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We have already discussed, l 2 the space of square summable sequences. So, I have a 

sequence x sub i, which satisfies i is equal to 1 to n, mod x i squared is finite. So, this is 



the square summable sequence and becomes relevant in the context of quantum 

mechanics, in fact we have been looking only at l 2 most of the time, without saying so. 

Because, when I expand a state psi, in terms of a basis set phi n. This n is not to be 

confused with that n. With coefficient C p and given that this is an orthonormal basis and 

that psi is normalized to 1.  

It implies, that summation over p, mod C p square is 1 and therefore, certainly less than 

infinity. So, the probability amplitudes C p, when expanded in this manner happen to 

satisfy the requirements of a square summable sequence and therefore, little l 2 becomes 

very important in the context of understanding the framework of quantum mechanics.  
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I also mentioned, another space. Which was the space of square integrable functions, 

defined in the region a b. These would be functions of a real variable x and if they are 

square integrable functions psi of x. They would satisfy psi star of x, psi of x, d x is 

finite. And a and b could well b minus infinity and infinity respectively. So, this is kind 

of direct extrapolation of a square summable sequence. These are squared integrable 

functions of x. So, today I will talk about certain aspects of square integrable functions of 

x, in other words we will be discussing, the space L 2, of a,b.  
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So, square integrable functions. The linear vector space, is L 2 of a, b. So, this is what we 

will talk about today. L 2 of a, b is an example of a separable Hilbert space. So, that 

means that the space L 2 of a, b has a denumerable infinity, or a countable infinity, of 

basis states and this could be an orthonormal basis. You can always make it an 

orthonormal basis. Since, it is the space of functions, clearly the basis states are functions 

of x and any state any arbitrary state, in this linear vector space can be expanded in terms 

of these basis functions. So, since a and b can take various values, I would like to give 

certain examples of L 2 of a, b right away.  
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So, let us look at L 2 0, 1. Now in this space we can easily check, that the basis states, the 

basis vectors, are 1 root 2 cos 2 pi k x and root 2 sin 2 pi k x. The k itself takes values 1 2 

3 and so one. So, I have a denumerable infinity of basis states, that is an infinity and that 

is another infinity because k takes various values. This is an orthonormal basis, I have 

taken care to normalize these basis states to 1, by putting that root 2 there and how do I 

see that they are orthogonal to each other? Suppose, we did integral 0 to 1 d x. Let us 

consider those 2 basis states root 2 cos 2 pi k x. It is trivial to check that, that is 0. 

Similarly, if I took these 2 basis states 1 and root 2 sin 2 pi k x. That is 0, root 2 cos 2 pi 

k x, for any k an integer k, positive integer k, that is also 0. So, they are orthogonal to 

each other.  
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They can be normalized to 1, indeed they are normalized to 1. Because, clearly 0 to 1, of 

1 times 1 d x is 1, 0 to 1, root 2 cos 2 pi k x, for a given k and so on. The root 2 is 

important because, it is needed to normalize this to 1. So, this is a denumerable infinity 

of basis states, in the linear vector space, L 2 of 0, 1. So, that is my 1st example and all 

functions in this space, (Refer Slide Time: 04:30) can be expanded in terms of these basis 

states.  
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Let us look at the next example. Let us consider the space, L 2 of minus 1, 1. I did 

mentioned this, in an earlier lecture. The basis states could well be the Legendre 

polynomials, because minus 1 to 1 rings a bell. You could choose x to be cos theta, 

because, cos theta goes from minus 1 to 1. The Legendre polynomials could be chosen as 

the basis states. So, these are P n of cos theta.  

