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Greetings,  so we will  continue our discussion on Second  Quantization and today we will

introduce the creation, destruction and the number operators, the destruction operator also

often  referred  to  as  the  annihilation  operator.  And  basically  there  are  our  many  particle

system will be described in terms of single particle quantum numbers. These are elementary

identical particles, so they are indistinguishable they are elementary.

But we will continue to treat them as elementary particles even in the presence of correlations

and even reconciling with indistinguishability because you may not be able to number them

or identify  them by some names or numbers or colours.  But they do have their  intrinsic

properties which are fundamental to an elementary particle.

So, if you have an N particle system then even in the presence of correlations we can talk

about a certain number like n1 number of particles in state alpha1. Now what is alpha1?

Alpha1 is a set of quantum numbers we describe a particular single particle quantum state

okay. So, there is a single particle quantum state it is not just one quantum number it can be a

set of quantum numbers.
And these quantum numbers come from Eigen values of those operators which commute with

each other corresponding to whatever measurements are compatible with each other. So, you

will have n1 number of particles in the state alpha1, n2 particles in the state alpha2 and so on.



So, this will be our description of the N particle system and this is way you would describe

the system of indistinguishable elementary particles whether they are fermions or bosons.

But then of course this  statistics is different.  So, these are obtained as Eigen values of a

complete set of commuting Hermitian operators. These are number operators so this number

n1 is an Eigen value of a number operator which is capital N1 okay, n2 is an Eigen value of

upper case N2 which is a Hermitian operator. 

This  is  the  number  operator;  these  are  called  as  occupation  number  operators.  And  this

description is common to both the fermions and the bosons.
(Refer Slide Time: 03:11)

Now let  us develop the Schrodinger equation and up to a certain point we will carry the

formalism forward yes Suman (Question time: 03:23-not audible) the number of particles

okay  they  are  Eigen  values  give  the  number  of  particles  in  a  particular  single  particle

quantum state okay. 

So, you have for both fermions as well as bosons let us say you have got a space in space spin

space represented by xk and a typical Hamiltonian for the many particle system is the sum of

all the kinetic energy operators and certain two particle interactions. This is a typical you

know Hamiltonian okay. The details will differ sometimes we will have more complex terms

but notwithstanding the details.

By and large a many particle system will have will be described by a Hamiltonian of this kind

in which the kinetic energy operators will sum over all the number of particles going from

one to the total number of particles. And the two particle interactions represented by this V in



the case of fermions it could be the 1 over rij but in general it could be some two particle

interactions.

Now the Schrodinger equation for this system would be a function of these n coordinates

each of these x1, x2 upto xn is actually a set of 4 coordinates. So, there are 4n coordinates

right, three space coordinates and once spin coordinate for each particle. They are collectively

written as x1. So, there are these n coordinates and there is also a time dependence. 

So,  this  is  the  Schrodinger  equation  and  you  need  to  solve  them,  solve  this  subject  to

whatever boundary conditions are appropriate for the physical situation under consideration.

Now this wave function will be represented in a basis of single particle states, so these Psi, so

there are two kinds of Psi which I have used one is this Psi which if we may call this as an

upper case sigh.

And this is another Psi which I may call as a lowercase Psi okay. Both are Psi’s but this is the

end  particle  wave  function  this  is  uppercase  Psi,  this  is  a  function  of  all  of  these  end

coordinates as well as time. And then you have these lowercase Psi functions which are the

function of single particle coordinates xk. 

So, this probability  amplitude is a measure of the probability amplitude that a particle at

coordinate xk will be in the quantum state Ek where Ek is a set of appropriate number of

single particle quantum numbers. It is not just the energy it will have all other measurements

which are compatible with the measurement of energy okay. 

So, it could include the angular momentum, it could include spin and any other measurement

which is compatible with the measurement of energy. So, Ek is a collective label and this in

for one particle, one electron atoms for example this is the set of 4 quantum numbers nlj and

mj or it can also be nl, ml and ms. But in the case of spin orbit interaction j and mj are better

quantum numbers and not ml and ms.

But  you can always carry  out  transformations  from one to  the  other  using the  Clebsch–

Gordan coefficients.  So, essentially Ek stands for a set of appropriate number of quantum

numbers  we describe  the  single  particle  states.  And these  come from Eigen  values  of  a

complete set of commuting operators corresponding to compatible observations. 
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So, this is your Schrodinger equation and you can write it  as a product of single particle

functions. Look at the coefficient, the coefficient will of course depend on these quantum

numbers as well as the time. But then a general and particle state which is been written on the

left-hand  side  will  be  a  linear  superposition  of  all  of  these  possibilities  inclusive  of  a

summation over E1 prime, E2 prime up to En prime.

