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Greetings, we will begin unit 2 today and this will be on many body theory our focus will be

on  the  study  of  electron  correlations  and  techniques  which  make  use  of  diagrammatic

perturbation theory, the Feynman Goldstone diagrams and so on. So, we will develop these

techniques which are of importance in studying atomic collisions and spectroscopy.
(Refer Slide Time: 00:37)

And I will spend a few minutes at the start of this unit recapitulating a few points that we did

earlier in the previous course on the special topics and atomic physics in particular I will

invoke the discussion on the Hartree Fock formalism which is also a many body theory in a

certain  sense.  It  is  a many electron theory but then we are going to  go well  beyond the

Hartree Fock in the discussion in unit 2.

So, let me recapitulate a few points from unit 4 of the previous course on atomic physics. And

our  interest  in  studying  atoms,  molecules,  condensed  matter  of  any  kind  is  in  studying

electron  interactions  and electron  correlations  and of  course how the  many body system

responds to various probes like electromagnetic radiation or other particles like projectiles

electrons, positrons, composite particles and so on.
 So,  I  have  underlined  the  words  electron  interactions  and electron  correlations  to  draw

attention to the fact that these two terms will have different connotations in our context okay.

And in particular when I refer to correlations I will be referring to two kinds of correlations



one  are  the  exchange  correlations  and  the  other  are  Coulomb correlation.  So,  obviously

Coulomb correlations and Coulomb interactions are two different things okay.

Coulomb interaction is  the usual  one over r12,  Coulomb correlations  is  what  many-body

theory is about, so that is the focus of unit 2. Now the exchange correlations come from

statistics. Exchange correlations they are because of the fact that electrons are Fermi particles

Fermi Dirac particles and the statistics they must observe is the Fermi Dirac statistics and that

requires that a many electron wave function must be anti symmetric.

So,  there  is  a  certain  correlation  coming in  from statistics.  In  addition  to  that  there is  a

correlation  which  is  the  Coulomb correlation  which  is  not  included  in  the  Hartree  Fock

formalism and that is the one that we are going to talk about. That is a result of what we will

refer to as many body correlations or many electron correlations. 
(Refer Slide Time: 03:24)

And  let  me  quickly  remind  you  that  statistics  enters  classical  mechanics  and  quantum

mechanics  in  different  ways  okay. In  classical  mechanics  it  enters  just  because  you  are

dealing with a large number of particles and there is too much of information not all of it all

the details are interesting. So, you do some averaging like in principle in classical mechanics

since every single particle is distinguishable.

And it  obeys dynamical  laws in which you can predict  the motion using the equation of

motion.  In  principle  you  can  follow  the  trajectory  of  every  particle.  But  all  this  is  not

interesting what is interesting is what the average kinetic energy is and what it generates is a

thermodynamic parameter like the temperature. So, these are average properties and this is

how statistics enters classical mechanics.



In  quantum mechanics  statistics  enters  because  of  the  uncertainty  principle.  So,  laws  of

nature  are  intrinsically  statistical  there  is  a  probabilistic  interpretation  that  quantum

mechanics demands even when you are dealing with a single particle or even when you are

dealing with vacuum. So, it is nothing to do with the number of particles, number of particles

only makes it more complicated.

But having fewer particles having a single particle does not eliminate statistics. And then you

have the spin which is an intrinsic angular momentum for elementary particles and this also

leads  you to statistical  considerations.  Because there are  two kinds  of  particles  in  nature

fermions and bosons and they observe different statistics they have different spins.
(Refer Slide Time: 05:23)

So, if you have two identical particles and the signature of quantum mechanics so far as many

body formalisms are concerned is the fact that these particles are indistinguishable okay. So,

if you have two identical particles one at coordinate q1 and the other at coordinate q2. If you

interchange these two particles and I is the interchange operator. And on the result you carry

out the interchange yet again. So, you are carrying out an interchange twice.

You naturally expect that you will recover the original state. Now this is a geminal wave

function which is a wave function for the twin particles. They are completely identical in all

respects and you will recover the same function which means that if you interchange only

once you can at the most change the phase of this wave function by e to the i alpha right. And

e to the 2i alpha must be unity which is what you will get over here.

Which means that alpha is either 0 or pi and depending on it is 0 or pi you have either Bose

particles or Fermi particles. Now all particles which have half integer spin are Fermi particles

or  Fermi  Dirac  particles.  And all  particles  with  integer  spins  are  Bose particles  or  Bose



Einstein particles.  And typically  the wave function would be written in terms of the spin

quantum number as well.

