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Lecture 13
Many Body Theory, Electron Correlations

Greetings, we will begin unit 2 today and this will be on many body theory our focus will be
on the study of electron correlations and techniques which make use of diagrammatic
perturbation theory, the Feynman Goldstone diagrams and so on. So, we will develop these

techniques which are of importance in studying atomic collisions and spectroscopy.
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‘RmmISﬂAPUmt4HFSCF

Problems of current interest in the physics
of atoms, molecules and other forms of
condensed matter require a thorough

understanding of electron interactions and

electron correlations.

Statistics - FD

exchange
correlations—[
coulomb
%E Many-body correlations

PCD STITACS Unit 2 Many-body theory, siectron cormslstions, F eynman G oldsione disgn

S
MPTEL

And I will spend a few minutes at the start of this unit recapitulating a few points that we did
earlier in the previous course on the special topics and atomic physics in particular I will
invoke the discussion on the Hartree Fock formalism which is also a many body theory in a
certain sense. It is a many electron theory but then we are going to go well beyond the

Hartree Fock in the discussion in unit 2.

So, let me recapitulate a few points from unit 4 of the previous course on atomic physics. And
our interest in studying atoms, molecules, condensed matter of any kind is in studying
electron interactions and electron correlations and of course how the many body system
responds to various probes like electromagnetic radiation or other particles like projectiles

electrons, positrons, composite particles and so on.
So, I have underlined the words electron interactions and electron correlations to draw

attention to the fact that these two terms will have different connotations in our context okay.

And in particular when I refer to correlations I will be referring to two kinds of correlations



one are the exchange correlations and the other are Coulomb correlation. So, obviously

Coulomb correlations and Coulomb interactions are two different things okay.

Coulomb interaction is the usual one over r12, Coulomb correlations is what many-body
theory is about, so that is the focus of unit 2. Now the exchange correlations come from
statistics. Exchange correlations they are because of the fact that electrons are Fermi particles
Fermi Dirac particles and the statistics they must observe is the Fermi Dirac statistics and that

requires that a many electron wave function must be anti symmetric.

So, there is a certain correlation coming in from statistics. In addition to that there is a
correlation which is the Coulomb correlation which is not included in the Hartree Fock
formalism and that is the one that we are going to talk about. That is a result of what we will

refer to as many body correlations or many electron correlations.
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And let me quickly remind you that statistics enters classical mechanics and quantum
mechanics in different ways okay. In classical mechanics it enters just because you are
dealing with a large number of particles and there is too much of information not all of it all
the details are interesting. So, you do some averaging like in principle in classical mechanics

since every single particle is distinguishable.

And it obeys dynamical laws in which you can predict the motion using the equation of
motion. In principle you can follow the trajectory of every particle. But all this is not
interesting what is interesting is what the average kinetic energy is and what it generates is a
thermodynamic parameter like the temperature. So, these are average properties and this is

how statistics enters classical mechanics.



In quantum mechanics statistics enters because of the uncertainty principle. So, laws of
nature are intrinsically statistical there is a probabilistic interpretation that quantum
mechanics demands even when you are dealing with a single particle or even when you are
dealing with vacuum. So, it is nothing to do with the number of particles, number of particles

only makes it more complicated.

But having fewer particles having a single particle does not eliminate statistics. And then you
have the spin which is an intrinsic angular momentum for elementary particles and this also
leads you to statistical considerations. Because there are two kinds of particles in nature

fermions and bosons and they observe different statistics they have different spins.
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So, if you have two identical particles and the signature of quantum mechanics so far as many
body formalisms are concerned is the fact that these particles are indistinguishable okay. So,
if you have two identical particles one at coordinate ql and the other at coordinate 2. If you
interchange these two particles and I is the interchange operator. And on the result you carry

out the interchange yet again. So, you are carrying out an interchange twice.

You naturally expect that you will recover the original state. Now this is a geminal wave
function which is a wave function for the twin particles. They are completely identical in all
respects and you will recover the same function which means that if you interchange only
once you can at the most change the phase of this wave function by e to the 1 alpha right. And

e to the 2i alpha must be unity which is what you will get over here.

Which means that alpha is either 0 or pi and depending on it is 0 or pi you have either Bose
particles or Fermi particles. Now all particles which have half integer spin are Fermi particles

or Fermi Dirac particles. And all particles with integer spins are Bose particles or Bose



Einstein particles. And typically the wave function would be written in terms of the spin

quantum number as well.