So, there may be infinite possibilities in this set okay and all of these collectively represent

the N particle system. Now this is the most general description of an N particle state, be it a

system of fermions or bosons this part is common to both. So, you can write all of these

multiple sigma notations as a single sigma notation. But the summation is over E1 prime, E2

prime all the way up to En prime, so you must sum over all of them.

These are time independent; the single particle states are independent of time okay. All the

time dependence is in this coefficient C, this is where the time dependence is okay. So, there

is of course a time dependence, the Schrodinger equation, the Schrodinger wave function is

of course a time dependent function as you can see from here. 

But the time dependence is not in these single particle states it is in this coefficient C. This is

where the entire time dependence is in this t okay. So, the coefficients C are time dependent

the single particle states are not. You can always develop a formalism in which you can make

the single particle states also time dependent.

But that is a matter of detail and those are special techniques which are devised to deal with

the many body problem, I will mention some of them as of the course develops further. But at

this point we consider time independent one particle functions, one particle states and the

time dependence completely absorbed in the coefficient C.
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So, now we know that if you interchange the ith and the jth particle, if there is an interchange

between i and j particle then the wave function would either remain invariant, it will remain

the same as before or one interchange will lead to a change of sign of the wave function. And

that depends on whether you are dealing with fermions or bosons right. So, this is where the

statistics comes in. 

So, all the statistics is contained in the properties of the wave function. Now this is just a

product of single particle states. And you are summing over all of them okay. So the statistics

is not contained here the statistics is contained in the coefficient C okay. So, there is a one to

one correspondence between the property that the wave function remains either invariant on

interchange of particles for bosons or changes sign for fermions.

And the properties of the coefficient C, if you interchange two of these labels okay. So this is

the necessary and sufficient condition that the expansion coefficients see themselves must be

either symmetric or anti-symmetric. They are symmetric in the case of bosons and they are

anti symmetric in the case of fermions. 

The  expansion  coefficient  C  is  where  the  symmetry  is  now  sitting  okay. And  this  is  a

necessary and sufficient condition you can prove this as a very simple exercise I have already

given hints about you know where is the proof comes from. But essentially you notice that

the statistics is now contained in the symmetry properties of the coefficient that under the

interchange of the, these quantum states Ej and Ei.



 If you interchange these quantum states okay. The coefficient C will either remain invariant

or remain the same amplitude, same modulus but change its sign okay. Depending on your

working with either Bose type of particles are Fermi particles. 
(Refer Slide Time: 12:24)

So,  this  is  what  we  have  got  and  now  the  summation  is  over  dummy indices,  dummy

variables the dummy variables are our primed variables E1 prime, E2 prime up to En prime.

So,  they  are  going to  be  summed over. So,  what  we are  going to  do  is  to  multiply  the

Schrodinger equation by this product of single particle states but you take the adjoint okay.

So, you multiplied by the adjoint of these single particle states.

By the product of these single particle states and for a particular set E1, E2 these are without

primes okay. The prime variables appear in this summation so they are dummy labels we do

not want to use them since we are multiplying it by a particular set E1, E2 up to En. So, you

multiply the Schrodinger equation by this set.

Now this is the result of the left hand side you take the product of these single particle states

with their adjoints and multiply the left hand side ih cross del Psi by del t by this. And on the

right hand side you have got the same factor pre multiplying h Psi okay. Now the next thing

you do is integrate over all the coordinates. So, now your integration over x1 is actually not a

single integration.

But it is integration over three space coordinates and the summation over the discrete spin

coordinator  okay.  So,  each  integration  corresponds  to  4,  one  discrete  sum  and  three

integrations over the space variables. So, you integrate over all the coordinates, so this is ih

cross is coming from here, it is also over here and you integrate over dx1, dx2 up to xn this is

the integrand which is on the left hand side. 



Which is this product of single particle states take with their adjoints and multiplying del Psi

by del t ih cross having written on the extreme left as a constant multiplier. So, that is your

left  hand  side.  On  the  right  hand  side  you  have  got  again  an  integration  over  all  the

coordinates x1 to xn. And what are you integrating is this product of single particle states

with their adjoints pre multiplying xi okay.

Yes of course (Question time: 15:07 – not Audible) of course x1 is the particular coordinate

okay certain interactions might couple a particle at x1 with a particle at x2 right. So, there can

be  an  interaction  V  which  depends  on  x1  and  x2  and  that  is  gone  that  goes  into  the

Hamiltonian okay. So, that is sitting in this Hamiltonian here okay. 
(Refer Slide Time: 15:43)

So, this is the expression that we have got and the wave function we already agreed that a

general  correlated  wave function,  a  wave function  of  a  correlated  system of  particles  is

written as product of these n single particle states weighted by the coefficients which contain

the statistics okay. So, this is your left hand side, track the time derivative which is on the left

hand side which is this partial derivative with respect to time.