And then you will have a one electron state written as n, l, ml, ms for a particular state which

is  alpha.  So,  you have  got  a  set  of  commuting  operators,  so  this  gives  you a  complete

description,  a  complete  set  of  commuting  operators  or  a  complete  set  of  compatible

observables as Dirac calls it CSCO right. And these give you the complete description and

this complete description must include the spin. 
(Refer Slide Time: 07:45)

Now it is very interesting that you have this connection between statistics, the spin of the

particles and the sign of the wave function on interchange. Because on interchange of Bose

particles the wave function remains invariant. Whereas on interchange of Fermi particles the

wave functions of the geminal changes sign right. So, this connection is rather interesting and

it is nevertheless not so very easy to understand as Tomonaga tells us in the statement.
That the relation between spin and statistics is apparent but hard to understand and I would

like to quote Feynman one more time over here that you have a rule which can be stated very

simply.  But  the  explanation  is  complicated  it  lies  deep  down  in  relativistic  quantum

mechanics  okay. So,  I  will  not  go  into  those  details  because  our  focus  in  unit  2  is  the

discussion on how many body correlations are to be treated and what they are in the first

place.
(Refer Slide Time: 08:49)



So, let us deal with electrons on interchange the electron germinal, the two electron wave

function changes at sign and you consider the wave function or which is a function of two

electrons q1 and q2 one at q1 the other at q2 to be separable in one particle coordinates okay.

So, the two electron wave function is written as a product of 2,1 electron functions but the

product must be an anti symmetric product.

As we have discussed in details in our previous course in atomic physics on the discussion on

the Hartree Fock. So, you have to reconcile two properties two attributes which can appear to

be contradictory the particles are indistinguishable in the sense that you really cannot separate

one from the other yet you talk of them as individual elementary particles in which each has

an identity of its own as an elementary particle okay.

The elementary particle of nature is the electron not the twin it is not the pair of electrons. So,

the elementary particle is still the electron but the two electrons are indistinguishable and this

is indicated over here that the two electron wave function is written as a product of one

electron functions which respects the elementary nature of the two electrons.  But then it is a

superposition of these two states electron at q1 in the quantum state 1.

And electron at q2 in the quantum state 2 and the other possibility that the electron at q1 is in

the quantum state 2 and the electron at q2 is in quantum state 1. So, these two situations are

not distinguishable, so indistinguishability demands that you construct a linear superposition

of this and this superposition must be an anti symmetric superposition. 
(Refer Slide Time: 10:58)



So, you can see that you can write this as a determinant this is just an equivalent form. And

this is the 2 by 2 determinant for the two electron system is called as the Slater determinant

you can automatically see that the Pauli exclusion principle and the anti symmetry of the

wave function is automatically built into it.

Because if you interchange q1 and q2 the determinant would change its sign  and if you have

two  rows  to  be  the  same,  the  determinant  will  vanish  okay  that  is  the  Pauli  Exclusion

Principle.
(Refer Slide Time: 11:33)

Now basically the single electron wave functions which are called as spin orbital. These are

made up of a spin part and the orbital part okay so there is a separation between spin and

orbit part over here. But the spin orbit coupling of course will give you a quantum number

which is different. 



Because l and s will combine to give you a j right and then j,  mj will be good quantum

numbers  and  not  ml,  ms  so,  basically  you  deal  with  these  spin  orbitals  in  the  Slater

determinant. 
(Refer Slide Time: 12:18)

For an N electron system now we go quickly from the two electron system to an N electron

system where N is any number it could be 2 or 3 or 4 or whatever. And you have an N by n

Slater determinant in which the columns are labelled by the q’s which are the coordinates.

And the rows are labeled by the quantum numbers these are the complete set of commuting

operators and their Eigen values okay.

So,  the  quantum  number  is  obtained  from  the  Eigen  value  of  the  observable  which  is

measurable. And once you have a complete set of commuting observations you get a set and

this set is what I call as alpha. So, alpha is not just one quantum number in our case it is 4

quantum numbers right and together this gives us one set. 

So, each row in this Slater determinant corresponds to to a particular set of alpha where alpha

contains all the 4 quantum numbers, so, these are the 4 quantum numbers in alpha n, l, ml and

ms  and  you  can  write  this  determinant  also  as  you  can  take  all  the  diagonal  elements

construct a product of this and then carry out the permutations of these.  This is how the

determinant. 