So, my x is cos theta and they are certainly orthogonal to each other, in terms of the 

Dirac ket notation. The orthogonality property would be this, normalized to 1 and 

orthogonal. Let us just look at the fact, that if n is not equal to m, that is 0, there is no 

overlap. So, this would simply be P n of x, P m of x, d x integral over the range minus 1 

to 1, is 2 by 2 n plus 1, delta m n. And I mentioned earlier, that we could write the 

completeness relation in this context analogously. 
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Summation over n, L sub n, P n of x, P n of x prime, is delta of x minus x prime and L 

sub n is 2 n plus 1 over 2. So, it forms a complete orthonormal basis. You can expand 

functions in this space, as linear combination of the Legendre polynomials. This is, 

already well known to students who have studied electrostatics. Take the example, of 

trying to find out the potential, far away from an static charge distribution. An arbitrary 

charge distribution, (Refer Slide Time: 07:02) this is a digression we recall what we 

learned from electrostatics. So, you have an arbitrary charge distribution, this is the 

origin and it is a uniform volume charge density row.  

And let me take a small element here d v which is at a distance, r prime from the origin 

of coordinates. Now, I want to find out the potential at some point p, which is pretty far 

away from this arbitrary charge distribution. Let us say at a distance r from it. This 

distance itself is r; this is r prime, the distance from the origin to d v, which is an 

elementary charge distribution, an elementary volume of charges. The distance from d v 

to p, which is where I want to find the potential is r and p is assumed to be very far away 

from this distribution.  

So, that to first approximation, the arbitrary charge distribution looks like a spherical 

object and of course, from the origin of coordinates to p the distance is r. So, it is clear 

that the potential at the point p, is the simply the total charge. Of course, there is a four pi 

epsilon 0 r. Now I do a multi pole expansion, in the sense I expand, this 1 by r, in terms 



of r and r prime. Now if I did that, it is clear that r squared, is r squared plus r prime 

squared minus 2 r, r prime cos theta, where theta is this angle that is theta this angle. 

Clearly I can simplify this better, when I do the following.  
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So, I have r squared, is r squared, plus r prime squared, minus 2 r, r prime cos theta. 

Pullout an r squared and write this as 1 plus r prime squared by r squared, minus 2 r 

prime by r cos theta. It is very clear that r prime is a very small distance, compared to r, 

(Refer Slide Time: 08:35) because p is pretty far away from the charge distribution and 

therefore, the expansion is done in powers of r prime by r. I could call this epsilon. Now 

this epsilon is a function of r prime by r and cos theta. So, I have r squared, is r squared 1 

plus epsilon and therefore, I need 1 by r. (Refer Slide Time: 08:35) That is what figures 

in the potential V of P. So, 1 by r is 1 by r, 1 plus epsilon to the minus half and then this 

expansion, is in powers of epsilon, alternating positive and negative and this is what I 

have. 
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Now, I could well go back and write out epsilon and substitute for 1 by r and I find that 1 

by r once I simplify this by purring in the value of the epsilon, putting in epsilon in terms 

of r prime by r and cos theta I find that 1 by r, (Refer Slide Time: 11:52) is this 1 by r and 

this series, is summation n equals 0 to infinity, r prime by r to the n, power of n, P n cos 

theta. So, already you see there is an example from electrostatics. Where the potential 

due to an arbitrary charged distribution pretty far away from the location of the charge 

distribution is expanded in this basis and the first term in the basis turns out to be the 

monopole contribution. The 2nd term is the dipole contribution, the 3rd term is the 

quadrupole contribution and so on.  

So, it is in this very same spirit, that in quantum mechanics. If you have a linear vector 

space L 2 of minus 1 1. (Refer Slide Time: 07:02) You could use P n of cos heat as the 

basis and functions of cos theta any arbitrary function of cos theta, can be expanded in 

terms of the P n cos theta. In fact it turns out the P n cos theta figures in quantum 

mechanics, in the study of orbital angular momentum. That is a situation, where one 

wants to study orbital angular momentum, obviously in physical space because, it is r 

cross p and that would mean using coordinates x y z or if you wish in spherical polar 

coordinates.  