It  is  written  over  here  and on the  right  hand  side  you have  got  the  Hamiltonian  which

contains the kinetic energy operators and the potential energy operators which may depend on

the coordinates of two particles okay. So, this is your expression that you get on carrying out

this integration.
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So, let us write it to the top of this next slide here. And now we are aware that these single

particle states are essentially orthonormal okay. So, we work in a basis of orthonormal single

particle states and we exploit the orthonormal conditions so this integral will be given by a

Dirac delta in the case of continuous functions or Kronecker deltas in the case of discrete

functions. 

So, in general it is a delta function and whether this is a Kronecker delta or a Dirac delta can

be plugged in according to the context in general we will simply use it as a Kronecker Delta.

But in general  it  could include the continuum states as well  okay. So, you have got this

orthonormal condition orthogonality  condition.  And we exploit  this  orthogonality  because

when you are having this integration okay.

This coefficient C can be factored outside the integration because this does not depend on the

coordinates x1, x2 etcetera. And then you have got the integrals of this kind and wherever

you have orthogonality you can get this delta function. And then when you sum over these E1

prime, E2 prime, En prime. So, if you were to take consider this term, the only term that

would survive is the one corresponding to E1 prime =E 1 or like that right.

Whichever is being considered there? So, you can exploit the orthogonality condition and

what  you  have  on  the  left  hand  side  is  after  contracting  these  integrals  exploiting  the

kronecker deltas and the orthogonality of the wave functions. You get ih cross then you have

the time derivative of the time dependent coefficient C which contains the statistics. So, now

you have got the ih cross del C by del t on the left hand side.

After exploiting the orthogonality on the left hand side there is only one term that will under

all of those integrations right. That will be the coefficient C corresponding to a particular set



which is E1, E2, E3 which is the unprimed set that we used in the previous set right. So, that

is the only term that will survive on the left side on the right side I have written the term just

the way it was without any further modification.

 So you have got integration over all of these n coordinates or four n coordinates if you like

and  then  you  have  got  this  adjoint  product  of  single  particle  states.  Then  you  have  the

Hamiltonian here and then you have got the complete wave function inclusive of the time-

dependent coefficient which has got the statistics built into it okay.
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So, this is what we have got and we will now look at the right hand side carefully. On the

right hand side you have got the Hamiltonian okay. And the Hamiltonian for a many particle

system is the sum of all these kinetic energy operators and a two center interaction. This is

the general form of a typical Hamiltonian. 

So,  you substitute  this  Hamiltonian  by  its  explicit  form consisting  of  the  kinetic  energy

operators and the potential energy operators which is coming from interaction between every

2 pairs of particles okay. So, this is your general form of the many particle Hamiltonian.
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Now this is what we are getting from the Schrodinger equation for the N particle correlated

system okay. So, we have now built in all the correlations the statistical correlations are there

which are sitting in the coefficients C. And any correlations over and above the statistical

correlations like the Coulomb correlations are also sitting in the fact that you have got a

infinite set of these products of single particle states. 

Which have gone into your total wave function? So, all of them have been covered. So, now

this is ih cross del C by del t on the left hand side, and on the right hand side you have got

two terms one coming from the kinetic energy term and the other coming from the potential

energy term. 

So, it is the same two terms but I have written them as the first term corresponding to the

kinetic energy term. And a second term corresponding to the potential energy term, so I have

only separated them because that makes it easy to handle them because you already have so

many terms and you do not want to mess with too much everything at the same time. 
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So, this is what you have got now let us look at the kinetic energy term, the first term. And

you are carrying out integration over x1, x2, xn etcetera. And all of these integrations can be

carried out independently of each other. The kinetic energy operator depends only on one

coordinate at a time right. So, all of these integrations can be carried out on each coordinate

separately okay. We will deal with the potential energy term a little later.

So,  first  let  us  take  the kinetic  energy terms  and the  kinetic  energy term the  one which

depends on the argument key will have the operator Txk sandwiched between Psi dagger and

Psi with the arguments xk over here as well as over here and you have an integration over xk

okay.

 All the other integrals will not have any operator and you will simply have the orthogonality

integrals Psi E1 Psi this is integration over x1 Psi E2 x1 dagger Psi E1 prime x1 and you will

have orthogonality integral between E1 and E1 crime coming from here. And then when you

sum over E1 prime you can exploit the kronecker deltas okay. 

So, that is going to make all these very many chance that you are dealing with you will be left

with  very  few because  of  the  orthogonality  condition.  Again  we will  carry  forward  our

discussion on the potential energy term to a later part. And continue our focus on the single

particle kinetic energy terms for the time being. 