And then you will have a one electron state written as n, I, ml, ms for a particular state which
is alpha. So, you have got a set of commuting operators, so this gives you a complete
description, a complete set of commuting operators or a complete set of compatible
observables as Dirac calls it CSCO right. And these give you the complete description and

this complete description must include the spin.
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Now it is very interesting that you have this connection between statistics, the spin of the
particles and the sign of the wave function on interchange. Because on interchange of Bose
particles the wave function remains invariant. Whereas on interchange of Fermi particles the
wave functions of the geminal changes sign right. So, this connection is rather interesting and

it is nevertheless not so very easy to understand as Tomonaga tells us in the statement.
That the relation between spin and statistics is apparent but hard to understand and I would

like to quote Feynman one more time over here that you have a rule which can be stated very
simply. But the explanation is complicated it lies deep down in relativistic quantum
mechanics okay. So, I will not go into those details because our focus in unit 2 is the
discussion on how many body correlations are to be treated and what they are in the first

place.
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So, let us deal with electrons on interchange the electron germinal, the two electron wave
function changes at sign and you consider the wave function or which is a function of two
electrons q1 and g2 one at q1 the other at g2 to be separable in one particle coordinates okay.
So, the two electron wave function is written as a product of 2,1 electron functions but the

product must be an anti symmetric product.

As we have discussed in details in our previous course in atomic physics on the discussion on
the Hartree Fock. So, you have to reconcile two properties two attributes which can appear to
be contradictory the particles are indistinguishable in the sense that you really cannot separate
one from the other yet you talk of them as individual elementary particles in which each has

an identity of its own as an elementary particle okay.

The elementary particle of nature is the electron not the twin it is not the pair of electrons. So,
the elementary particle is still the electron but the two electrons are indistinguishable and this
is indicated over here that the two electron wave function is written as a product of one
electron functions which respects the elementary nature of the two electrons. But then it is a

superposition of these two states electron at q1 in the quantum state 1.

And electron at 2 in the quantum state 2 and the other possibility that the electron at q1 is in
the quantum state 2 and the electron at g2 is in quantum state 1. So, these two situations are
not distinguishable, so indistinguishability demands that you construct a linear superposition

of this and this superposition must be an anti symmetric superposition.
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So, you can see that you can write this as a determinant this is just an equivalent form. And
this is the 2 by 2 determinant for the two electron system is called as the Slater determinant
you can automatically see that the Pauli exclusion principle and the anti symmetry of the

wave function is automatically built into it.

Because if you interchange ql and q2 the determinant would change its sign and if you have
two rows to be the same, the determinant will vanish okay that is the Pauli Exclusion

Principle.
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Now basically the single electron wave functions which are called as spin orbital. These are
made up of a spin part and the orbital part okay so there is a separation between spin and
orbit part over here. But the spin orbit coupling of course will give you a quantum number

which is different.



Because 1 and s will combine to give you a j right and then j, mj will be good quantum
numbers and not ml, ms so, basically you deal with these spin orbitals in the Slater

determinant.
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For an N electron system now we go quickly from the two electron system to an N electron
system where N is any number it could be 2 or 3 or 4 or whatever. And you have an N by n
Slater determinant in which the columns are labelled by the q’s which are the coordinates.
And the rows are labeled by the quantum numbers these are the complete set of commuting

operators and their Eigen values okay.

So, the quantum number is obtained from the Eigen value of the observable which is
measurable. And once you have a complete set of commuting observations you get a set and
this set is what I call as alpha. So, alpha is not just one quantum number in our case it is 4

quantum numbers right and together this gives us one set.

So, each row in this Slater determinant corresponds to to a particular set of alpha where alpha
contains all the 4 quantum numbers, so, these are the 4 quantum numbers in alpha n, 1, ml and
ms and you can write this determinant also as you can take all the diagonal elements
construct a product of this and then carry out the permutations of these. This is how the

determinant.

Yes you have a question (Question Time: 13:52) that here subscript corresponding to u means
that this subscript combination is different combination from n, | exactly right. So, either one
or more quantum numbers will be different when you go from one row to the other. No 2
rows will have the same set of quantum numbers that will violate the Pauli Exclusion

Principle and the determinant will vanish.



But if even one of them is different then you are okay right (Question time: 14:24) So that
difference is manifested inside the q position I mean each row, each or the; q’s go from one
column to the next so the first column is ql the second is q2 and the last column is qn.
(Question time: 14:43 not audible) So, in a particular row, for the q upto qn, what are the

quantum numbers, are same positions.