The radial coordinate r, theta and phi and then if you write, the state of the system the 

Eigen state of orbital angular momentum, as a function of r theta and phi. The 

dependence on theta can be expanded, in terms of P n cos thetas. So, that is one place, in 

quantum mechanics where P n cos theta comes in and we will certainly look at the 



problem of orbital angular momentum in subsequent lecture. 
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The 3rd example, that I wish to consider, for the space of square integrable functions is L 

2, minus infinity infinity. I did mention this earlier. In this case one could use the 

Hermite polynomials. The Hermite polynomials as the basis functions, H n of x and their 

orthonormality property, involves a Gaussian measure, e to the minus x squared. H n of x 

H m of x, d x is sum A n delta m n. They form a complete basis, in L 2 minus infinity 

infinity. The H n’s figure in quantum mechanics, in the context of the simple Harmonic 

oscillator, a problem which has already been studied by us, in the abstract ket notation, 

where we had the energy Eigen states of the oscillator, represented by n and so on. 

You will recall, that these were Eigen states of the operator a dagger a. With Eigen value 

n and when n is 0, it represents the ground state of the oscillator, n is 1 it is a 1st excited 

state and so on. Equivalently, in quantum optics n is 0 would refer to the 0 photon state, n 

is 1 to the 1 photon state and so on. Now, if I represent this abstract ket, in function 

space. The relevant function space turns out to be L 2 of minus infinity infinity. And the 

various basis states in function space, which I would represent by psi n of x, where x is 

position, turns out to be essentially the Hermite polynomials. So, that is another example.  

Again we will study this example. We will redo the oscillator problem, in the 

Schrodinger formalism. Where basically the function space becomes important and we 

will study the properties, of the energy Eigen states of the oscillator, in terms of the 



behavior of the Hermite polynomials. 
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The last example that I want to point out today, is the space L 2 0, infinity of there. It is 

clear that the argument, in a physical context should be the modulus of a vector. And in 

this case we use the Laguerre polynomials as the basis states that is an example. You 

could use the Laguerre polynomials. L n of x and this appears in the context of the 

hydrogen atom problem for instance, where once more if the hydrogen atom is 

considered, in a 3 dimensional space.  

In spherical polar coordinates, this r obviously takes value 0 to infinity and the radial 

wave function, or the state of the system expressed in terms of the radial coordinates, can 

be expanded in terms of the Laguerre polynomials, which forms an orthonormal basis, in 

the space L 2 0, infinity. So, these are various examples. Where function spaces are very 

important in particular these square integrable functions, are very important in studying 

various quantum mechanics problems. I want to draw attention to a very important fact 

in this context.  
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Suppose, you look at the various, Legendre polynomials for instance, so, P 0 of cos theta, 

is 1, P 1 of cos theta, is cos theta itself, so let me call it x. So, P 0 of x is 1. P 1 of x is x. P 

2 of x is 3 x, squared minus 1 by 2 and so on. You would find, that these are odd 

functions of x, P 1, P 3, P 5 and so on. And P naught P 2, P 4 are even functions of x. 

Similarly, if you look at these are the Legendre polynomials.  
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Look at the Hermite polynomials. Hermite polynomials also, H 0 of x is 1. H 1 of x is 2 

x, H 2 of x is 4 x square minus 2. Once more H 0, H 2 are even functions of x and H 1, H 



3 etcetera are odd functions of x. Now if you look at the Laguerre polynomials, same 

thing. This is Hermite, L 0 is 1, L 1 of x is an odd function of x. So, there is an x and that 

just becomes, L 1of x, where x goes to minus x, it becomes 1 plus x. Let us forget this as 

far as x is concerned it is an odd function and L 2 of x, is x squared minus 4 x, plus 2, 

apart from a constant.  

So, that is a quadratic n x and so on. So, it alternates even function the highest power of 

x is odd in the case of L 1, L 3 and so on. And the lowest power and the highest power of 

x in the case of L naught L 2 and so on is an even function of x the highest power is 

even. Now this becomes very important because, if you look at the Hermite polynomials 

for instance here. So, if you look at one dimensional oscillator the simple harmonic 

oscillator, where I have mentioned that the Hermite polynomials become important. You 

find that, the wave function has a definite parity. 
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In other words, I define a parity operator, which basically takes x to minus x. That is a 

job of the parity operator. So, when the operator, if you wish I put a cap on it, acts on a 

function, in the space L 2 minus infinity infinity, which is the relevant linear vector 

space, for the simple harmonic oscillator. This takes it to psi of minus x. Of course, if the 

parity operator were to act in 3 dimensions, then it acts it takes x y z to minus x minus y 

minus z, equivalently takes r theta phi to r, theta goes to pi minus theta and phi goes to pi 

plus phi.  