So, you have got the single particle matrix element of the kinetic energy operator here and the

orthogonality integral over here as well as here and so on okay right, all the way over x1 to

xn. So, there are n integrals out of these n integrals n - 1 integrals will be the orthogonality

integrals. Only one of them will contain the matrix element of the kinetic energy operator in

single particle states. 



(Refer Slide Time: 24:40)

So,  I  have  written  this  same expression  on this  slide  because  in  the  previous  slide  this

expression was little  primed up in a small  space.  So, this is a magnification of the same

expression so that you can look at these things Tm terms better. This is a matrix element of

the  single  particle  kinetic  energy  operator  in  single  particle  states  which  depend  on  the

coordinate’s xk and you have got integration over k okay. 

This is integration over dxk and of course you have a summation over all k is going from 1 to

n. And the rest of the integrals are all of these orthogonality integrals. The potential energy

interaction  is  just  the  same okay. So,  that  term is  not  touched.  So,  you can  exploit  the

orthogonality carry out the sum. 
(Refer Slide Time: 25:45)

Contract the kronecker deltas over these terms. And once you exploit it what are you are left

with, you are left with summation only over Ek prime okay. That is the only term over which



you need to carry out a summation, you do have to carry out the summation over all the

coordinates x going from, k going from 1 through n you have got the coefficients C as before.

But  the coefficient  C will  have the argument  T as before but  all  of  these single particle

quantum numbers E1 prime up to En prime will all become the unprimed labels because of

the Kronecker delta except the one, except the label which goes into the matrix element for

the kinetic energy operator okay. So, that is the only one which will remain so you are left

with a summation over Ek prime.

There is no summation over other single particle quantum numbers that is just what single

summation over Ek prime. Then there is a summation over k going from 1 through n you

have got the coefficient C but the arguments are all unprimed except the kth 1 which is Ek

prime. 
Then you have got this matrix element of the kinetic energy operator in the single particle

states corresponding to the coordinate xk. And then the rest of them have given you from the

Kronecker delta a factor of unity which you have multiplied throughout. Again the potential

energy term is left untouched that remains to be tackled with okay. So, this is what you get

from the kinetic energy term.
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So, I have written it here at the top of the slide and now instead of Ek prime I use the letter W

just focus attention on that. Because it is a particular state over which you must sum over

right. Ek prime is the dummy label you can change it to anything you want and just to remind

us that this is the one which is being summed over. We write it as W, I am actually following

the notation from Fetter and Walecka’s book. Which I have referred hints for this discussion.



So, I am using the same notation as Fetter and Walecka. So, I use W  instead of Ek prime, so

here instead of Ek Prime I have a W other than that everything else is the same. So, all of

these coefficients up to W which are coefficients from E1 to Ek – 1, they remain the same.

And all the coefficients, all the single particular quantum states after the kth 1 beginning with

Ek + 1 up to En they remain the same and there is of course a time dependence.
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So, this is what we have got and now we consider the two particle terms the potential energy

terms. So, we had differed our discussion on the two particle terms which we take up now.

Now the two particles part of the Hamiltonian is this half double sum over k in l. And put and

an interaction term V which depends on the coordinates x and l and this interaction we do not

want to count twice. 

So, it is half of this double sum okay and you must exclude k = l okay. This is the two particle

interaction so this has been written explicitly now, as this and you can write this half sum

over k and l outside these summations signs okay. So, they are moved all the way to the left

and the rest of the terms you have got the summation over E1 prime up to En prime which is

written over here.

You have got the coefficient C which is here, so this coefficient C has been written here along

with the time dependence and then you have got the two particle interaction terms which are

being integrated  out okay. Because you will  have to  carry out integration or all  of these

coordinates x1 upto xn. 

Now this two particle interaction connects only the coordinates of xk and xl. So whatever is

neither  xk not  xl  is  independent  of  this  particular  interaction  and those  integrals  can  be

factored out they will give you essentially orthogonality integrals okay. 



(Refer Slide Time: 30:47)

So, we will exploit that now. So, only the terms which have got coordinates in xk and xl they

will be handled separately and those are, so you have got a two center integral integration

over k and integration over l dxk and dxl. And then you have got this is an integral of a

certain  integrand,  that  integrand  is  the  matrix  element  of  the  potential  energy  operator

between Psi Ek dagger Psi El dagger okay, with arguments xk and xl respectively okay.