Yes you have a question (Question Time: 13:52) that here subscript corresponding to u means

that this subscript combination is different combination from n, l exactly right. So, either one

or more quantum numbers will be different when you go from one row to the other. No 2

rows  will  have  the  same  set  of  quantum  numbers  that  will  violate  the  Pauli  Exclusion

Principle and the determinant will vanish.



But if even one of them is different then you are okay right (Question time: 14:24) So that

difference is manifested inside the q position I mean each row, each or the; q’s go from one

column to the next so the first column is q1 the second is q2 and the last column is qn.

(Question time: 14:43 not audible) So, in a particular row, for the q upto qn, what are the

quantum numbers, are same positions.

Yes  basically  what  you  are  doing  is  interchanging  the  position  that  is  where  the

indistinguishability of the particles comes in. So, typically this is a measure of the probability

amplitude that an electron at coordinate qi is in the quantum state alpha. But in the next row

belonging to the same column you will have the probability amplitude that an electron at

coordinate qi will be in the quantum state alpha + 1, the next one right. 

And that cannot be ruled out because these particles are completely indistinguishable. So, you

must construct a superposition of these and this must be an anti symmetric superposition. So

that  is  what this  Slater  determinant  guarantees.  So,  you can write  this;  basically  you are

carrying out these permutations between these coordinates and then you must have the parity

of the permutation.

You  will  have  factorial  n  permutations  possible  and  then  1  over  root  factorial  n  is  the

normalization  as  you can  get  if  these  individual  spin  orbitals  which  are  elements  of  the

determinant are individually normalized. So, these things we discussed at some length in our

previous course on atomic physics.
(Refer Slide Time: 16:08)

And you may want to refer back to some of those details and I just wanted a very quick

recapitulation of that. And the many electron Schrodinger equation is H Psi = E Psi for the N



number of particles and this is what we called as the Catch-22 situation, the reason is it is

Catch-22 a phrase which is, which comes from the novel by Joseph Heller. 
(Refer Slide Time: 16:35)

And the main idea in this is the following that if you write the N electron Hamiltonian as the

sum of these single particle operators. This is a single party kinetic energy; this is the kinetic

energy of each electron in the field of the nucleus. But this is the electron-electron repulsion

and  the  1  over  rij  which  is  the  electron-electron  repulsion.  So,  this  requires  for  your

consideration the distance between these two electrons right.

And this  distance can be specified only in terms of distance between the two probability

densities because charges these are not classical point charges. So, you need the probability

densities which can come only from the wave function. So, you need the wave function even

to construct the Hamiltonian. And unless you have the Hamiltonian you cannot set up the

differential equation at all, so this is the Catch-22 situation.

And to break it you follow Hartree’s procedure and have approximate numerical solutions in

which you obtain self consistent field solutions. So, some of these details we have discussed

in our previous course I will not go through it now. This is just a quick reminder that these are

the techniques which are used and then of course you go beyond Hartree you must include

the spin and that is the Hartree Fock formalism okay.

(Question time: 17:57 – not audible) It is neglected here it is given an average effect; this is a

nuclear part this is the single atomic system, so there is a single nucleus. For molecules of

course  you  have  the  nuclear  nuclear  interaction,  this  is  a  single  nucleus.  So,  we,  I  am

developing the formalism in the context of a single atom. But of course in condensed matter

where you have a molecule or a cluster, then you have the nuclear-nuclear term as well.



 So,  the contribution  from the nucleus  is  not neglected  it  is  Z over  ri  over here.  For  in

molecule where there are more than one nucleus you can carry out the Born Oppenheimer

approximation or you can do even better that but that is a matter of detail okay, (Question

time: 18:45 – not audible) in field approximation yeah.
(Refer Slide Time: 18:50)

So, essentially it is hopeless to look for an exact solution of a many body system okay. There

is no chance that you can get an exact solution. It is not that it is difficult mushkil hi  nahin na

moonki me okay. So, it is absolutely hopeless that you can understand it only in those terms.

So, it is impossible to get an exact solution.

And this is best stated in remark by Brown in his book where he says that having nobody at

all is already too many if you are looking for an exact solution. So, you have to look for you

know approximate solutions. And even to write down these solutions you have a very huge

task because just how much of storage space would you need to write handle these Slater

determinant. How many terms do you have in this Slater determinant.
(Refer Slide Time: 19:56)



If you just take a small atom like every electron has three degrees of freedom. So, it has got

3N variables right and if you write the wave function just on a 10-point grid actually it is

more than 3 because you know that there is the spin also. So, just to simplify this I have taken

3, if you take a 10-point grid then you have 10 to the 3N numbers to tabulate. 