Yes basically what you are doing is interchanging the position that is where the
indistinguishability of the particles comes in. So, typically this is a measure of the probability
amplitude that an electron at coordinate qi is in the quantum state alpha. But in the next row
belonging to the same column you will have the probability amplitude that an electron at

coordinate qi will be in the quantum state alpha + 1, the next one right.

And that cannot be ruled out because these particles are completely indistinguishable. So, you
must construct a superposition of these and this must be an anti symmetric superposition. So
that is what this Slater determinant guarantees. So, you can write this; basically you are
carrying out these permutations between these coordinates and then you must have the parity

of the permutation.

You will have factorial n permutations possible and then 1 over root factorial n is the
normalization as you can get if these individual spin orbitals which are elements of the
determinant are individually normalized. So, these things we discussed at some length in our

previous course on atomic physics.
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And you may want to refer back to some of those details and I just wanted a very quick

recapitulation of that. And the many electron Schrodinger equation is H Psi = E Psi for the N



number of particles and this is what we called as the Catch-22 situation, the reason is it is

Catch-22 a phrase which is, which comes from the novel by Joseph Heller.
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And the main idea in this is the following that if you write the N electron Hamiltonian as the
sum of these single particle operators. This is a single party kinetic energy; this is the kinetic
energy of each electron in the field of the nucleus. But this is the electron-electron repulsion
and the 1 over rij which is the electron-electron repulsion. So, this requires for your

consideration the distance between these two electrons right.

And this distance can be specified only in terms of distance between the two probability
densities because charges these are not classical point charges. So, you need the probability
densities which can come only from the wave function. So, you need the wave function even
to construct the Hamiltonian. And unless you have the Hamiltonian you cannot set up the

differential equation at all, so this is the Catch-22 situation.

And to break it you follow Hartree’s procedure and have approximate numerical solutions in
which you obtain self consistent field solutions. So, some of these details we have discussed
in our previous course I will not go through it now. This is just a quick reminder that these are
the techniques which are used and then of course you go beyond Hartree you must include

the spin and that is the Hartree Fock formalism okay.

(Question time: 17:57 — not audible) It is neglected here it is given an average effect; this is a
nuclear part this is the single atomic system, so there is a single nucleus. For molecules of
course you have the nuclear nuclear interaction, this is a single nucleus. So, we, I am
developing the formalism in the context of a single atom. But of course in condensed matter

where you have a molecule or a cluster, then you have the nuclear-nuclear term as well.



So, the contribution from the nucleus is not neglected it is Z over ri over here. For in
molecule where there are more than one nucleus you can carry out the Born Oppenheimer
approximation or you can do even better that but that is a matter of detail okay, (Question

time: 18:45 —not audible) in field approximation yeah.
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‘Exact Solution’ ?

“Having no body at all is already too many”
- G. E. Brown

... even Eit were possible to get an exact

solution, how much space, ink, storage would be
needed to write the solution?

So, essentially it is hopeless to look for an exact solution of a many body system okay. There
is no chance that you can get an exact solution. It is not that it is difficult mushkil hi nahin na
moonki me okay. So, it is absolutely hopeless that you can understand it only in those terms.

So, it is impossible to get an exact solution.

And this is best stated in remark by Brown in his book where he says that having nobody at
all is already too many if you are looking for an exact solution. So, you have to look for you
know approximate solutions. And even to write down these solutions you have a very huge
task because just how much of storage space would you need to write handle these Slater

determinant. How many terms do you have in this Slater determinant.
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If you just take a small atom like every electron has three degrees of freedom. So, it has got
3N variables right and if you write the wave function just on a 10-point grid actually it is
more than 3 because you know that there is the spin also. So, just to simplify this I have taken

3, if you take a 10-point grid then you have 10 to the 3N numbers to tabulate.

And you will get a very bad wave function on a grid which has got only ten points. But even
that you have 10 to the power 3N numbers and what kind of a number is it okay. For N = 1 it
is already a thousand okay. And then for neon, for mercury atom these are huge numbers

okay. So, you need techniques and the occupation number of formalism.

The second quantization methods that we are going to discuss in this unit will tell you very

elegant ways of doing this. So, you have to deal with spin as well.
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And we know that self consistent field solutions are possible in the Hartree Fock formalism.

