

being that  it  is  to  be  chosen such that  the  total  energy is  minimized  which  is  the  same

principle that we invoked. In the same variational principle which we invoked in the Hartree

Fock self-consistent field method, what we did was to find with the wave functions then N

electron wave functions.

Such that the expectation value of the Hamiltonian was the minimum and this variational

principle is what led us to the self consistent field equations right. So, this is going to happen

as we will see shortly that the matrix element of F between q and p and q and p differ by only

one electron okay it could elect very different one electron but minimally it has to differ by at

least one electron.

So, that p refer to the ground state and q refers to an excited state with at least one electron

which is missing in the previous set of occupied states up to the Fermi level and above it

there is at least one electron which is occupied in what was the earlier awakened state okay.

So, that is the matrix element of the operator F.

And this particular matrix element will turn out to be the sum over i.  And the difference

between these two to center integrals which we have been using all along
(Refer Slide Time: 34:26)



So, these are the Coulomb and the exchange integrals and I am writing them out explicitly

over here for our reference. So, keep track of the same that you have got these two integrals i

q,v, ip and q, i, v,ip. So, ip side is the same but the difference is over here, so these are the

Coulomb and exchange integrals.

So, they are completely  the same that  we have discussed in  the Hartree Fock formalism

earlier okay. And this is what we have to show that the minimization of the total energy is

concurrent  with  this  particular  expression  for  the  matrix  element  between  F  the  matrix

element  of the operator F in the states q and p okay. So, these are the coulomb and the

exchange integrals.
(Refer Slide Time: 35:20)

And this is these are the explicit expressions for Phi p and Phi q. So, Phi p is the ground state

which is Phi 0 and in this the pth state was occupied whereas in the excited state Phi q the pth



state is not occupied but instead the qth state is occupied. So, only one occupation number is

different so it is the same n electron system but in a different configuration. 

So, these are the Phi 0 and Phi q. Phi 0 is what I sometimes refer to as Phi p and Phi q is

labelled with the index q.  Because it is the qth which is occupied in the excited state whereas

it was the pth state which was occupied in the ground state all the other occupation number is

being essentially the same okay. 

So, that is what we have got, of course we are referring to the ordered set without reference to

the ordered set this discussion will not have any significance. And in this ordered set  q is

greater than N and p is less than or equal to N okay.
(Refer Slide Time: 36:39)

All right now let us have a look at the matrix element of the single particle operators the

single  particle  operator  is  H1  and  we  have  dealt  with  this  in  the  previous  course  quite

extensively, so I will not spend any time on getting these expressions. And we know that this

is a sum of the matrix element which is the integral Psi i star F Psi i dq okay which I have

written in the Dirac notation.

Likewise the matrix element for the two electron operators is this you do not have to worry

about ruling out j = i because the Coulomb at the exchange integrals cancel each other for j

=i, so I am not bothered about explicitly pointing out that j should not be equal to i but we

know that j should not be equal to i right. 

So, that is the term that we are working with and if you now combined the two terms you

now have the expectation value of the Hamiltonian which will give you the corresponding



energy in that particular Slater determinant wave function which is the sum of the one particle

terms and the two particle terms.
(Refer Slide Time: 37:59)

Now you have to remember that what I write as little f is actually a sum of all these F, so I am

not used a different symbol for that. So, this is just a matter of notation and you also have to

remember that I have used Phi 0 and Phi p equivalently because I am focusing my attention

on the fact that in the ground state other than the remaining n - 1 electron states it is a pth

state which was occupied.

And it is this one which would be vacant in the excited state but replaced by the occupation

number 1 for the qth state okay. So, Phi 0 and Phi p refer to the same and Phi q is the excited

state.  Now using  techniques  which  we  have  discussed  quite  extensively  in  the  previous

course which again I will not discuss at all, I will refer to the discussion in the twenty first

lectures of unit 4 in this course. 

Using these techniques  you can then show that  this  approximate N electron  Hamiltonian

which is the sum of the first two terms. You now have the first term, the second term, the

third term and the fourth term. So, the third and the fourth term if you include, if you exclude

the third and the fourth term and you can do so because when you subtract the fourth term

from the third term you get a difference which is very weak okay.