And you will get a very bad wave function on a grid which has got only ten points. But even

that you have 10 to the power 3N numbers and what kind of a number is it okay. For N = 1 it

is already a thousand okay. And then for neon, for mercury atom these are huge numbers

okay. So, you need techniques and the occupation number of formalism. 

The second quantization methods that we are going to discuss in this unit will tell you very

elegant ways of doing this. So, you have to deal with spin as well.
(Refer Slide Time: 21:05)

And we know that self consistent field solutions are possible in the Hartree Fock formalism.

And the main strategy of Hartree Fock is to get an extremum of the expectation value of the n



electron Hamiltonian in the Slater determinant. This is a single Slater determinant mind you

okay.

And  in  this  you  obtain  this  extremum  subject  to  the  condition  of  constraints  of  the

orthogonality of the single particle wave functions and their normalization as well. So, you

can determine  the expectation value of the single particle  and two particle  operators and

proceed and this is what we discussed in our previous course in atomic physics.
(Refer Slide Time: 21:52)

The two-electron geminal state which is always nice to have some kind of handle on because

all the two electron interactions are expressed in terms of these functions you can have the

anti symmetry of the wave function that when you interchange q1 and q2, q1 is here in q2

here. When you interchange the first one is q2 and the second one is q1 the wave function

must change its sign.

But this sign must be attributed either to the spin part or to the orbital part. And either of the

two  possibilities  will  give  you  an  anti  symmetric  wave  function.  So,  there  are  two

possibilities here that the orbital part is anti symmetric and the spin part is symmetric or the

orbital part is symmetric on the spin part is anti-symmetric. 

So, you have two kinds of you know solutions and you must ask which part is symmetric and

which part is anti-symmetric.
(Refer Slide Time: 22:51)



And depending on whether you are dealing with a symmetric orbital part or a symmetric spin

part you get the triplet or the singlet states at this again I will not spend any time discussing

this. We have had fairly extensive discussion in our previous course in atomic physics. So,

you can certainly refer back to that.

And I will just like to remind you that if you consider the diagonalization of the Coulomb

interaction in this you know that the triplet state is less punished as Landau and Lifshitz call

it, it has got a lower energy than the singlet okay. 
(Refer Slide Time: 23:33)

So, now you can of course right the single particle quantum numbers either as n, l, ml, ms or

as n, l, j, mj and you can write one in terms of the other by simply carrying out this rotation of

the base vectors in the couple angular momentum space okay. You have got two sources of

angular  momentum  for  the  electron  one  is  orbital  angular  momentum,  the  other  is  spin

angular momentum.



And you can have their uncoupled spaces or you can have the couple spaces and you can

write both are equally valid. You can write the wave functions either in terms of one basis or

the other, any basis is good all you need is a complete set of basis and some of these details

again we have discussed at length in our previous course in atomic physics. And some of

these video lectures are also available on the internet.

And you can refer to that if required but I just want to mention that you can use either of the

two to designations.
(Refer Slide Time: 24:50)

And depending on the coupling scheme if you are coupling you know if the jm basis you

have these spherical harmonics spinners which are you know which have two rows and one

column.  So,  you  can  write  these  wave  functions  in  terms  of  these  spherical  harmonics

spinners, so instead of the ml, ms basis right.
(Refer Slide Time: 25:10)



So, here again the details can be found in unit 3 of the previous course on atomic physics. But

I want to quickly go over to the many-electron formalism which really requires us to go in for

second quantization methods. 
(Refer Slide Time: 25:33)

Now let us take a particular case a many electron system. Let us take the case of magnesium

now magnesium has got 12 electrons the usual configuration is 1s2, 2s2, 2p6, 3s2 okay. The

2p is the spin orbit split right because of the relativistic effects. In the nonrelativistic quantum

mechanics you will not have the spin at all right. 

In relativistic quantum mechanics or in nonrelativistic quantum mechanics in which spin is

plugged in on an ad hoc basis then also you can do some quantum mechanics with spin. Then

you have j becomes a good quantum number and j is either half or 3 half for l = 1, for 2p l =1,

s for the electron is half. So, you have two possibilities l + half and l - half right, from angular

momentum coupling.

And the l + half gives you the j = 3 half state in which you can have 4 electrons because this

has got a degeneracy which is fourfold for ej mj can take 4 values. So, for j = 3 half mj can

take 3 half, 1 half, -half, -3 half, so it has got a fourfold degeneracy. And for j = half you have

got  a  twofold  degeneracy  for  j  =  half,  mj  can  be  plus  or  minus  half.  So,  this  is  your

configuration the superscript SD stands for the Slater determinant.