And then on the right you have got Ek prime and El prime respectively with arguments xk

and xl and the rest of the integrals over all the other coordinates will give you these kronecker

deltas. And then you can carry out the summation over E1 prime E2 prime up to En prime

and contract the summations so that you are left with very few terms.
(Refer Slide Time: 32:02)

So, let us exploit the orthogonality integrals okay. So, left with a two center integral which is

this which is the matrix element of the interaction depends on the kth and the lth coordinate



xk in xl. This is an integral between the states Psi Ek prime Psi El prime with coordinates xk

and xl. And here you have got the adjoint Psi Ek and Psi El with the coordinates xk and xl.

So, this is the 2 center integral integration being over xk and xl.

And this double integral is then multiplied by a bunch of kronecker deltas and when you

carry out the summation over all of the E1 prime and up to En prime most of these will drop

out  because of  the orthogonality. So,  let  us  exploit  that  the only thing that  does not  get

dropped out are those with summations Ek prime and El prime.

Which are the ones which are under the integration of this two center term, this potential

energy term? So, you are left with the summation only over Ek prime El prime whereas over

here  you  had  a  summation  over  all  the  end  quantum  states.  Now  you  are  left  with  a

summation earlier over two of them okay. But each is a set of 4 quantum numbers mind you

okay or 4 or it could even be more.

Because depending on the number of degrees of freedom the particle  has and how many

compatible  measurements  you  can  carry  out  you  will  get  those  many  number  of  single

particle labels so it could be 4 or more. So, you have got this double summation you have got

the half of this double summation over k and l, k not equal to l. 

And then you have got this coefficient C as before this coefficient C is coming from here, this

is the two center term, this term over here is the kinetic energy term which we have already

discussed earlier. So, we are now focusing our attention on the potential energy term which

has got this coefficient time dependent coefficient which contains those statistics. And then

you have got this integral of the potential energy term. 
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So, we have written this at the top of the next slide which is this and just as we label this

summation over Ek prime as W, we now focus attention on the summation over Ek prime and

El prime and to underscore this point we label Ek prime as W prime, Ek prime as W and El

prime as W prime okay. So, that we know that the W’s are the special ones over which the

summation is left to be carried out.

All  the  other  summations  have  been  carried  out  already.  So,  it  is  the  same  expression

rewritten here except for the fact that instead of Ek prime we have used a W here and instead

of El prime we have used a W prime here.  And you have that the coefficient  C as well

because the coefficient C had an Ek here and an El here. 

So, they get be placed respectively by W and W Prime okay. Likewise in the integral you

have got the coefficients Ek Prime and El prime here and these get replaced by W and W

prime over here okay. So, it  is just  the same expression which is rewritten with the W’s

instead of the E’s.
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Now plug in the statistics and we have agreed that it is contained in the symmetry of the

coefficient C. If the coefficient C are symmetric you have bosons and if the coefficient C are

anti-symmetric you have the fermions. So, I will now discuss the case of electrons because

that is where most of the interest in atomic physics is.

Because you deal with the system of N electrons, so I will first discuss the fermions. And for

fermions if you interchange these two labels Ej and Ei then the coefficient C must change its

sign okay these are forming particles. 
(Refer Slide Time: 36:51)



Of course if two of these labels happen to be the same if Ej is equal to Ei then this coefficient

must vanish okay. This is nothing but a statement of the Pauli’s exclusion principle. But for

fermions for electron you cannot have the same state occupied by two particles. So, what we

do is we consider an ordered sequence of these single particle states. This is not necessarily in

increasing order of energy okay.

So do not get carried away by the letter E okay, E is a set of 4 quantum numbers remember

okay. It includes the energy quantum number but it could also have other quantum numbers

okay. Some of these may be degenerate for example the 1s up and the 1s down in the helium

atom  they  have  the  same  energy  in  the  ground  state  okay.  So,  some  of  them  may  be

degenerate.

So, obviously some of these energies will be actually equal to each other. But this inequality

is an indication of the ordering and not a relationship between energy. So, do not get carried

away by the letter E. It is not representing an energy it represents a particular quantum states

and these quantum states you can always order in a certain way in a predetermined order. You

decide how you want to do it okay.

You can put spin up before the spin down or vice versa it does not matter. But you decide

what that order is and once that order is decided do not touch it, do not tamper with it okay.

And that ordering is what is indicated by this inequality sign, it is not that this is any energy

or angular momentum less than that of the next. 

It only means that this set of quantum numbers will come before the next set of 4 quantum

numbers which will come before the next set before the third set and so on. So, there is a

certain ordered sequence of single particle quantum numbers. And these coefficients are also



having these arguments, the single particle quantum numbers E1 through En. And they are

also arranged in the same order. 

So, all the information about the single particle states is now contained in a coefficient which

tells us which single particle states are occupied and which are empty okay. This is where the

importance of the occupation number formalism comes in because some of the single particle

States will be empty okay. 

You have considered infinite possibilities but only n out of these infinite  possibilities are

occupied because each single particle fermions state can be occupied by only one particle.