So, what is left is the sum of the first two terms and that becomes a fairly good approximation

to the N electron Hamiltonian okay. So, the matrix element if you now try to determine what

is the matrix element of this approximate Hamiltonian which thus just the sum of the little f

and the capital F. What is this matrix element? So, let us ask that question okay. What is the

matrix element of the proximity Hamiltonian which is the sum of the first two terms?



The matrix  element  in  the state  in the Slater  determinant  Phi  p and Phi q so that  is  the

question that we have raised and just to remind you in slide 14 earlier we have shown that we

are working with Eigen states of the single particle operator which is the modified single

particle interaction which is sum of F little f and the upper case F. So, this operator f + F is

obviously diagonal in this okay.

So, this one is diagonal and as a result of this it follows using the techniques that we have

discussed earlier  that this  particular  approximate Hamiltonian will  have a  matrix  element

which will vanish between two different Slater determinants which have different occupation

numbers okay. So, this will automatically vanish, so I will not show this in any detail but

refer you to the discussion in unit 4 of the previous course.
(Refer Slide Time: 41:19)

So, what we now have is the following that f + F is diagonal with respect to the one electron

functions. We know that q is not equal to p because we are referring to q as the excited state.

So, we know that the first term which is the approximation Hamiltonian this term vanishes.

So, now the question is what do we get from the remaining two terms which is the third and

the fourth star okay. 

What are we going to get from that the first term gives you a zero what about the second and

the third okay.
(Refer Slide Time: 42:06)



So, the first term which is approximate Hamiltonian it gives you zero for this matrix element.

We now ask what are we going to get from the second and the third term but what we can see

very clearly is that if we choose F and this is the main question that we decided to discuss in

today’s class, how do we choose F? 

Here is this suggestion that if F is so chosen that the matrix element of the third term is

exactly equal to the matrix element of the fourth term given the fact that the third term comes

with a plus sign and the fourth term comes with a minus sign. Then these two will cancel

each other and you will get the matrix element of the N electron Hamiltonian in the qth and

the pth state to vanish.

Because the first term which is the approximate Hamiltonian that we have already seen gives

you a vanishing matrix element okay, so if F is so chosen that the matrix element of the two

electron term v is exactly equal to this new single particle interaction f and this is telling us

how f should be chosen okay. 

So, this the two matrix elements will cancel each other because they come with opposite

signs. And this would give us the matrix element of the N electron Hamiltonian to vanish

between this Slater determinant Phi q and Phi p okay.
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So, we have come this far and what we will now show is that this is completely consistent

with our formalism of the Hartree Fock theory because this particular choice that we have

suggested how is f to be suggested. So, that it will have the matrix elements of F to be equal

to the matrix element of the two electron term v.

That this particular choice will give you the best single particle determinant of a function

according to the principle of variation in the Hartree Fock formalism, excuse me. And what

was the criterion there that in the frozen orbital approximation you must get a minimum of

the expectation value of the n electron Hamiltonian right in the framework of the frozen

orbital approximation. 

Frozen orbital approximation which is where the Coulomb correlations get neglected right.

So, now we ask how we are going to show this because we have suggested how F should be

chosen but we now want to demonstrate that this particular choice will give you the best

variational, best determinatal wave function within the framework of the frame frozen orbital

approximation for the Hartree Fock theory okay.
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So, let us ask this question that if ip was not the correct ground state, we have begun with the

stipulation that it is in fact the correct ground state. In case it will not, which other wave

function would be the correct ground state; it would be a mix of ip plus maybe something

else right. 

It would be a superposition of various terms and the most general form in which at least once

determinative wave function is different is a superposition of Phi p which is Phi 0, it is just a

matter of notation I have been denoting Phi 0 and Phi p equivalently okay. So, it will be a

superposition of Phi 0 and 1 state which is different in at least one occupation number and the

representative prototype of this state is Phi q okay.

So, you make a linear superposition of Phi 0 + Phi q the coefficient being epsilon and we

certainly expect epsilon to vanish if Phi 0 is the correct ground state, not to vanish if it is not

the correct round state and we must show that in the limit that epsilon goes to zero we get the

correct variational minimum of the expectation value of the Hamiltonian in the N electrons

state right. 