And this is the Slater determinant which I call as Slater determinant 1 which I write as a

subscript. Which is an anticipation of the fact that we will have a Slater determinant 2, 3, 4

how far can you account, many right. So, you can have a number of Slater determinants. Let

us consider this one, now instead of 3s2, I have got the first ten electrons go in the same

states. But the 11th and the 12th electron instead of going in 3s go into 3p.



Now this is  also magnesium atom you have got the same number of neutrons,  the same

number of protons, the same nucleus, the same number of electrons but the configuration is

different. And if you were to write a Slater determinant for the first configuration compare it

with the Slater determinant for the second configuration you obviously recognize the fact that

the two Slater determinants must be different from each other okay.

In other words each Slater determinant corresponds to a particular configuration there is a

one-to-one correspondence between the given configuration and the Slater determinant okay

there is a one-to-one correspondence. And you can have many different Slater determinant

you can have two electrons in 3p 3 half.

You can have two electrons in 3d 1 half, sorry 3d 3 half, 3d of course does not have one half,

3d has got either 5half or 3 half. So, you can have what else, 4s, 5p anything you have really

infinite number of possible Slater determinant. And strictly speaking to have a complete basis

you must include all of these.

And according to the fundamental consideration that we have in the expansion of an arbitrary

wave function in a linearly independent  complete  set of basis you must have expand the

magnesium wave function in terms of this complete set of basis. So, you really have infinite

Slater determinant, yes the coefficients of most of them may go to 0. 

But the coefficient of many may not go to 0 and how many really, you really do need to

include depends on the nature of the correlation that is there in the system, in the 12 electron

system. So, you have got a many body system which contains 12 electrons, this is your many

body system, this is your many electron system and it is a correlated system. Now if you have

more Slater determinant what happens to your Hartree Fock.

In the Hartree Fock you did an extremum of the Hamiltonian the expectation value of the

Hamiltonian in a single Slater determinant right. But now you recognize the fact that you

have  more  than  one  Slater  determinant  2,  3,  4  maybe  more  a  certain  number  of  Slater

determinant and all of these later determinants need to be considered. This is what is meant

by saying that you must go beyond the Hartree Fock.

At what requires you to go beyond the Hartree Fock is the Coulomb correlation. So, this is

the definition of Coulomb correlation. Coulomb correlation is what is left out of the Hartree

Fock  okay.  In  the  single  configuration  Hartree  Fock,  you  of  course  have  the  Coulomb



interaction. All those two electron integrals that you did in your previous course okay, there

are matrix elements of 1 over rij that is the Coulomb interaction right.

So, you had the one Coulomb interaction you also have the exchange how did he have the

exchange because you had anti symmetric wave functions. So, you had the exchange you also

have the Coulomb interaction but you restricted yourself to a single Slater determinant. So,

the confinement  to a  single Slater  determinant  is  the single particle  model  when you go

beyond that you begins to include correlations.

 It  does not mean that there is  no correlation in the Hartree Fock there is the exchange-

correlation but there is  no Coulomb correlation (Question time:  32:11- not audible) sorry

because it is coming once again from the 1over r12 but the one over r12 is coupling not only

states from a single configuration but also from this okay. 

There are so many other configurations and all of these correlations they are coming because

of the Coulomb interaction. But then coming from different configurations (Question time:

32:45- not audible) in the last two but they could refer in many others right that is the I mean

I thought that is the Coulomb correlation; that is just another possible state of the 12 electron

system.

And the reason you have this alternative state as an accessible state for the 12 electron system

is  because  of  the  Coulomb  correlation  okay.  They  should  all  have  the  same  angular

momentum so finally they must couple to the same j that is a matter of detail but I am not

getting into that at this point. 

(Question time: 33:28- not audible) Coulomb correlation is because of the anti symmetry of

the wave function and it is happening inside internal Slater determinant, it is it is there in each

Slater determinant. So, this is one Slater determinant which is completely anti symmetric. So,

if you interchange any two rows or any two columns the sign of the determinant will change

okay. So, the sign of the determinant will change under any interchange.

So, the exchange correlation which is the anti symmetry of the wave function or the Pauli

Exclusion Principle that is already built into this and this is a different Slater determinant. But

the system wave function is a linear superposition of these two. So, you are then relayed to

what is called as a multi configuration Hartree Fock. 