There are n number of particles, so out of these only n are occupied the rest of them are

vacant. And now if you write occupation numbers n1 which is the number of fermions in

state E1 the number n2 which is the number of fermions in state E2.

And each of these numbers for fermions will be either 0 or 1. For bosons it could be anything

it could be 0, 1, 2 many or okay. So, you can have a number of different possibilities that we

will first focus our attention on fermions and we find that the fact that which one is occupied

and which one is not. This information is completely equivalent to the information which is

there in the coefficients C.

So, there is a one to one mapping between the physical information which has gone into the

coefficient C and the physical information which goes in this function f which is a function of

all of these infinite single particle quantum numbers. Out of which only n will have a value 1

and the remaining will have a value 0.

But which one will have will depend on which of these single particle states are occupied all

the others being vacant. So, this is where all this information is contained.
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So, this coefficient F which is a function of these occupation numbers and time is completely

equivalent to the coefficient C which is a function of the single particle occupied states and

time. Now you have a many electron wave function and this many electron wave function

which you can write as the product of these single particle states.

So you plug in  the  statistics  in  it  so  you have  got  a  Slater  determinant  which  we have

discussed in our earlier discussions and also in the previous course at great length, we dealt

with the Slater determinant especially in the context of the Hartree Fock formalism. So, your

n particle fermions state is given by these elements of the Slater determinant.

This is a normalized Slater determinant as you can see given the fact that we are dealing with

single  particle  normalized  states.  So  these  elements  of  the  Slater  determinant  are  single

particle normalized states of some, one particle operators. So, essentially what you are doing

is you are superposing one Slater determinant over a second one, over a third one, over a

fourth one the coefficients contain information about which are the occupied states.

The  corresponding  Slater  determinant  is  used  over  here  and  you  have  as  many  Slater

determinants  as  are  important  to  describe  the  correlations.  The  correlated  many-electron

system will then be written as a superposition of very many Slater determinants in principle

infinite okay. But in most practical cases only one may be important.

 And in some others may be 5 or 6 or 10 a 20 are important or maybe a few hundred or even a

few thousand okay. So, the Slater determinant is made up of these elements which are time

independent single particle states all the time dependence is in the coefficients C and hence in

the coefficient F okay. 



So,  the  Slater  determinant  itself  is  independent  of  time  the  time  dependence  is  in  the

coefficient  F  (Question  time:  44:30–not  audible)  sorry  yeah  this  is  a  particular  Slater

determinant that I consider okay. Which is the zeroth one but then you may have another one

okay.  So,  just  to  indicate  that  this  is  a  particulars  Slater  determinant  I  have  used  the

superscript zero.
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So, now we go over to a Fermion occupation number vector. So, the N particle system can

now be described by a vector in something like a Hilbert space. But this space is what we

shall  call  as  an  occupation  numbers  vector  space.  So,  these  are  vectors  very  similar  in

properties you can define their norms, you can define their orthogonality relations.

You can define their completeness very similar to how you dealt with single particle vectors

in a Hilbert space. And we now introduce the Fermion occupation number state vector which

has this information. This occupation number for single particles can be either 0 or 1 and for

each n1 both the possibilities are there. So, you should sum over n1 going from 0 to 1 okay.

And the fundamental properties of the Fermion particles is contained in what are known as

creation and destruction operators. So, a is the destruction operator, a dagger is the creation

operator  and the statistics  is  completely  defined by these operators.   These are  what  are

known as fundamental anti commutation rules. 

The statement of these anti  commutation because this  is a comma a dagger which is a a

dagger + a dagger a. So, A, B with a + subscript after this rectangular bracket is the anti

commutator AB +BA at this anti commutator you have got for a at a dagger equal to delta rs

this is the Kronecker delta, so it is equal to 1. 



When r is equal to s otherwise it is 0 and for 2 creation operators the anti commutator is 0 and

also for 2 destruction operators the anti commutator is 0 okay. 
(Refer Slide Time: 47:21)

So, now you have the Boson occupation number state vectors which are also defined in a

very similar  way except  for the fact  that  the creation  and destruction  operators  have got

different properties but now there is no such constraint that these numbers n1, n2 etcetera are

either 0 or 1. They can be anything they can be 0, 1, 2, 3, 10, 100 many right. 

But the summation over all of these occupation numbers must add up to the total number of

bosons that you are talking about okay. So, that is the only constraint and these occupation

number vector states will be operated upon by creation and destruction operators which have

a  different  set  of  rules.  And  these  are  given  by the  Boson creation  and destruction  and

commutation rules AB with a - is AB – B.