And the main strategy of Hartree Fock is to get an extremum of the expectation value of the n



electron Hamiltonian in the Slater determinant. This is a single Slater determinant mind you

okay.

And in this you obtain this extremum subject to the condition of constraints of the
orthogonality of the single particle wave functions and their normalization as well. So, you
can determine the expectation value of the single particle and two particle operators and

proceed and this is what we discussed in our previous course in atomic physics.
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The two-electron geminal state which is always nice to have some kind of handle on because
all the two electron interactions are expressed in terms of these functions you can have the
anti symmetry of the wave function that when you interchange ql and g2, ql is here in g2
here. When you interchange the first one is q2 and the second one is ql the wave function

must change its sign.

But this sign must be attributed either to the spin part or to the orbital part. And either of the
two possibilities will give you an anti symmetric wave function. So, there are two
possibilities here that the orbital part is anti symmetric and the spin part is symmetric or the

orbital part is symmetric on the spin part is anti-symmetric.

So, you have two kinds of you know solutions and you must ask which part is symmetric and

which part is anti-symmetric.
(Refer Slide Time: 22:51)
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And depending on whether you are dealing with a symmetric orbital part or a symmetric spin
part you get the triplet or the singlet states at this again I will not spend any time discussing
this. We have had fairly extensive discussion in our previous course in atomic physics. So,

you can certainly refer back to that.

And I will just like to remind you that if you consider the diagonalization of the Coulomb
interaction in this you know that the triplet state is less punished as Landau and Lifshitz call

it, it has got a lower energy than the singlet okay.
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So, now you can of course right the single particle quantum numbers either as n, 1, ml, ms or
as n, 1, j, mj and you can write one in terms of the other by simply carrying out this rotation of
the base vectors in the couple angular momentum space okay. You have got two sources of
angular momentum for the electron one is orbital angular momentum, the other is spin

angular momentum.



And you can have their uncoupled spaces or you can have the couple spaces and you can
write both are equally valid. You can write the wave functions either in terms of one basis or
the other, any basis is good all you need is a complete set of basis and some of these details
again we have discussed at length in our previous course in atomic physics. And some of

these video lectures are also available on the internet.

And you can refer to that if required but I just want to mention that you can use either of the

two to designations.
(Refer Slide Time: 24:50)

Spherical Harmonic Spinors €, STA74nts

definition ¢

; ) P o B
Y Yin @ty (8){fm, om, |

My 1

my=—>

3 / \

= - e | i ET. %
!Qr"\ = z,‘ Y.:m _ m.={r)"" ':"]J\f'(m L= )']m'-‘ l y 2 I]ml’:

L1 "~
my=—z 2

11

s

B ()6 m, =m+

)
R Z) i

And depending on the coupling scheme if you are coupling you know if the jm basis you
have these spherical harmonics spinners which are you know which have two rows and one
column. So, you can write these wave functions in terms of these spherical harmonics

spinners, so instead of the ml, ms basis right.
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So, here again the details can be found in unit 3 of the previous course on atomic physics. But
I want to quickly go over to the many-electron formalism which really requires us to go in for

second quantization methods.
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Now let us take a particular case a many electron system. Let us take the case of magnesium
now magnesium has got 12 electrons the usual configuration is 1s2, 2s2, 2p6, 3s2 okay. The
2p is the spin orbit split right because of the relativistic effects. In the nonrelativistic quantum

mechanics you will not have the spin at all right.

In relativistic quantum mechanics or in nonrelativistic quantum mechanics in which spin is
plugged in on an ad hoc basis then also you can do some quantum mechanics with spin. Then
you have j becomes a good quantum number and j is either half or 3 half for 1 = 1, for 2p 1 =1,
s for the electron is half. So, you have two possibilities 1 + half and | - half right, from angular

momentum coupling.

And the 1 + half gives you the j = 3 half state in which you can have 4 electrons because this
has got a degeneracy which is fourfold for ej mj can take 4 values. So, for j = 3 half mj can
take 3 half, 1 half, -half, -3 half, so it has got a fourfold degeneracy. And for j = half you have
got a twofold degeneracy for j = half, mj can be plus or minus half. So, this is your

configuration the superscript SD stands for the Slater determinant.

And this is the Slater determinant which I call as Slater determinant 1 which I write as a
subscript. Which is an anticipation of the fact that we will have a Slater determinant 2, 3, 4
how far can you account, many right. So, you can have a number of Slater determinants. Let
us consider this one, now instead of 3s2, I have got the first ten electrons go in the same

states. But the 11th and the 12th electron instead of going in 3s go into 3p.



