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In today’s lecture I will essentially be talking about the basic postulates of quantum 

mechanics.  
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Postulates are a set of hypothesis. And then there is a theory, which is essentially these 

postulates together with the mathematical framework, which makes predictions, which 

are supposed to be experimentally verifiable. The theory is not meant to explain the 

postulates, but given the postulates and the mathematical framework you make 

theoretical predictions based on these postulates, and compare with experiments, the 

consequences of these predictions. Now, if the experimental results agree with the 

theoretical predictions, in a sense it is an indirect test of the postulates. So, quantum 

mechanics too works on a set of basic postulates. 

Several of these postulates have been already told to you by way of examples. The two 

dimensional linear vector space illustrates these postulates quite well as I will explain to 

you right away. So, the first postulate it says that every physically observable quantity is 

represented by a Hermitian operator. If you wish to give matrix representations to 



operators this would be a Hermitian matrix. The experimentally measured values of the 

observable can only be the Eigen values of the operator corresponding to that observable.  

(Refer Slide Time: 04:07)  

 

So, for instance in the familiar example of the two level atom the Hermitian operators 

that we thought up were S squared, and S z. So, too with the three level atom. These are 

Hermitian operators and we had matrix representation for these operators. In the case of 

the two level atom there were two by two Hermitian matrices or in the case of the three 

level atom there were three by three Hermitian matrices, so spin and the third component 

of spin if you thought about it in terms of the spin doublet which could be the electron or 

the proton or the neutron. In the case of the two and three level atomic systems it would 

be just S square and S z which satisfied the algebra S square is equal to S x square plus S 

y square plus S z square and S z satisfied along with S x and the S y.  

The Lie algebra, the experimentally measured values of these observables can only be 

the Eigen values of the operators corresponding to the observables. And Hermitian 

operators are selected because Hermitian matrices have real Eigen values, and all 

measurable quantities will have to be real quantities. So, right away it is good to see why 

Hermitian matrices have real Eigen values. A Hermitian matrix has this property that H 

is equal to H dagger, dagger would just mean interchange rows and columns and take the 

complex conjugate of every element in the matrix. 



I give you an Eigen value equation, H psi is equal to a psi where a is the Eigen value and 

psi is the corresponding Eigen vector. Clearly in the Dirac notation, if I take the dagger 

the ket would become the bra and the number would simply be replaced by its complex 

conjugate, but H dagger is equal to H. So now, I could well find psi H psi h psi is a state 

because H is an operator that acted on psi to produce a new state H psi, and we are trying 

to find the inner product of psi with H psi. This quantity clearly from this equation is psi 

a psi, but a is a number and can be pulled out.  

So, you have the first equation psi H psi is a, inner product of psi with itself, that is the 

first equation. Well, you could have done that with this. You could have started with psi 

H and you could have had a psi on this side that would have given me an a star psi psi 

and this is my second equation. But since both quantities are the same a must be equal to 

a star. In other words, the Eigen value of the Hermitian matrix is real and that is true for 

all Eigen values.  

So, the set of Eigen values of Hermitian matrices are real and therefore, the 

experimentally measured values of the observable can only be the Eigen values of the 

Hermitian operator corresponding to that observable. We also assume that the Hermitian 

operator is a bounded operator. A concept of a bounded operator really needs 

explanation only when we deal with infinite dimensional spaces. And since, up to now I 

have only spoken about finite dimensional vector spaces. All finite dimensional vector 

spaces have this property that the operators are anyway bounded operators. 

The concept of boundedness of an operator is intimately linked with the concept of 

continuity and both of them are best explained in the framework of infinite dimensional 

linear vector spaces, which I will do in a subsequent lecture. So, for the moment these 

examples the two and the three level atomic systems really have only bounded operators 

as relevant operators, having said that in general, there is no need to imagine that all the 

Eigen values of the Hermitian matrix should be a continuous set. In general there could 

be discrete Eigen values and that is precisely why the observable could be quantized with 

discrete values, in contrast to a classical system where the measurement outcome could 

take a continuous set of values. Here, for instance in the familiar example of the two and 

three level atom equivalently the spin doublet. 
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This was certainly true that S square acting on psi was S into s plus 1 h cross square psi, 

and S z on psi was m h cross psi. In the case of the two level atom s was half and m 

could take values minus half or plus half, and therefore, I defined for you in a previous 

lecture two basis states labelled by the s and m values and the states were half half and 

half minus half. It was on the basis of this, you will recall that in passing I mentioned 

Fermions and Bosons. Fermions have half integer spin that means s can take values half, 

three half and so on and Bosons have integer spin, which means s can take values 0 1 2 3 

and so on. While Hermitian operators are certainly the only operators, that can be used to 

represent physically measurable objects. It is also true that other operators have their 

own importance in quantum mechanics.  