So, any function psi of x y z, under the action of the parity operator, becomes psi of 

minus x minus y minus z and so on. So, you find that the H n’s which are essentially the 

energy Eigen states, or the Eigen basis, of the simple harmonic oscillator are definite 

parity states. So, from what I have said earlier one now suspects, that these states are 

simultaneous Eigen states of the parity operator and the Hamiltonian. And indeed that is 

what happens and I will comment on this later. So that the states ket n of the oscillator, 

which I spoke about earlier, when represented, as functions of x.  

Because there is only one argument here because, it is a one dimensional oscillator, turn 

out to have definite parity and they are also simultaneous Eigen states of energy and the 

parity operator. So, the parity operator and the Hamiltonian commute in the case of the 

simple harmonic oscillator, a matter which will be studied in much detail in a subsequent 

lecture. So, now as I have already indicated, most times by x we mean position. Not 

always true but quite often.  
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So the argument x, turns out to be relevant to position. And in the position representation, 

you have to define operator functions of x, which will act, on the state psi of x. Which 

itself is an arbitrary state, expanded in terms of the basis states that we have selected, 

could be the Laguerre polynomials, could be the Legendre polynomials, could be the 

Hermit polynomials depends on the space. The simplest operator function of x, that I can 

think of is x itself. There is no need to put the cap. So, in the position representation, the 

position operator, this is a very crucial point is x. I should use the same x. It has position 

Eigen states. The job of the operator is simply to pullout the position Eigen value.  

But, unlike the earlier examples we spoke about. Now we have moved to a more 

complicated situation, where x is a continuous real variable, which takes values in the 

range a to b and therefore, the position basis, or the Eigen basis of the position operator 

happens to be a continuous basis. Since, it is a continuous basis we cannot imagine that it 

can be represented as a column vector with discrete entries, nor can be imagined that the 

operator, the position operator can be represented by a matrix, which has got distinct 

rows and columns. In fact the rows become continuous the columns become continuous 

and that is why we call it an operator. Cannot do better than that, this is the position 

operator and in the position representation, the operator itself can be represented by x.  
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There are other linear operators, in this position space. An example would be d by d x. 

Clearly this is a linear operator, because if it acts on say C 1 psi 1 of x, plus C 2 psi 2 of 

x. Where psi 1 of x and psi 2 of x are functions in the space and C 1 and C 2 are 

constants. That is just d by d x psi 1 of x, plus C 2 d by d x psi 2 of x. So it is a linear 

operator and this operator becomes important, to begin with operators need not commute 

with each other. Because, if we look at x d by d x, acting on psi of x. Since they are 

linear operators first d by d x acts on psi of x and then x acts on psi of x.  

Now an important point to remember is that operators do not commute and so, if I found 

the action of x d by d x, on the functions psi of x. That is not the same as d by d x, x psi 

of x, because this is simply x d psi by d x whereas, this is psi of x, plus x d psi by d x. 

That bracket that makes a crucial difference and therefore, operators in general do not 

commute. But, this relation, that I have seen here, this example, tells me something.  
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We know that the position and momentum operators, do not commute and in one 

dimension x p is i h cross identity. And therefore, p can well be represented in the 

position representation, as minus i h cross, d by d x and I am doing one dimensions. 

There is only one variable x. So if we check now, x p acting on psi of x, is minus i h 

cross x d by d x, psi of x, p x acting on psi of x, is minus i by i h cross, psi of x, plus x d 

psi of x by d x. And therefore, the commutator of x with p, acting on an arbitrary state psi 

of x, gives me i h cross, psi of x or x p is equal to i h cross. So, in the position 

representation, the momentum operator has to be represented as an operator function of x 

and it is written as minus i h cross d by d x.  
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In 3 dimensions one deals with x y and z and therefore, the momentum operator, if you 

wish I will put a hat there, is minus i h cross e sub x d by d x, plus e sub y d by d y, plus e 

sub z d by d z, or minus i h cross dell. This is in three dimensions and this is the manner 

in which we represent the momentum operator, in the position basis in the position 

representation. Now similarly, I could think of working with states in the momentum 

space. What I mean is, I could think of the argument as momentum, I certainly know 

how to go from functions of position to functions of momentum through the Fourier 

transform, by which psi of x goes to psi tilde of p, which is a state in the momentum 

space.  