Now this is also magnesium atom you have got the same number of neutrons, the same
number of protons, the same nucleus, the same number of electrons but the configuration is
different. And if you were to write a Slater determinant for the first configuration compare it
with the Slater determinant for the second configuration you obviously recognize the fact that

the two Slater determinants must be different from each other okay.

In other words each Slater determinant corresponds to a particular configuration there is a
one-to-one correspondence between the given configuration and the Slater determinant okay
there is a one-to-one correspondence. And you can have many different Slater determinant

you can have two electrons in 3p 3 half.

You can have two electrons in 3d 1 half, sorry 3d 3 half, 3d of course does not have one half,
3d has got either Shalf or 3 half. So, you can have what else, 4s, 5p anything you have really
infinite number of possible Slater determinant. And strictly speaking to have a complete basis

you must include all of these.

And according to the fundamental consideration that we have in the expansion of an arbitrary
wave function in a linearly independent complete set of basis you must have expand the
magnesium wave function in terms of this complete set of basis. So, you really have infinite

Slater determinant, yes the coefficients of most of them may go to 0.

But the coefficient of many may not go to 0 and how many really, you really do need to
include depends on the nature of the correlation that is there in the system, in the 12 electron
system. So, you have got a many body system which contains 12 electrons, this is your many
body system, this is your many electron system and it is a correlated system. Now if you have

more Slater determinant what happens to your Hartree Fock.

In the Hartree Fock you did an extremum of the Hamiltonian the expectation value of the
Hamiltonian in a single Slater determinant right. But now you recognize the fact that you
have more than one Slater determinant 2, 3, 4 maybe more a certain number of Slater
determinant and all of these later determinants need to be considered. This is what is meant

by saying that you must go beyond the Hartree Fock.

At what requires you to go beyond the Hartree Fock is the Coulomb correlation. So, this is
the definition of Coulomb correlation. Coulomb correlation is what is left out of the Hartree

Fock okay. In the single configuration Hartree Fock, you of course have the Coulomb



interaction. All those two electron integrals that you did in your previous course okay, there

are matrix elements of 1 over rij that is the Coulomb interaction right.

So, you had the one Coulomb interaction you also have the exchange how did he have the
exchange because you had anti symmetric wave functions. So, you had the exchange you also
have the Coulomb interaction but you restricted yourself to a single Slater determinant. So,
the confinement to a single Slater determinant is the single particle model when you go

beyond that you begins to include correlations.

It does not mean that there is no correlation in the Hartree Fock there is the exchange-
correlation but there is no Coulomb correlation (Question time: 32:11- not audible) sorry
because it is coming once again from the lover r12 but the one over r12 is coupling not only

states from a single configuration but also from this okay.

There are so many other configurations and all of these correlations they are coming because
of the Coulomb interaction. But then coming from different configurations (Question time:
32:45- not audible) in the last two but they could refer in many others right that is the I mean
I thought that is the Coulomb correlation; that is just another possible state of the 12 electron

system.

And the reason you have this alternative state as an accessible state for the 12 electron system
is because of the Coulomb correlation okay. They should all have the same angular
momentum so finally they must couple to the same j that is a matter of detail but I am not

getting into that at this point.

(Question time: 33:28- not audible) Coulomb correlation is because of the anti symmetry of
the wave function and it is happening inside internal Slater determinant, it is it is there in each
Slater determinant. So, this is one Slater determinant which is completely anti symmetric. So,
if you interchange any two rows or any two columns the sign of the determinant will change

okay. So, the sign of the determinant will change under any interchange.

So, the exchange correlation which is the anti symmetry of the wave function or the Pauli
Exclusion Principle that is already built into this and this is a different Slater determinant. But
the system wave function is a linear superposition of these two. So, you are then relayed to

what is called as a multi configuration Hartree Fock.

So, now you cannot deal with just a single Slater determinant but a linear superposition of

Slater determinant what is it coming, where is it coming from it is coming because you have



to consider the interaction between the first configuration and the second configuration this is

what is called as CI or the configuration interaction okay.

So, this is the configuration interaction and this requires you to go beyond the Hartree Fock
and that is what many-body theory is about. So, even the Hartree Fock in a certain sense is a
many-body theory. In a certain sense it also has the correlation but the correlation it has is

only the exchange correlation.