That is what we must show (Question time: 46:47- not audible) some other wave function it

is it is Phi q is any state, any state in which at least one occupation number is different. So, q

does not have any specific significance except for the fact that it represents an N electron

determinate or wave function in which the occupation number of one of the N electron states

is different. 
So, it is a prototype of that it is not a particular choice but it is a prototype of that sure enough

an excited state may have more than one but that will only make this stronger okay. This



whole analysis will become only stronger if you have more than one electron excited but the

minimum difference will be in the occupation of one of the N electron states. 

So, if the determinatal wave function is now a superposition of Phi p and Phi q or Phi 0 and

Phi q and this superposition is what I have written as Phi 0 n + epsilon Phi q okay. Then the

corresponding energy functional is just the expectation value of the Hamiltonian in this state

and you should make sure that it is divided by the norm of this new state. 

Because if epsilon is not equal to 0 then it is the sum of the squares of the coefficients of Phi

0 and Phi q which will add up to unity okay. So, you have to divide it by the norm, so this is

the energy functional for this new state all right.
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So, let us write this energy functional explicitly there are several terms okay. So, this is just

an explicit expansion of this the numerator and the denominator. There are four terms in the

numerator. The last term will be quadratic in epsilons there will be two terms which are linear

in epsilon and the first term does not have epsilon at all which is just the expectation value of

the Hamiltonian in the previous N electron state which is Phi p okay.

Likewise in the denominator there are for terms, now the denominator is easy to see because

Phi 0 and Phi q are orthogonal to each other, so those two terms in the denominator already

vanish, so now that simplifies the denominator okay. The four terms in the numerator have

been retained explicitly. 

And I have written it a little differently in the last expression here in which i have taken

epsilon to be common okay. And you have a term in epsilon square in the denominator you



have Phi 0, Phi 0 norm which is equal to 1 and the second term will have the norm of Phi q

which is also normalized. So, you will have 1 + epsilon square in the denominator okay.
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So, this is what we have got, now let us ask how will this energy functional change if you

differentiate it with respect to epsilon. Because epsilon is the additional mix we expect this

additional mix to go to 0 okay. So, that let us treat it parametrically as a variable and let us

ask; what is the differential of the energy functional with respect to epsilon. 

So, all I have done here is to differentiate the energy functional with respect to epsilon. So, it

is the differential of the numerator divided by the denominator plus the numerator times the

differential of the denominator okay. So, it is this differential that we are examining. So, the

first term is the differential of the numerator. 

Numerator has got no epsilon in the first term and this term is linear in epsilon. So, when

differentiated with epsilon you will only have this combination of these two terms in this

beautiful bracket. And then here you will have this coefficient times twice epsilon which is

the differential of epsilon square with respect to epsilon okay.
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So, that is what you have got in the next term that you have the differential of the numerator

divided by the denominator which is 1 + epsilon square + the numerator times the differential

of the denominator which is - 2 epsilon divided by 1 + 2 epsilon square + epsilon to the 4

okay. 

That is the differential of the denominator. So, let us plug it in and you can see that after you

insert all the terms and take the limit epsilon going to 0 you get just these two terms. But we

already know what this result is? What is it? 
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This Phi 0 is the same state as Phi p and this is the matrix of the Hamiltonian in two Slater

determinant of wave functions one of which is Phi p and the other is Phi q okay. So, we had

chosen F such that  the matrix  element  of F was equal  to  the matrix  element  of the two

electron  operator  with  this  particular  expansion  in  terms  of  the  Coulomb  and  exchange

integrals. 



And this had given us that this matrix element of the N electron Hamiltonian in the state q

and p this had vanished okay. So, this result we already have and what essentially we get is

that the energy functional has a minimum okay. It must have a minimum because of the

differential its variation with respect to epsilon vanishes in the limit epsilon going to 0. So,

that is what gives you the best wave function.

Which is essentially the heart of the principle of the self consistent field why because we

have invoked the frozen orbital approximation, we agreed that the difference between Psi q or

Phi q and Phi p was only in one electron state everything else remaining the same all the

occupation numbers of everything else all the other n - 1 electron states remain untouched.