This is the usual commutator that we work with especially when we deal with the position

momentum operators okay, is the same commutator. But in the case of the Fermi operators

you have the anti commutator. So, where is the statistics it is contained in the wave function

in the first quantized formalism? The wave function is either symmetric or anti-symmetric

under the interchange of two particles.

Then  we  found  that  the  statistics  was  contained  in  the  coefficients  C  okay.  And  the

information in C is the same as the information in F which is in the occupation numbers. So,

how do the creation and destruction operators operate in succession okay? That is where this

statistics is contained. So, all the statistical information is now contained in these creation and

destruction operators which are why they are different for Fermi particles as for the Bose

particles.



(Refer Slide Time: 49:39)

So, you have got the Fermi particles here that we are working with. Let us ask this question

what  would happen if  two creation  operators  for the Fermi  particle  in  s  state  operate  in

succession one after the other? What would happen? You are expected to go to 0, but that is

from your knowledge of Fermi Dirac statistics, from first quantization. You should arrive at

the same conclusion on the basis of the anti commutation rules for the Fermi operator’s okay.

Because this is what we have defined which we have now introduced and these are the focal

points of interest in the context of the statistics that all the statistics is contained in the anti

commutation  properties  of  the  creation  and  destruction  operators.  So,  using  the  anti

commutation  properties  alone  you  should  arrive  at  the  same  conclusion  okay  without

referring to anything else.

So, if  you did that  the two operators,  the two creation  operators for the quantum state  s

operating in succession of each other. A succession one after the other, so it is half of twice of

this right, twice of this is the sum of these. And the sum of these is just the operator as dagger

as dagger anti committed with the same and what is that, that goes to zero right. And that

goes to zero not from your previous knowledge of the Pauli Exclusion Principle.

But from the property of the anti commutation property of the creation operators so all the

information the statistical information is now contained in the anti commutation relation. So,

using this property you find that these two operators, then operate operated in succession give

you zero which means that you cannot create a Fermion in a Fermi state which is already

occupied this is the Pauli Exclusion principle.
(Refer Slide Time: 52:03)



So, likewise you can understand other properties of the number operator. So, these are the

fundamental anti commutation rules and if you know have the same state as and as dagger

then this for r equal to s will be equal to 1. So, now if you write the operator as dagger as

what do you get from this expression? From this expression you get that as dagger as which

is the number operator is 1 – as as dagger okay.

Now this being the fact if you now take the square of this okay, if you take the square of this

you have got 1 – as as dagger followed by 1 – as as dagger. Now you expand all of these so

you get 4 times 1 – as as dagger. Then you get another as as dagger from this and then you

get these two minus signs give you a plus sign. And then you get as as dagger again is as as

dagger that is what you get right.

So,  far  for  charms over  here now out  of these 4 terms you can anticommute  these two.

Because as dagger, if you want to move as behind as dagger you will get 1 - as as dagger

right. So, I have exploited the anti commutation between in as and as dagger and using that

anti commutation I get these two terms 1 - as as dagger. From this you get as multiplied 1

multiplying as dagger with a + sign.

So, you get as as dagger + which cancels one of these and you are left with only this which is

1 – as as dagger right. From the residual term you have got as dagger as dagger which we saw

in the previous discussion already goes to zero. So, you get only 1 – as as dagger which is

nothing but the operator ns itself. 
What does it tell you that the square of ns is the same as ns right? And if that is the case then,

these being an operator identity the only two possible Eigen values the occupation number



operator can have are either 0 or 1 okay. Now this we already knew because of our familiarity

with the Pauli’s exclusion principle. 

But we are now able to actually deduce it from the anti commutation properties which has got

all  the  statistics  built  into  it  including  the  consequences  of  statistics  such  as  the  Pauli

Exclusion Principle okay. So, this is the power of the anti commutation rules for fermions and

you have got the same power for the boson commutation properties.
(Refer Slide Time: 55:13)

So, you have got these properties the square of the occupation number is the same as ns. And

you will find that the creation operator, if it tries to create a particle in a state which is already

occupied, then you get 0. Because you cannot create a particle in which you already have

occupancy nor can you destroy a particle from a vacant state from a vacuum state.  

Marea yuve ko kya marna right if there is no state in it already you cannot destroy a particle

out of it.  So, a, the destruction operator operating on the vacuum state will  give you the

number 0. So, keep track of the difference between the number zero and the vacuum state.

The  vacuum  state  is  a  vector  in  the  occupation  number  state.  The  number  zero  is  the

arithmetic zero which ancient Hindu mathematicians invented okay.

So, these are two different things, so these are your fundamental properties and they explain

to you why this should be called as the destruction operator? Why it should be called as an

annihilation operator? Why the its adjoint should be called as a creation operator? And why

this operator a dagger a, should be called as the number operator. 