(Refer Slide Time: 11:54)  

 

For instance, we have already seen the operators S plus and S minus. We have seen 

unitary operators an example would be e to the i theta S z, which I spoke about in the last 

lecture. This is unitary because that is Hermitian and this is exponential i times a 

Hermitian operator. Talking of Eigen values it is good to digress at this point and see in 

general what kind of Eigen values a unitary operator can have. So, if u is a unitary 

operator this is an example: and if this is the Eigen value equation. Correspondingly I 

can take the dagger and get this equation. A unitary operator satisfies this and therefore, I 

can find the inner product of this bra with this ket. This is a ket and that is the bra vector 

corresponding to that ket vector. But this object is simply mod a square psi psi because u 

dagger u is identity, and if initially psi has been normalised to unity it is clear that mod a 

square is equal to 1.  
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So the Eigen values of a unitary operator are complex numbers, whose modulus is unity. 

We also have non Hermitian operators in quantum mechanics which do important jobs. 

As for instance, S plus and S minus they were the raising and lowering operators. S 

minus was a lowering operator in the context of the atomic system, because S plus on the 

ground state of the atom took it to the excited state and S minus on the excited state of 

the atom gave us the ground state. 

We can easily find out the physical significance of the coefficients here. If you go back 

to the two level atom problem you will see that S plus was defined as h cross e g. Let us 

recall that these were the two levels and S plus acting on g gave me 1 h cross e and S 

minus acting on e gave me 1 h cross g, S minus being the dagger of S plus.  



(Refer Slide Time: 15:24)  

 

Now in general, because S plus is the raising operator it acts on the state given by labels 

s comma m takes it to the state s comma m plus 1 with the coefficient, which is s minus 

m times s plus m plus 1 h cross. Now, this is a general relation and we will derive this in 

greater detail later. And therefore, S plus in the case of the spin doublet or the two level 

atom would act on the state half minus half and give us 1 h cross as the coefficient, and 

take it to the state half half. 

Now similarly, S minus acts on a state given by the labels s comma m, takes it to the 

state s m minus 1 with the coefficient, which is root of s plus m times s minus m plus 1. 

And therefore, in our example S minus acting on the state half half will take it to this 

coefficient which really turns out to be 1 h cross times s comma m minus 1, which is half 

minus half. This is true even for the three level atom and this is a general expression 

which can be derived from the angular momentum algebra, so much for the first 

postulate. The second postulate is the following. 
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So there is postulate 2. And this postulate says with every physical system there is 

associated an abstract Hilbert space. Vectors in this space represent states of the system, 

while I have not introduced the concept of a Hilbert space. A Hilbert space is a linear 

vector space on which an inner product has been defined and which also has a concept of 

completeness. Again, completeness is best described and understood in the context of 

infinite dimensional spaces becomes non trivial there. 

But as far as the finite dimensional linear vector spaces are concerned, the completeness 

relation has already been spelt out by me, and completeness is a concept that needs to be 

understood mainly in the case of infinite dimensional spaces, which I will do 

subsequently. The spin system that you have seen is certainly the concept of 

completeness is pretty much there already, so much for the Hilbert space. In general any 

state of the system would be a vector in this space and a general vector can be written in 

terms of the basis vectors as superpositions of the basis vectors.  

So, already there is the concept of basis vectors, I have this space it is spanned by the 

basis vectors. So, if it is an n dimensional space there are n basis vectors, by definition 

these are linearly independent vectors and every vector in the space can be expanded as 

the superposition of these basis vectors. Now, it is very convenient to choose an 

orthonormal basis, where the basis vectors are mutually orthogonal and normalised to 

unity. 
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The orthonormalization as I indicated in my last lecture is done through a procedure 

called the Gram-Schmidt orthonormalization procedure. And before we proceed it is 

good to understand this procedure. So, suppose I have a basis set let me call it phi i, i is 

equal to 1 to n because it is an n dimensional space. Let me start with the first of these 

basis states I can always normalise the state to 1 so, you consider phi 1 phi one. Suppose 

it is not equal to 1 I can always define the ket phi 1 prime, which is phi 1 by phi 1 phi 1 

square root, because then phi 1 prime phi 1 prime is phi 1 phi 1 by phi 1 phi 1, which is 

equal to one. So, I have normalised one of the basis vectors to unity.  