So,  within  the  framework  of  the  frozen  orbital  approximation  you  get  the  best  single

determine until ground state okay written as a Slater determinant according to the variational

principle in, now we have demonstrated that the variation with respect to epsilon gives you a

minimum in the limit epsilon going to 0. So, the limit epsilon going to 0 is important.
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And the frozen orbital approximation is also explicitly referred to over here. And what we

have  now done  is  to  begin  to  use  methods  of  second  quantization  the  properties  of  the

creation  and  destruction  operators  integrate  them in  the  framework  of  the  Hartree  Fock

formalism. And we will now use this discussion to develop the many electron theory or for a

free electron gas.

But then our interest will now be not just to deal with the Coulomb interactions as was done

in  the Hartree  Fock in picture  in  the Hartree  Fock approximation  in  which  we certainly

included the statistical correlations but we had excluded the Coulomb correlations. So, now



what we are going to do is to make an attempt to address the Coulomb correlations that is

where the RPA will come in.

So, in our next class we will begin to discuss that it will take us a few classes to deal with the

random phase approximation I believe we have eight classes in this unit and as we go through

all of these eight classes we will go through the method of Bohm and Pines which is the

method of transformation of the Hamiltonian to address the electron correlations.

So, that will be the subject for this unit there are any questions today I will be happy to take.
(Question time: 55:46 not audible) yes Jobine yes we have introduced capital F function yeah

after adding that we have fort names and why would two electron integral will be you know

minimal or close to zero sorry. 

What we have done Jobin we have added and subtracted an F term the capital F what the

capital F term when it adds to the first single particle operator is to give you a modified one

electron operator okay. When you subtract it from the two electron term v which is the sum

over i and j of v or ri,rj. 
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You get a modified you get a modified interaction term okay. We are asking a question how

should F be chosen. Now we want, we are going to choose F such that the expectation value

of the Hamiltonian in the N electron determinative wave function is a minimum which is the

heart of the variational principle okay.

So F is to be chosen according to that criterion and what we do is to develop a mechanism to

show this how F is to be so chosen. The criterion to choose F is the following which comes I

believe in not in this slide but in the next one that let me get to that quickly. 
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It comes here. That the operator F which is to be chosen to minimize the total energy is such

that the matrix element of F in two determinental  wave functions q and p, q and p being

different in only one electron state that this matrix element is given by the right hand side of

this equation this is the criterion. And what this criterion does is to give you a minimum of

the N electron Hamiltonian.

How because if this was not the case then the N electron Hamiltonian would not be just Phi p
but it will be Phi p + epsilon times Phi q okay. So, if you now have an N electron determinant

of wave function which is a superposition of Phi p and Phi q. So, this is the superposition

which I wrote as Phi p + epsilon times Phi q or I might have written it as Phi 0 + epsilon

times Phi q because I am using Phi 0 and Phi p equivalently okay. 

Now this particular prescription of choosing F okay that the matrix element of F in q and p is

given by this difference of Coulomb and exchange integrals sum over i going from 1 through

n this is completely equivalent because what it does is concurrently it gives you the best wave

function. How do you know it is the best wave function because if Phi p was not the best

wave function.

Then the best  wave function  would  need to  be written  as  a  superposition  of  Phi  p  with

something else, that something else has to have at least one electron state which is occupied

differently that is the one which I wrote as Phi as the qth state. 
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So, that state becomes the Phi 0 to your wave function if Phi 0 is not the best wave function

which minimizes the expectation value of the Hamiltonian then the best wave function would

be Phi 0 plus some mix of Phi q that mixing coefficient I propose this epsilon. Now what we

find is  that  what  minimizes  the energy functional  is  the limit  epsilon going to  0.  Unless

epsilon goes to 0, you do not get a minimum okay because the energy functional is capital E.
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And what we see over here is that the variation of this energy functional in the limit epsilon

going to 0 this is what we see over here, that in the limit  epsilon going to 0 this energy

functional is a minimum. The reason being the sum of the two terms in fact each of the two

terms vanishes when that particular choice of F was made okay. 