So, now you cannot deal with just a single Slater determinant but a linear superposition of

Slater determinant what is it coming, where is it coming from it is coming because you have



to consider the interaction between the first configuration and the second configuration this is

what is called as CI or the configuration interaction okay. 

So, this is the configuration interaction and this requires you to go beyond the Hartree Fock

and that is what many-body theory is about. So, even the Hartree Fock in a certain sense is a

many-body theory. In a certain sense it also has the correlation but the correlation it has is

only the exchange correlation.

But the name many-body theory is typically reserved for those formalisms in you go beyond

the  Hartree  Fock.  Consider  the  configuration  interaction  and  include  the  Coulomb

correlations not just the Fermi correlations not just the exchange correlations. So, these are

what are typically called as many body correlations.
(Refer Slide Time: 35:25)

And I will describe it once again for the magnesium atom so if it has this 2p6, 3s2 this is the

usual configuration that one talks about. This is the default that one that comes to your mind

and the Slater determinant for this will consist of 12 columns so q1 through q12 okay. So, as

you go from left to right you are going from first column, to the second, the third until you

get to the 12 column and when you go through the rows one to the next and so on. 

You go from different quantum states this is nlj mj quantum numbers are what I have used

okay. So, this is the one s up state right and then the last one will be the 3s down with mj = -1

okay. So, that is the 12th row okay. So you have got a 12 by 12 determinant this is the

determinant wave function. And this is corresponding to different single particle states. Each

row is labeled by a set of 4 quantum numbers.



All the 4 quantum numbers are the same in a given row. They change only from one row to

the next in at least one quantum number okay. They may change in more than one quantum

number like if you look at the first row and the last row, the first row has got mj = half, the

last row has about mj = - half. But that is not the only difference the first row has got n = 1,

the last row has got n = 3.

So,  they  may change in  one  or  more  quantum numbers.  But  there  must  be  at  least  one

quantum number which is different. If all of them are the same then you have two rows which

are equal in a determinant, the determinant would vanish okay. So, this is where you have the

Slater determinant corresponding to the 2p6, 3s2 configuration. But then we agreed that you

have not only this configuration.

But you also have the possibility of the 3p2 configuration and not just this there are many

more, well let us take this as an example. So, if you were to write a Slater determinant for this

then you will have the first 10 rows will be the same but the 11th and 12th row will be

different. And the 12th row will now have l = 1 here mind you okay. Because this is the 3p

state, so you have got a 3p here and not a 3s anymore.

So, what you are going to do is you have these different single particle states and you can

arrange them in some order. You can say that okay n = 1, l = 0, j = half, mg = half is my state

number 1, n = 1, l = 0, j = half, mg = -half is my state number two. And you start giving

numbers  to  each  row okay, so  the  first  10  you  have  labeled  then  11 and  12  you  label

according to the 3s2. Now these two rows you cannot label anymore as 11 and 12.

Because the label number 11 corresponds to the 3s up, so this will be your 13 and 14 okay.

What is happening in this later determinant is that 11 and 12 are empty and 13 and 14 are

occupied  okay.  The  first  10  are  the  same  but  what  was  11  and  12  in  the  previous

configuration is now vacant and you have an occupancy of 2 in 3p so in other words these

different Slater determinants which correspond to different configurations.

You can refer to them in terms of occupation numbers of single particle states. What is the

occupation number of state number 1? What is occupation number of state number 2? What is

the occupation number of state number 11? What is occupation number of state number 13?

What is the occupation number of state number 20? Because you have got an infinite set of

Slater determinant right.

So, you can write all of this in terms of these occupation numbers. Now that is the formalism

which  corresponds  to  the  occupation  number  space  and  this  is  where  we  use  second



quantization methods. Which is what we are going to discuss yes and Amkur  you have a

question (Question time: 40:33) how many rows and how column you have this, you will

always have 12 by 12 because you are describing a 12 electron system.

Then how can you say that the 11th and 12th row I mean not there we are using the , the 11th

label is empty, the 11th label is empty, 11th row is occupied by what would be the 13th label.

The 12th row will be occupied by what is the 14th label. (Question time: 41:11) here it is; you

will always have each determinant for an N electron system will be an N by n determinant

okay.

So it has to have 12 rows and 12 columns but which 12 rows that set is what we are talking

about. And in this set the labels each label corresponds to a particular one electron state. And

the last two labels in this are different from the last two of the previous. So, if you look at this

you have got the 3p half is the last one. In the previous one you add this is you had the 3s

okay. So, the 12th row was occupied by the 3s quantum numbers.