Obviously operators acting on psi tilde of p, should be functions of p and even as we 

represented the position operator by just x, in the position representation, the momentum 

operator acting on the momentum basis. Simply picks out the momentum Eigen value 

and this is a continuous basis again. You will recall, that p changes continuously, it is a 

continuous variable it is a real variable and the momentum operator, in the momentum 

representation could be well represented by p itself.  
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These are conjugate representations, in the sense that I can go from 1 basis, the position 

basis to the momentum basis, by a Fourier transform. So in the momentum 

representation, momentum itself is given by the label p. The momentum operator and I 

need to write the position operator, in terms of p, as an operator function of p. We can 

easily check that the position operator in a momentum basis is plus i h cross d by d p. Let 

us work out the commutator, x p acting on psi tilde of p, is expected to give i h cross psi 

tilde of p Because, it is like the identity operator acting on psi tilde of p, apart from i and 

h cross.  

So, we can check that out. So, where we are looking at functions of momentum as the 

states in the linear vector space. This amounts to writing i h cross d by d p, acting on p 

psi tilde of p and that has 2 terms, i h cross psi tilde of p, plus p i h cross, p d psi tilde of 

p by d p. This is as far as x p is concerned. Now, p x psi tilde of p, is i h cross p d psi 

tilde of p by d p and therefore, between the two of them, the commutation relation is 

satisfied. This term cancels with that leaving behind i h cross psi tilde of p. So, in the 

momentum representation, which is another important representation that means, I would 

like to expand the states and write the operators, as functions of momentum and the 

states are expanded in terms of the momentum basis functions, psi tilde of p for instance.  
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I find, that in the position representation, momentum is represented, by minus i h cross 

del. And this is in the position representation, where x itself is x and p is minus i h cross 

del. This is in the position representation. So, in 1 dimension p is simply minus i h cross 

d by d x and in the momentum representation, where my basis states are a continuous 

basis labeled by the momentum values p. These are Eigen states of the momentum 

operator, x is represented by plus i h cross, d by d p and p itself is simply the momentum 

value p. These are conjugate representations.  

We may choose to work in the position representation, or in the momentum 

representation, if necessary. When we talk about systems in space, like a hydrogen atom 

and its coordinates, (Refer Slide Time: 29:52) or harmonic oscillator, at a certain point in 

space, or moving in space. We need to work with functions of x, where x represents the 

space variable and so on.  
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Now finally, I want to go to the harmonic oscillator problem and illustrate a certain point, 

The Hamiltonian of the oscillator, 1 dimensional oscillator, the simple harmonic 

oscillator. Is p squared by 2 m plus half m omega squared x squared. Written in the 

position representation this would be minus i h cross, d by d x the whole squared, 1 by 2 

m multiplies that, plus half m omega squared x squared. Which is the same as minus h 

cross squared by 2 m, d 2 by d x squared, plus half m omega squared x squared and if we 

are looking out for position energy Eigen states, H psi n is E n psi n. Certainly H has to 

be written in this fashion and psi n has to be written as functions of position. The n takes 

values 0 to infinity because, it is a denumerable infinite basis set and the psi itself has to 

be written as a function of position.  
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So, that brings us to a very important point. How do you represent psi of x? In terms of 

the Dirac notation, using the Dirac notation? Suppose you have an orthonormal basis and 

suppose the basis is also complete. So, I write psi n psi m is delta n m and suppose the 

basis is also complete. In short form I would have written this earlier, as n n is identity. 