(Refer Slide Time: 22:35)  

 



So now let me look at this second vector in this set. The second vector is phi 2 and I am 

given that phi 1 prime phi 1 prime is equal to 1. I need to construct from phi 2 a vector 

which is orthogonal to phi 1. In general, I expand phi 2 as a phi 1 prime plus some other 

ket chi. I require that phi 1 prime is orthogonal to phi 2. So, clearly from the first term I 

get this and from the second term I get this.  

So, this should be equal to 0. But, this is 1 because I have already normalised phi 1 prime 

and therefore, a is equal to the inner product phi 1 prime chi. In other words, phi 2 should 

be selected to be minus phi 1 prime chi this inner product which is in general a complex 

number phi 1 prime plus chi. Now we need to normalise phi 2 to unity, and for that as 

before i will divide phi 2 given in this fashion by the square root of the inner product of 

phi 2 with itself. And therefore, phi 2 prime phi 2 prime inner product is 1.  
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So, I have normalised the new vector which is phi 2 prime. I therefore, have two vectors 

in the space which are normalised to 1 and which are orthogonal to each other, namely 

phi 1 prime and phi 2 prime. I have to repeat this procedure with the 3rd vector phi 3, 

which I expand as b 1 phi 1 prime plus b 2 phi 2 prime plus some vector lambda. My 

requirements are the following; that phi 1 prime phi 3 is equal to 0 and phi 2 prime phi 3 

is also equal to 0. It is evident, that if I first work with phi 1 prime phi 3 that just gives 

me b 1 plus phi 1 prime lambda, because I have already shown that this inner product is 



0, which tells me that b 1 should be equal to the inner product phi 1 prime lambda with a 

negative sign.  
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Similarly, the fact that phi 2 prime phi 3 is equal to 0 implies from here, that b 2 plus phi 

2 prime lambda is equal to 0 or b 2 is equal to minus phi 2 prime lambda. Again I have 

used the fact that the inner product of phi 1 prime with phi 2 prime is equal to 0. 

Therefore, I expand phi 3 as minus phi 1 prime lambda. Phi 1 prime this is a ket and this 

is a number minus phi 2 prime lambda phi 2 prime plus lambda. In this manner I can 

proceed and get an orthonormal basis of n basis vectors. By definition they are linearly 

independent and now they are also mutually orthogonal, and each vector is normalised to 

1, so much for the Gram-Schmidt procedure.  

The second postulate clearly said that every vector in the Hilbert space represents a state 

of the system. So, a general vector in the Hilbert space which I will call psi can be 

expanded as a superposition of the phi’s or the phi primes now in this context, because 

these are the orthonormal basis I can without loss of generality remove the prime, and 

say that I have a set of n mutually orthogonal vectors phi k, which are the basis set and 

any vector in that space can be expanded in terms of this basis set. This is the expansion 

postulate; this is quantum superposition because I can superpose basis states to produce 

all vectors in that state. 



Now the question is the following: I have operators given by my first postulate which act 

on states what kind of basis states can I select? I have already demonstrated in the 

context of the two and three level atoms that you could choose different basis states and 

these are unitarily related to each other. They are related by a unitary transformation i 

have also demonstrated that the Lie algebra is preserved under such a unitary 

transformation. Suppose I were making a measurement of some physical observable. Let 

us take the familiar example of S square and if it acts on any state in that space, quantum 

mechanics tells us that the state will collapse to one of the basis states or Eigen states of 

S square in this case with the corresponding Eigen value. Because the measurement 

outcome is simply going to be one of the Eigen values of S square. 