But the name many-body theory is typically reserved for those formalisms in you go beyond
the Hartree Fock. Consider the configuration interaction and include the Coulomb
correlations not just the Fermi correlations not just the exchange correlations. So, these are

what are typically called as many body correlations.
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And I will describe it once again for the magnesium atom so if it has this 2p6, 3s2 this is the
usual configuration that one talks about. This is the default that one that comes to your mind
and the Slater determinant for this will consist of 12 columns so ql through q12 okay. So, as
you go from left to right you are going from first column, to the second, the third until you

get to the 12 column and when you go through the rows one to the next and so on.

You go from different quantum states this is nlj mj quantum numbers are what I have used
okay. So, this is the one s up state right and then the last one will be the 3s down with mj = -1
okay. So, that is the 12th row okay. So you have got a 12 by 12 determinant this is the
determinant wave function. And this is corresponding to different single particle states. Each

row is labeled by a set of 4 quantum numbers.



All the 4 quantum numbers are the same in a given row. They change only from one row to
the next in at least one quantum number okay. They may change in more than one quantum
number like if you look at the first row and the last row, the first row has got mj = half, the
last row has about mj = - half. But that is not the only difference the first row has gotn =1,

the last row has got n = 3.

So, they may change in one or more quantum numbers. But there must be at least one
quantum number which is different. If all of them are the same then you have two rows which
are equal in a determinant, the determinant would vanish okay. So, this is where you have the
Slater determinant corresponding to the 2p6, 3s2 configuration. But then we agreed that you

have not only this configuration.

But you also have the possibility of the 3p2 configuration and not just this there are many
more, well let us take this as an example. So, if you were to write a Slater determinant for this
then you will have the first 10 rows will be the same but the 11th and 12th row will be
different. And the 12th row will now have 1 = 1 here mind you okay. Because this is the 3p

state, so you have got a 3p here and not a 3s anymore.

So, what you are going to do is you have these different single particle states and you can
arrange them in some order. You can say that okay n = 1, 1 = 0, j = half, mg = half is my state
number 1, n = 1, 1 = 0, j = half, mg = -half is my state number two. And you start giving
numbers to each row okay, so the first 10 you have labeled then 11 and 12 you label

according to the 3s2. Now these two rows you cannot label anymore as 11 and 12.

Because the label number 11 corresponds to the 3s up, so this will be your 13 and 14 okay.
What is happening in this later determinant is that 11 and 12 are empty and 13 and 14 are
occupied okay. The first 10 are the same but what was 11 and 12 in the previous
configuration is now vacant and you have an occupancy of 2 in 3p so in other words these

different Slater determinants which correspond to different configurations.

You can refer to them in terms of occupation numbers of single particle states. What is the
occupation number of state number 1? What is occupation number of state number 2? What is
the occupation number of state number 11? What is occupation number of state number 13?
What is the occupation number of state number 20?7 Because you have got an infinite set of

Slater determinant right.

So, you can write all of this in terms of these occupation numbers. Now that is the formalism

which corresponds to the occupation number space and this is where we use second



quantization methods. Which is what we are going to discuss yes and Amkur you have a
question (Question time: 40:33) how many rows and how column you have this, you will

always have 12 by 12 because you are describing a 12 electron system.

Then how can you say that the 11th and 12th row I mean not there we are using the , the 11th
label is empty, the 11th label is empty, 11th row is occupied by what would be the 13th label.
The 12th row will be occupied by what is the 14th label. (Question time: 41:11) here it is; you
will always have each determinant for an N electron system will be an N by n determinant

okay.

So it has to have 12 rows and 12 columns but which 12 rows that set is what we are talking
about. And in this set the labels each label corresponds to a particular one electron state. And
the last two labels in this are different from the last two of the previous. So, if you look at this
you have got the 3p half is the last one. In the previous one you add this is you had the 3s

okay. So, the 12th row was occupied by the 3s quantum numbers.

But now the 12th row is occupied by 3p one-half okay. So, you have 12 rows and 12 columns
but which 12 rows is different in different Slater determinant. (Question time: 42:23)Previous
case we are denoting by these two position is by qllth and ql2th yeah and in this case

whether we should use some q13, q14.

No, no you are talking about two electrons you are talking about 12 electrons what is the
probability amplitude that a particular electron at coordinate qi is in the state alpha. So, here
this is the probability amplitude that the electron at gl is in this state okay. This probability
amplitude is different from the probability amplitude that the electron at ql is in the 3s state
okay.