But now the 12th row is occupied by 3p one-half okay. So, you have 12 rows and 12 columns

but which 12 rows is different in different Slater determinant. (Question time: 42:23)Previous

case we are denoting by these two position is  by q11th and q12th yeah and in this  case

whether we should use some q13, q14. 

No, no you are talking about two electrons you are talking about 12 electrons what is the

probability amplitude that a particular electron at coordinate qi is in the state alpha. So, here

this is the probability amplitude that the electron at q1 is in this state okay. This probability

amplitude is different from the probability amplitude that the electron at q1 is in the 3s state

okay. 

So, you have got 12 electrons they are where they are in the spin orbital space okay. But the

probability amplitude that they are in different quantum state single particle quantum states is

different. Which is why the rows are different okay, the coordinates of course will be from q1

to q2 all their only 12 electrons. (Question time: 43:40-not audible) 1 and 3p half and 1, It is

certainly possible. 

So,  you  have  the  levels  11 and  13th;  you  could  have  you  can  have  that  as  a  possible

configuration.  So,  you  will  have  infinite  configurations  of  course  there  are  some  other

constraints because the total angular momentum must be the same and so on. So, those are

the  details  that  we can  talk  about.  But  basically  you will  have  many  different  kinds  of

possibilities. You can have two electrons going from first configuration to the other.



You can have one going from one state, the second going to a different state okay. So, here

you have what we have done is we have elevated 3s2 to 3p2. You can elevate 3s2 to 3p2, you

can elevate 3s2 1 going to nl and the other going to n prime l prime okay. So, there are all

kinds of possibilities okay. And that is what makes many-body theory very challenging okay.
And all this is happening because of the electron correlations. 
(Refer Slide Time: 44:59)

So, there are these possibilities  and the configuration interaction  wave function is  now a

linear  superposition  of  all  these  Slater  determinant.  And  depending  on  how  many

configurations need to be considered in this. This n can be either a small number like 2 or 3

or 4 or it can be quite large and people do calculations with hundreds sometimes even with

thousands of configurations.

Now it is a mass because each determinant has got factorial 12 terms okay. We already felt

like quiting when we were dealing with a single determinant.  When we thought  about  a

number like factorial 10 just for the neon atom which is a small atom right now you have

factorial n terms and so many of them. So, there is a good way of handling this which is what

makes use of the occupation number formalism.

This is where the second quantization methods come into the picture.  So, the occupation

number formalism is sometimes called as the second quantization why second because the

first quantization was doing away with classical dynamical variables q and p position and

momentum  which  were  simultaneously  measurable  accurately  in  classical  mechanics.

Recognizing the fact that such a simultaneous accurate measurement is not possible.



And therefore replacing them by operators that was your quantization okay. Now what we are

going to do is  that  the wave functions  that  you are talking about will  also be treated as

operators. In the first quantization methods the wave functions Psi was like a scalar function

it  was  not  treated  like  an  operator.  Now  in  the  second  quantization  method,  so  it  is  a

technique okay.

And  because  it  is  quantization  of  the  scalar  field  it  is  sometimes  also  called  as  field

quantization.  But  these  are  different  expressions  to  talk  about  the  same  technique.  The

technique  is  essentially  that  of  occupation  number  formalism  also  called  a  second

quantization or field quantization, field theory. 
 (Refer Slide Time: 47:29)

And all  of these are  related  terms depending on different  context  they do have different

emphases contained in these alternate expressions. And they are inspired by the fact in the

context of the fermions that each Slater determinant is decided by a particular configuration

which means that which single particle states are occupied. In the first configuration other

than the first ten these two are occupied are these two are empty. 

But in this case the 3s are empty and the 3p are occupied right. So the occupation numbers

are different and you can talk about going from one to the other by destroying two electrons

in the first and creating two electrons in the other. So, you can begin to make use of operators

which are called as creation and destruction. 

Operators of creation and annihilation operators and the second quantization methods make

use of these operators. And that is the formalism that we are going to learn in this unit.
(Refer Slide Time: 48:35)



So, you are Slater determinant in the first configuration was made up of these states 1 and 2,

3 and 4 okay. Then you had the 2p 1 half  you had the 2p 3 half  and then you had two

electrons in the 3s state. So, these are the 12 single particle states when you talk about the

second configuration the 11th and 12th those two states, electrons in those two states are

effectively destroyed.
(Refer Slide Time: 49:18)

(Refer Slide Time: 49:39)



And you create 2 n3p 1 half okay. So, in the second configuration you have instead of the 11

and 12 you have 13 and 14 that is what I was referring to okay. And you can refer to these in

terms of single particle operator’s creation and destruction operators and these are the ones

which are used to describe the N particle system. Essentially you are describing them in terms

of a complete set of compatible observables okay.