Look at the position basis, the position basis is a continuous basis denoted by x, the label 

x takes continuous values. Then certainly this completeness relation translates to integral 

d x, x x is identity.  
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And therefore, if I were to talk about a function of x, in the abstract notation, I could 

have well written, psi psi, summation over n psi n, psi n, is identity. I can introduce a 

complete set of states, I would like to write psi in the position basis and therefore, I could 

do an integral d x, x x psi n, psi n equals identity. Because, this was any way identity and 

this would also be identity. I want to now write, psi n, psi m is delta n m, for the same 

value of n and m, I have psi psi equals 1, which shows that it is normalized to 1. I can do 

the following thing; I can write this as, integral d x, introducing a complete set of states.  

I have simply introduced integral d x, this operator x x, because that object was 1. Recall 

that integral d x, x x is identity. But, i know the following, this is to be understood as psi 

star psi, psi star of x psi of x d x, integral over x is 1. It is simply 1, not the identity 

operator is 1. Therefore, I write psi of x as the object x psi. In other words, I have written 

the state psi, in the position representation, this implies that psi star of x is psi x, I use bra 

psi ket x for psi star of x. So, by just introducing a complete set of states, I have 

understood what the notation is, in terms of the Dirac notation. 
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Psi of x, which is a function of x, is x psi. Psi star of x is therefore, psi x. Similarly, if I 

were looking at the momentum representation, psi tilde of p is p psi, psi star tilde of p 

which is the complex conjugate, is p psi tilde, psi tilde p. So, this is the way we represent 

functions or as functions of position or as functions of momentum. This is a very crucial 

input and now if you return to the harmonic oscillator.  
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This Hamiltonian acts, I should really be writing in the position representation. H acts on 

psi n of x, to give me E n psi n of x, where n takes value 0 1 2 3 and so on.  
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So let us look at that, look at the ground state. You will recall that the ground state, was 

represented by ket 0 and the annihilation operator destroyed the ground state. But, we 

also know, that x was a plus a dagger by root 2, which was dimensionless, with a root of 

h cross by m omega, which are dimensions that were appropriate and p is 1 by root of m 

omega h cross, these are operators a minus a dagger by root 2 i. Now, suppose for 



convenience just to illustrate the point, I set m equals omega equals h cross equals to 1. 

Then I can see, that x is a plus a dagger root 2 x is a plus a dagger, root 2 i p is a minus a 

dagger.  
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And the equation for the ground state, a on ket 0 is 0, simply translates to the following: 

a itself is root two x plus i times minus i h cross d by d x. It is just x plus, minus i h cross 

d by d x. (Refer Slide Time: 43:39) Because 2 a was root 2 times this. So give or take a 

half and a on ket 0 equals 0, just becomes, turns out to be, psi 0 of x, acted upon by this 

operator is 0. That implies and I have set h cross equals to 1 so, I can get rid of that there 

and that tells me that the d by d x, plus x psi 0 of x, equals 0. The ground state of the 

oscillator in the position representation is clear that the solution is essentially, e to the 

minus x squared by 2 which is a Gaussian. 

So the Gaussian, is a minimum uncertainty state. We have already shown that the ground 

state of the oscillator is a minimum uncertainty state. We have just now seen that the 

ground state of the oscillator can be represented by a Gaussian function of x. So, this is 

an example, of a wave function or a state represented as a function of x. The relevant 

linear vector space is L 2 of minus infinity infinity in this problem and the ground state 

happens to be a Gaussian. Now you have seen that the Gaussian is a minimum 

uncertainty state. It is a different matter that we can check that out explicitly once more, 

for ourselves and indeed the Gaussian turns out to be minimum in delta x and minimum 



in delta p.  

There are certain very interesting and important differences between finite dimensional 

vector spaces and infinite dimensional vector spaces, particularly in the context of 

bounded and unbounded operators. So, I would look at L 2 of minus infinity infinity 

more closely, in a subsequent lecture and talk about bounded and unbounded operators in 

this context. Some very important operators turn out to be unbounded operators, in this 

framework. The function space itself becomes very important, in discussing the 

Schrodinger formulism of quantum mechanics that is wave mechanics which is what we 

will take up shortly. 