So, you have got 12 electrons they are where they are in the spin orbital space okay. But the
probability amplitude that they are in different quantum state single particle quantum states is
different. Which is why the rows are different okay, the coordinates of course will be from q1
to g2 all their only 12 electrons. (Question time: 43:40-not audible) 1 and 3p half and 1, It is

certainly possible.

So, you have the levels 11 and 13th; you could have you can have that as a possible
configuration. So, you will have infinite configurations of course there are some other
constraints because the total angular momentum must be the same and so on. So, those are
the details that we can talk about. But basically you will have many different kinds of

possibilities. You can have two electrons going from first configuration to the other.



You can have one going from one state, the second going to a different state okay. So, here
you have what we have done is we have elevated 3s2 to 3p2. You can elevate 3s2 to 3p2, you
can elevate 3s2 1 going to nl and the other going to n prime 1 prime okay. So, there are all

kinds of possibilities okay. And that is what makes many-body theory very challenging okay.
And all this 1s happening because of the electron correlations.
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So, there are these possibilities and the configuration interaction wave function is now a
linear superposition of all these Slater determinant. And depending on how many
configurations need to be considered in this. This n can be either a small number like 2 or 3
or 4 or it can be quite large and people do calculations with hundreds sometimes even with

thousands of configurations.

Now it is a mass because each determinant has got factorial 12 terms okay. We already felt
like quiting when we were dealing with a single determinant. When we thought about a
number like factorial 10 just for the neon atom which is a small atom right now you have
factorial n terms and so many of them. So, there is a good way of handling this which is what

makes use of the occupation number formalism.

This is where the second quantization methods come into the picture. So, the occupation
number formalism is sometimes called as the second quantization why second because the
first quantization was doing away with classical dynamical variables q and p position and
momentum which were simultaneously measurable accurately in classical mechanics.

Recognizing the fact that such a simultaneous accurate measurement is not possible.



And therefore replacing them by operators that was your quantization okay. Now what we are
going to do is that the wave functions that you are talking about will also be treated as
operators. In the first quantization methods the wave functions Psi was like a scalar function
it was not treated like an operator. Now in the second quantization method, so it is a

technique okay.

And because it is quantization of the scalar field it is sometimes also called as field
quantization. But these are different expressions to talk about the same technique. The
technique is essentially that of occupation number formalism also called a second

quantization or field quantization, field theory.
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And all of these are related terms depending on different context they do have different
emphases contained in these alternate expressions. And they are inspired by the fact in the
context of the fermions that each Slater determinant is decided by a particular configuration
which means that which single particle states are occupied. In the first configuration other

than the first ten these two are occupied are these two are empty.

But in this case the 3s are empty and the 3p are occupied right. So the occupation numbers
are different and you can talk about going from one to the other by destroying two electrons
in the first and creating two electrons in the other. So, you can begin to make use of operators

which are called as creation and destruction.

Operators of creation and annihilation operators and the second quantization methods make

use of these operators. And that is the formalism that we are going to learn in this unit.
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So, you are Slater determinant in the first configuration was made up of these states 1 and 2,
3 and 4 okay. Then you had the 2p 1 half you had the 2p 3 half and then you had two
electrons in the 3s state. So, these are the 12 single particle states when you talk about the
second configuration the 11th and 12th those two states, electrons in those two states are

effectively destroyed.
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And you create 2 n3p 1 half okay. So, in the second configuration you have instead of the 11
and 12 you have 13 and 14 that is what I was referring to okay. And you can refer to these in
terms of single particle operator’s creation and destruction operators and these are the ones
which are used to describe the N particle system. Essentially you are describing them in terms

of'a complete set of compatible observables okay.

Our Eigen values of complete set of commuting operators from Dirac’s CSCO and you have
N number of identical particles. So, the individuality of the particle that idea is carried over
but so is the indistinguishability okay. So, is the statistics and so are now also the many body
correlations. So, you use the single particle labels okay even in the presence of not just

interactions.

But also in the presence of correlations and I have made a very clear distinction between the
term interaction and correlation. So, correlation has got a specific connotation in the context
in which we are discussing this. So, you describe a particular Slater determinant a particular
configuration by spelling out how many particles are there Slater alpha one. Each alpha is a

set of four quantum numbers.