Our Eigen values of complete set of commuting operators from Dirac’s CSCO and you have

N number of identical particles. So, the individuality of the particle that idea is carried over

but so is the indistinguishability okay. So, is the statistics and so are now also the many body

correlations.  So,  you use the single particle  labels  okay even in  the presence of  not  just

interactions.

But also in the presence of correlations and I have made a very clear distinction between the

term interaction and correlation. So, correlation has got a specific connotation in the context

in which we are discussing this. So, you describe a particular Slater determinant a particular

configuration by spelling out how many particles are there Slater alpha one. Each alpha is a

set of four quantum numbers.

How many particles are there in state alpha 2, now this number is either one or zero for Fermi

particles. When it can be anything for Bose particles because there is no Pauli Exclusion

Principle for bosons right, you can put any number of particles in a one Bose state as a matter

of fact you can put all of them and get Bose Einstein condensation right. 

So, there is no such restriction in that but the basic property of any configuration is of any

many electron system is how many particles reside in these single particle states okay. And



that number is the occupation number of that state. And this will give you one configuration

but then of course the system wave function will contain many other configurations.

And  you  will  have  a  linear  superposition  of  such  states.  So,  this  is  the  idea  behind

indistinguishability,  you  take  into  account  the  correlations  you  recognize  the  elementary

nature of these particles okay although they are indistinguishable.
(Refer Slide Time: 52:02)

So you reconcile with that and essentially you can get these numbers as Eigen values of the

occupation number operators which are a complete set of commuting hermitian operators. So,

you define these occupation number operators and of course the description will be different

in terms for Bose particles and for Fermi particles because if you have created a particle in

one vacuum state and if that particle is a Fermi on you cannot create any more in that state. 

But if it is the Bose particle the creation operator can operate twice or ten times or have a

Bose  Einstein  condensation  and  pump  everything  into  that  okay.  So,  the  properties  the

commutation properties of the creation and destruction operators for Fermi and Bose particles

will be different. So the statistics will now be incorporated in the operators.
(Refer Slide Time: 53:02)



So,  you  have  some  sort  of  an  arrangement  this   alpha1,  alpha2,  alpha3  and  is  some

predetermined sequence you decide what is in the your state number 11, you decide what is

your state number 12, decide what is your state number 13, 14. And then you say that state

number 11 and 12 is occupied in this and 13 and 14 is vacant.

And in the next configuration 11 and 12 are vacant and 13 and 14 but these numbers have to

be pre assigned. So, you have some sort of a predetermined sequence and in this sequence

you give the occupation numbers and then you have a vacuum state in which all of these

particles, all of these states are vacant. You can have a single particle state in which there is

only one particle in the state i.

So in the ith state ni = 1 and whenever j is not equal to i, this occupation number of only for

the ith state the occupation number is equal to 1 whenever j is not equal to i the occupation

number is 0. So, this is how you would describe a single particle state and depending on the

number of particles you can write different occupation number states.

So, I will conclude my discussion today would be happy to take a few questions and we will

go from here in the next class.
(Refer Slide Time: 54:31)



In the meantime there are some references which I would like to draw your attention to for

Hartree Fock we have already given this reference in the previous course which is either

Bethe and Jackiw or Bransden and Joachain these are the primary sources. And for second

quantization and occupation number formalism I will primarily use Fetter and Walecka book

or the book by Raimes called many-electron theory. 

Questions(Question time: 54:55 – not audible)Given that  magnesium two electron system the

alpha’s will be, the set of alpha you are referring to each configuration will be having 12 once

and all other are zero’s, so each of that kind of sets of configuration; yes, yes exactly. So out

of the infinite numbers 12 will be occupied all the others will be 0. 

But which 12 is going to be different for each configuration, a particular choice of 12 defines

one Slater determinant okay. So there is one to one correspondence between a configuration

at a Slater determinant and an occupation number state vector. So, these are state vectors in

what is called as the occupation number space sometimes also called as a Fock’s space.

(Question time: 55:48-not audible) where we are Raimes angulations right, so in our next

class  we  will  get  into  these  second  quantization  operators  the  creation  and  destruction

operators and the number operator and so on okay, all right. Thank you.