And therefore, the basis state in this context would be simply the Eigen states of the 

observable S square and the measurement of an arbitrary state will lead post 

measurement to one of the Eigen states of S square. With the measurement outcome 

which is the Eigen value, I could well make a measurement of S z as well. Now if I did 

that, again the system will collapse to one of the Eigen states of S z with the 

corresponding Eigen value. But the physical state of the system is the same. And 

therefore, the Eigen state that I have finally, a post measurement of S square and S z 

must be a common Eigen state of S square and S z. In other words, what happens to the 

system after measurement is this the system collapses to a state which is a common 

Eigen state of the various observables that are measured simultaneously giving 

corresponding Eigen values as the measurement output. 
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In this context, one needs to understand that, if two operators commute with each other, 

you can find a complete set of common Eigen states. First of all one needs to understand 

what one means by a complete set of Eigen vectors of each operator. As I said a bounded 

Hermitian operator has a complete set of Eigen vectors.  
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Now, to digress a little bit if you take a Hermitian operator we can show that Eigen 

vectors of a Hermitian operator or a Hermitian matrix of a Hermitian matrix, 

corresponding to distinctly different Eigen values are mutually orthogonal. So, the 



bounded Hermitian operator has a complete set of Eigen vectors and if these Eigen 

vectors correspond to distinctly different Eigen values, they are mutually orthogonal. 

This can be seen very simply because if I have a Hermitian matrix and suppose this is the 

first Eigen value equation where a 1 is the Eigen value and psi 1 is the Eigen vector. And 

I also have another Eigen vector satisfying this Eigen value equation and the Eigen 

values are different from each other.  
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Then clearly I can do the following thing. I can find out psi 2 h psi 1. Now it is clear, that 

if this equation holds h dagger is the same as h is a 2 star psi 2. So, if i find out psi 2 h psi 

1 that will be psi 2, but from my first equation h psi 1 is a 1 psi 1 and a 1 is a number. 

But, I could have used the second equation and that just gives me a 2 star. I know already 

I have proved that Hermitian matrices have real Eigen values. So i can drop this star and 

a 1 is not equal to a 2; implies if this has to be true psi 2 is orthogonal to psi 1. (Refer 

Slide Time: 32:22) So that is how you prove that Eigen vector is of a Hermitian matrix 

corresponding to different Eigen values are mutually orthogonal.  
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So, now the next part is to show that if I have two such Hermitian operators. Let us say S 

square and S z and they commute with each other. Then I should be able to find a 

complete set of common Eigen vectors. This is an example: In general if A B is equal to 

B A that is A and B commute with each other, and if psi is an Eigen vector of A with 

Eigen value a, B A psi is equal to A B psi. But I know that A psi pulls out an Eigen value 

a so this object is simply a b psi. And therefore, the state B psi is an Eigen state of A the 

operator A with Eigen value a. Now two cases arise, A could be non degenerate. In other 

words there is not more than one Eigen vector corresponding to the Eigen value A, if at 

all there is one more that is linearly dependent on the other Eigen vector. So, i consider 

that case that is an easy case to consider.  



(Refer Slide Time: 37:13)  

 

So, if the Eigen value is non degenerate it is clear that the new vector B psi is linearly 

dependent on the vector psi. So a constant C 1 B psi plus C 2 psi is equal to 0, if there is 

linear dependence C 1 and C 2 not equal to 0 therefore, B psi can be written as minus C 2 

by C 1 psi. And his is just a number, which I will call b. And therefore, psi is also an 

Eigen state ket psi is an Eigen state of the operator B with Eigen value b. And therefore, 

I have found a common Eigen state ket psi for the two operators A and B which 

commute with each other. Now, in the even that there is a degeneracy you have to work a 

little bit more. Consider linear combinations of the degenerate Eigen vectors and show 

once more that there is a complete set of common Eigen vectors for the two operators 

that commute.  
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Taking the example that we are familiar with, S square commutes with S z and we know 

that they have common Eigen vectors S square e and S z e is an Eigen value equation. 

And this is simply going to be half into half plus 1 h cross square and this is just going to 

be half h cross. Similarly, S square on the ground state gives me half into half plus 1 h 

cross square g and S z g is minus half h cross g. S square and S z commute with each 

other. So this state collapses to a common Eigen state of these observables. The state 

itself is a very interesting concept in quantum physics. Because, in classical physics if 

you look at phase space you simply need to know the value of the generalised coordinate 

I call it x, and the generalised momentum p corresponding to x.  

At any instant of time to completely know the state of the system, then there is the 

equation of motion. The equation of motion will tell you how exactly you could find the 

values of x and p at a later time. This state is completely determined. But here the state 

of the system is described by this ket in an abstract Hilbert space. In order to find out 

what is this state of the system, we need to first of all know what are the objects that we 

are measuring. In this context, we need to know that we are looking out for Eigen values 

of S square and S z. So, the dynamical variable becomes important and then one talks 

about what is the state of the system post measurement.  
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The 3rd postulate is a very important and interesting postulate about measurement itself, 

and this has to do with Eigen values and expectation values of operators. So, the 

postulate basically tells us this. So, this is postulate 3. It is clear what the Eigen values 

are we have already spoken about the Eigen values being the measurement outcomes. 