How many particles are there in state alpha 2, now this number is either one or zero for Fermi
particles. When it can be anything for Bose particles because there is no Pauli Exclusion
Principle for bosons right, you can put any number of particles in a one Bose state as a matter

of fact you can put all of them and get Bose Einstein condensation right.

So, there is no such restriction in that but the basic property of any configuration is of any

many electron system is how many particles reside in these single particle states okay. And



that number is the occupation number of that state. And this will give you one configuration

but then of course the system wave function will contain many other configurations.

And you will have a linear superposition of such states. So, this is the idea behind
indistinguishability, you take into account the correlations you recognize the elementary

nature of these particles okay although they are indistinguishable.
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So you reconcile with that and essentially you can get these numbers as Eigen values of the
occupation number operators which are a complete set of commuting hermitian operators. So,
you define these occupation number operators and of course the description will be different
in terms for Bose particles and for Fermi particles because if you have created a particle in

one vacuum state and if that particle is a Fermi on you cannot create any more in that state.

But if it is the Bose particle the creation operator can operate twice or ten times or have a
Bose Einstein condensation and pump everything into that okay. So, the properties the
commutation properties of the creation and destruction operators for Fermi and Bose particles

will be different. So the statistics will now be incorporated in the operators.
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So, you have some sort of an arrangement this alphal, alpha2, alpha3 and is some
predetermined sequence you decide what is in the your state number 11, you decide what is
your state number 12, decide what is your state number 13, 14. And then you say that state

number 11 and 12 is occupied in this and 13 and 14 is vacant.

And in the next configuration 11 and 12 are vacant and 13 and 14 but these numbers have to
be pre assigned. So, you have some sort of a predetermined sequence and in this sequence
you give the occupation numbers and then you have a vacuum state in which all of these
particles, all of these states are vacant. You can have a single particle state in which there is

only one particle in the state i.

So in the ith state ni = 1 and whenever j is not equal to i, this occupation number of only for
the ith state the occupation number is equal to 1 whenever j is not equal to i the occupation
number is 0. So, this is how you would describe a single particle state and depending on the

number of particles you can write different occupation number states.

So, I will conclude my discussion today would be happy to take a few questions and we will

go from here in the next class.
(Refer Slide Time: 54:31)



Primary References for HF SCF method

» |ntermediate quantum mechanics
Hans A. Bethe and Roman W. Jackiw (aadison-westey, 1997)
* Physics of atoms and molecules
B. H. Bransden and C. J. Joachain (Prentice Hall, 2003)
= P. C. Deshmukh, Alak Banik and Dilip Angom
Hartree-Fock Self-Consistent Field Method for Many—EJ‘ecrron Systems

Invited article in DST-SERC-School publication (Narosa, Novembes PLm. llectic
course given at the DST-SERC School at the Birla Institute of Technolog,
hittp:iiwww. physics.iitm.ac.ini~labsiamp/homepage/DST_SERC _Sc r-u.n Publici aﬂuuyFrD mu SCF.pdf

‘VldeoLectures http://nptel.iitm. ac.in/courses/115106057/20 to..../124 |

Primary References for Z”d Quantlzanon and
Occupation Number formalism..

» A L. Fetterand J.D.Walecka - Quantum Theorv “.f U’
< Many-particle Systems cGraw Hil, 1971) e

pcd@ cs ||lm ac.in

* S.Raimes Many Electron Theory (North-Holland, 1972) 30

man-Goldstane diagams  ~

In the meantime there are some references which I would like to draw your attention to for
Hartree Fock we have already given this reference in the previous course which is either
Bethe and Jackiw or Bransden and Joachain these are the primary sources. And for second
quantization and occupation number formalism I will primarily use Fetter and Walecka book

or the book by Raimes called many-electron theory.

Questions(Question time: 54:55 — not audible)Given that magnesium two electron system the
alpha’s will be, the set of alpha you are referring to each configuration will be having 12 once
and all other are zero’s, so each of that kind of sets of configuration; yes, yes exactly. So out

of the infinite numbers 12 will be occupied all the others will be 0.

But which 12 is going to be different for each configuration, a particular choice of 12 defines
one Slater determinant okay. So there is one to one correspondence between a configuration
at a Slater determinant and an occupation number state vector. So, these are state vectors in

what is called as the occupation number space sometimes also called as a Fock’s space.

(Question time: 55:48-not audible) where we are Raimes angulations right, so in our next
class we will get into these second quantization operators the creation and destruction

operators and the number operator and so on okay, all right. Thank you.