So, that is completely concurrent with the fact that the energy functional has got a minimum

and that  confirms  to  us  that  our  stipulation  that  Phi  0  is  the  N electron  ground state  is

appropriate. So, essentially this is the Hartree Fock theory because what we do in the Hartree



Fock is to find what is the criterion which will minimize the expectation value of the an

electron Hamiltonian that is the question that we ask okay. 

And then we conclude that yes the expectation value of the Hamiltonian in the N electron

determinants wave function will in fact be a minimum. Of course the variation is subject to

certain  constraints  which  is  where  the  Lagrange’s  variation  multipliers  walked  into  the

Hartree  Fock  formalism that  the  constraints  were  that  the  single  particle  states  must  be

normalized and orthogonal to each other. 

So, with reference to those constraints the variation of the energy functional is a minimum

and that led us to the self-consistent field equations. Which is the Hartree Fock self consistent

field formalism right. So, the whole business of Hartree Fock is inspired by the motivation to

get the energy functional to become a minimum subject to certain constraints of course. 

But the governing approximation in this is the fact that we are working within the frozen

orbital  approximation okay. And that is the reason it was important to emphasize that the

difference between Psi q and Psi p is  only in the occupancy of one particle  state all  the

remaining n - 1 electron states were essentially the same okay. 

That is the essense of the frozen orbital approximation that is exactly what is left out of the

Hartree Fock. So, there are two kinds of correlations in an N electron system one are the

statistical correlations which come from the Fermi-Dirac statistics it comes because of the

fact that the product wave function must be anti symmetrised. So, that is one correlation that

is certainly included in the Hartree Fock.

But what is excluded in the Hartree Fock are the Coulomb correlations and it is the exclusion

of the Coulomb correlations which is equivalent to the frozen orbital approximation. Because

the variation in each orbital is being done in such a manner that all the other n - 1 electron

remain  untouched  but  that  is  not  going  to  happen  when  you  include  the  Coulomb

correlations.

Because when you include the Coulomb correlations the occupations of the other electrons

will also change and then that is what leads you to a multi configurational Hartree Fock state.

You will need to include the configuration interaction okay. So, those are the correlations that

we now want to address so that we completely we had left  out those correlations in our

previous discussion on the Hartree Fock.



And now what we want to do is to develop a many body formalism and there are means we

have already stated earlier that a many body problem does not have exact solutions. So, we

are going to have to make certain approximations one of the most powerful approximations is

what is known as the random phase approximation which is what I will be discussing in this

unit.

Any other question yes (Question time: 1:05:12) sir, we are adding that total Hamiltonian that

one particular  Hamiltonian and this  interaction yeah a plus if  and a minus if  adding and

subtracting  then  we  are  telling  that  f  should  be  chosen  like  that  the  energy  should  be

minimum yes  but  how can we choose  f,  which  we are  adding and subtracting  to  get  a

minimum of their total, why not.

Because you are adding and subtracting know, yeah so you are adding the same thing and

subtracting the correct, correct you can change any, any anything like that if or you can you

can always do that but there is no interest in adding and subtracting an arbitrary operator. But

that will be zero know you are absolutely, absolutely necessary yeah so this is not just a

question of showing that the previous Hamiltonian is equal to the new Hamiltonian.

What we are doing is we can do it with any arbitrary f that arithmetic sum will remain valid

but the way we want to do it, is such that the energy functional will be a minimum and the

second term will be weak. So, that it can be treated perturbatively most of the two-electron

properties will go into the modified one electron operator. 

So, modified one electron operator right and the Phi p and the Phi q are made up of Slater

determinantal  wave  functions  which  are  Eigen  functions  of  the  modified  one  electron

operator  okay. So these  are  not  Eigen functions  of  an arbitrary  operator  these  are  Eigen

functions  of  the  modified  one  electron  operator  that  is  what  gave  us  the  approximate

Hamiltonian okay.

Then we showed that the matrix element of the modified one electron operator in Phi p and

Phi q vanishes that is because of the usual techniques of the single particle operators. But

then we showed that if the matrix element of F is equal to the matrix element of v then the

third and the fourth term also do not contribute and that is what gives you zero for that matrix

element of the Hamiltonian in Phi p and Phi q that is what we have used.

Any other question well; Thank you very much and we will continue from here at the next

class.