But since every state in the linear vector space or the Hilbert space is a possible state of 

the physical system, I could in general have a state psi which is a superposition of the 

basis states in an n dimensional linear vector space, and it need not be an Eigen state of 

the operator a. 

This is the physical observable I am interested in measuring and this is the operator 

corresponding to that physical observable. In that case one does not have an Eigen value 

equation, but one talks of the average or expectation value of A in the state psi. This 

should be suitably normalised because psi itself may not be normalised to unity and this 

has a short hand notation, A is identical to this. So, wherever the state is not an Eigen 

state of A, it is a different matter that it will collapse through the Eigen state after 

measurement. The value of the physical observable that I intend to measure is given by 

this expectation value or the average value and that is a symbol which denotes it. The 

denominator has been put in because the state need not in general be normalised to one, 

if it is normalised to one this of course, becomes one and the numerator will ((Refer 

Time: 43:10))  
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So, let us look at this expectation value in the context of the general state psi. So I have 

A psi is summation over k, C k A acting on phi k where phi k are the basis states 

corresponding to A. It should be read off like this. There are a set of states phi 1 phi 2 up 

to phi n. So, I have A phi 1 is a 1 phi 1 A phi 2 is equal to a 2 phi 2 and so on all the way 

to k is equal to 1 2 3 4 to n. So, in general if i take any one of these the Eigen value is 

this and since this is merely a number, and A acts linearly it just acts on every term in 

this expansion and therefore, I have this. But this object is clearly given in the following 

manner. 
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A on ket psi is summation over k C k and from these Eigen value equations it is clear 

that this is what I have. Now you see I need to find psi A psi that is the numerator. This 

object is simply equal to summation over l C l star phi l. The ket has become a bra vector 

these are numbers these are coefficients, so when I take the bra each coefficient becomes 

is replaced by its complex conjugate, and since I do not want to confuse indices I have 

used l here instead of k. And therefore, I sum over l here and I sum over k there. I need 

to use the fact that this is in an orthonormal basis. I can write the orthonormality 

condition as phi l phi k inner product is delta l k where delta l k is a Kronecker delta it 

means that when l is equal to k is equal to 1 say the answer is 1. Similarly, when l is 

equal to 2 the answer is one and so on, but if l and k are different the answer is 0. So this 

is what I have and these are numbers so I can well write it in the following manner. 
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I have psi A psi is summation over l and k that is a double summation c l star C k a k. 

The inner product phi l with phi k and that was a delta l k, which means you can get rid 

of one of the summations and I have C k star C k a k. I can well write this as modulus of 

C k square a k therefore, the expectation value of A is summation over k mod C k square 

a k by this.  
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This object is easy to determine in the event that psi is not normalised to unity. And since 

psi is expandable in terms of the basis vectors in that fashion, I can find out the inner 

product psi psi. Use the fact that there is a delta l k out here, remove one of the 

summations is a number, and therefore I just have summation over k modulus of C k 

square. 

(Refer Slide Time: 48:08)  

 

And therefore, the expectation value of a, it is a average value of A as a measurement 

outcome is simply given by summation over k modulus of C k square a k by summation 



over k modulus of C k square. Now, the event that psi is normalised to one it is clear that 

if this is 1 modulus C k square summation over k is 1. And then, it is clear that 

expectation value of a simply has the numerator because the denominator is one. This 

has to be properly interpreted.  

It means the following. Suppose, I conduct a number of trials to experimentally 

determine A and I find the average value of these trials the measurement outcome would 

be one of the Eigen values of a, which is a k could be a 1, could be a 2, could be a 3 so 

one of the Eigen values with probability modulus of C k square. And therefore, the Eigen 

value a 1 will occur with probability in fact with probability modulus of C 1 square by 

summation over k modulus of C k square, but I am assuming that psi is normalised to 1 

and then it makes it simpler to explain because a 1 will occur with probability mod c 1 

square, a 2 with probability mod c 2 square and so on.  

So, the measurement outcome really occurs with a certain probability. Each of these 

outcomes is possible with a certain probability and therefore, this is a weighted average 

that we have here. This is the sum and substance of the 3rd postulate which tells us about 

expectation values as oppose to Eigen values and measurement outcomes. I will continue 

to describe this and go on to the other postulates in my next lecture. 