So all of these operators acquire a particular significance in the context of the properties they

attained from the anti commutation properties of these operators. So that is where the physics



is,  that  is  where the statistics  is  okay. And they tell  you which single particle  states  are

occupied and which are not occupied. 

All properties like Pauli exclusion and principle etcetera are contained in the properties of

these creation and destruction operators. And this is a good point to take a break here and

continue from this point in our next class.
(Refer Slide Time: 57:29)

And on the lighter wane, I will  like to quote Sakurai  from his book Advanced Quantum

Mechanics, Sakurai has got two excellent books one is Modern Quantum Mechanics which

you have used the other is Advanced Quantum Mechanics which also some of you would

have used which I strongly recommend which is very good. 

And in this book Sakurai has got a rather interesting quote, he says that we might say that the

three  operators  a dagger  a,  and a  dagger  a,  correspond respectively  took the creator, the

destroyer the Brahma, the Shiva. On the preserve Vishnu okay. So, these are the creation

destruction and number operators. This is where the physics is sitting okay. That is what our

interested okay.

All  the  physics  is  sitting  over  here  in  the  properties  of  these  creation  and  destruction

operators. And we will continue from here in the next class and see how this formalism helps

us deal with correlation that is our fundamental interest okay. In the absence of correlations

we already know how to deal with the n particle electron system that is the Hartree Fock

theory. 

But they do not include any Coulomb correlations when you want to include the Coulomb

correlations when you want to go beyond the Hartree Fock then you must have a many body



correlation  formalism  which  is  why  you  have  a  superposition  of  all  of  these  Slater

determinants. And because it is so messy to work with these factorial n terms in the Slater

determinant it is now going to be very convenient to deal with these numbers.

Because now you just have to deal with two numbers either 0 or 1 it is all binary okay. So, it

is the whole physics, the same physics but we are going to have an operational convenience.

So, it is not like a fundamental step in quantization as we take from classical mechanics to

quantum mechanics that is a big step that step involves dispensing with causality.

And determinism of classical mechanics and replacing it with the uncertainty principle and

measurement and the idea of compatible measurements and so on okay that is a very big

jump. Whereas in this case it is just a formalism which you are moving over from the first

quantization formalism to a second quantization formalism which is going to make it very

easy.

So,  it  is  convenient  mathematical  convenience,  mathematical  elegance  and  not  like  a

fundamental step involved in quantization. So it is called a second quantization because now

you have got the wave functions which get quantized, I will deal with that little later. But

actually  the creation and destruction operators become quite significant  in the context  of

relativistic formalism.

Because in relativity you have matter and energy which you can convert from each other, so

you can actually  create particles when no particles  existed okay or you can annihilate an

electron against a positron and create energy right. So, you can actually destroy or create

particles in this relativistic formalism and then second quantization becomes really necessary

to describe those processes.

But in the absence of those terms and that is not the domain of interest in atomic physics

because our interest in atomic physics is at low energies okay. Now these processes do not

take place at low energies, you have to go at least above the rest mass energy of two electrons

okay. So, which is about a million electron volts, so that is not the domain of atomic physics

the structure in spectroscopy that we do work with in atomic physics.

But  for  us  it  is  mathematical  elegance,  it  is  mathematical  convenience  and  a  great

convenience at that. Any question (Question time: 1:02:03 –not audible) we can call it the

number operator only because of the first two I mean  a dagger, because its square is equal to

itself, that is an operator identity which tells you that its Eigen values can be only 0 or 1 okay.



Eigen value of the number operator is either 0 or 1 that is the number which tells you whether

a single particle state is occupied or not. And in the case of fermions either it is occupied or it

is not occupied there is nothing in between. So, that is what justifies it named as the number

operator because its Eigen values can be either 0 or 1. 

In the case of Boson it actually gives you the number of Bosons in that particular state, kat 0

is an occupation number vector, you can do algebra in occupation number space, you can

construct a linear superposition of two occupation numbers vectors just the way you can do a

superposition of two Hilbert space vectors right. And you can you can add a null vector to

another vector which gives you the same vector.

But it is a vector in the Hilbert space whereas the number 0 is not a vector in the Hilbert

space it is the arithmetic zero.(Question time: 1:03:47- not audible) yeah when we have a

electron in a particular state and we are trying to create an electron in that space we are not

getting a vacuum state, we are getting s0 what I mean that is not, we are not getting it zero

state, just a zero.

You do not get a vacuum state; you do not get a vacuum state by trying to destroy a particle

in a vacuum state. What this equation is telling you is that you cannot this do that. It is not

that you get vacuum by destroying a particle in the vacuum state because there is no particle

on the vacuum state. So, you just simply cannot do it that is the number zero. So, on this note

we will stop here for now and then we will continue the discussion from the next class. 


