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All my lectures till now, have dealt with finite dimensional linear vector spaces. We 

would introduce certain very important concepts for instance, the inner product structure, 

the probabilistic interpretation of quantum mechanics, linear operators and so on in a 

linear vector space. Now, many physical systems have infinite dimensional linear vector 

spaces associated with them. We need to carry over these concepts to infinite 

dimensional linear vector spaces. In the process certain concepts would undergo small 

modifications, but the probabilistic interpretation of quantum mechanics will continue to 

stay.  



(Refer Slide Time: 01:00)  

 

So, it would be good to now introduce crucial concepts associated with the structure of 

infinite dimensional linear vector spaces starting from what we already know about finite 

dimensional spaces. These are the ingredients of a finite dimensional linear vector space: 

the inner product structure denoted in the Dirac notation by bra phi ket psi, where phi 

and psi belong to the linear vector space. This helps us define the norm of phi, the square 

of the norm and that gives us a concept of length and distances between vectors if it 

comes to that. So, we would like to retain this property. We would like to have an inner 

product structure and be able to define lengths of vectors, also carry over ideas of the 

triangle inequality and the Cauchy Schwarz inequality to infinite dimensional linear 

vector spaces. 

Now, this helps us normalize the object, the length of phi and in fact we would like this 

to be 1. This means the following that if I expand ket phi in terms of an orthonormal 

basis set say psi n as summation over n C n psi n, n takes values 1 to d where d is the 

dimension of the linear vector space and we are now looking at finite dimensional linear 

vector spaces. Then because psi phi is equal to 1 this implies that summation over n 

going all the way from 1 to d mod C n square is 1. This is a very important point. C n’s 

could in general be complex, but they happen to be the expansion coefficients when phi 

is written in terms of an O N basis set psi n. 



Clearly, I could have expanded phi in terms of another orthonormal basis in the same 

linear vector space, finite dimensional linear vector space. Then the coefficients would 

be different and there is a way of going from one basis to another basis through a unitary 

transformation which we demonstrated earlier.  
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This helps us give the probabilistic interpretation of quantum mechanics because I would 

now interpret C n as the probability amplitude and mod C n square for a given n as the 

probability of what? You see C n itself is this object, because that is the same as psi n 

summation over, let us say P equals 1 to d, C p psi p and that gives me a delta n p. So, I 

basically have the summation goes and I have a C n because this gives me summation P 

delta n p because psi n psi p is delta n p and C p was a number which I pulled out and 

because of this C p delta n p and that became C n. (Refer Slide Time: 01:00)  

Therefore, if I have expanded the state phi in terms of the basis set psi n, I extract the 

coefficient C n corresponding to the basis vector psi n by precisely this method. And that 

such a C n is the probability amplitude and mod C n squared is the probability of this 

overlap psi n with phi. The total probability is 1, and that tells me that summation over n 

mod C n square is equal to 1. This probabilistic interpretation is very fundamental to 

quantum mechanics and we would like to carry this into the structure of linear vector 

spaces even in finite dimensional, even in infinite dimensional linear vector spaces. 
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One thing is clear that, because of that we have a situation where summation over n mod 

C n square is less than infinity. So, here is a sequence of numbers: C 1, C 2, C n and so 

on. This is a finite sequence because I am dealing with a finite dimensional linear vector 

space and therefore, there is only a finite basis set. But this sequence satisfies this or it is 

a square summable sequence. Now, such a sequence belongs to a linear vector space 

itself. Such sequences: C 1, C 2, C n which satisfy this belong to the space l 2 of square 

summable sequences. l 2 is a linear vector space. The set of all such sequences are states 

in a linear vector space l 2 which is the space of square summable sequences and as in 

every linear vector space I need to define the concept of addition and scalar 

multiplication. That is defined point wise. 

Suppose, I have a sequence: C 1, C 2, C n and suppose I were considering only a finite 

dimensional, n dimensional linear vector space so that I stop there and I have another 

sequence: d 1, d 2 to d n. Addition gives me c 1 plus d 1, c 2 plus d 2 and so on. So, it is 

point wise addition. Similarly, scalar multiplication is defined as a C 1, C 2, C n where a 

is a scalar as a C 1, a C 2, a C n. So, with addition and scalar multiplication defined in 

this manner we can check that the set of all such sequences, square summable sequences 

form a ((Refer Time: 08:49)) form states in a linear vector space.  
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They belong to a linear vector space and to recall the properties of a linear vector space, 

if phi and phi are elements of the linear vector space. First of all, there is commutativity 

under addition which indeed is true here. (Refer Slide Time: 06:40) Because I could have 

written: addition, scalar addition, point wise addition, this sequence with that sequence 

giving me c 1 plus d 1, c 2 plus d 2 equivalently d 1 plus c 1, d 2 plus c 2, d n plus c n 

and so on. Then there is associativity and chi now is simply psi plus phi plus chi which is 

evident from the manner in which (Refer Slide Time: 06:40) I have defined addition for 

these sequences. Then a plus b psi, where a and b are scalars, is a psi plus b psi which 

follows from this. (Refer Slide Time: 06:40) And then, I could have a times psi 1 plus psi 

2, that is a psi 1 plus a psi 2. Then of course, a b psi is a multiplying b psi. 

I introduce the null vector. The null’s a vector, the analogue of the null vector in this case 

(Refer Slide Time: 06:40) would be all elements here, all entries being 0. I emphasize 

that I do not want to call this 0, because this would usually represent the ground state of a 

system and that is not the null vector.  
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Then scalar multiplication 1 psi is psi and 0 psi. This is a scalar, is 0 and this is a null 

vector. So, you can see that all these properties are satisfied by (Refer Slide Time: 06:40) 

subsequences where addition and multiplication are defined, scalar multiplication are 

defined in the following manner.  
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This is a space of square summable sequences. It is evident that if I need the probabilistic 

interpretation of quantum mechanics, that is I need to say that summation over n mod C 

n square equals 1 where C n’s are the expansion coefficient of state of the system in 



terms of the basis states, a set of basis states. Then, when I go to infinite dimensional 

spaces, I need to impose this restriction, because there is no need to believe that an 

infinite sequence of numbers or vectors will converge to a point that there is a limit to 

such a sequence is not at all evident and we need to impose that as a condition. 

I will talk more about this convergence property and what are known as Cauchy 

sequences a little later.  
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(Refer Slide Time: 01:00) But right now, apart from this probabilistic interpretation we 

had some more structure in the finite dimensional vector space, linear vector space. One 

of them being this, that operators were linear operators. So, if I have an operator A and it 

acts on the state psi plus phi, it acts linearly. Further, an operator acting on this state 

where a is a scalar is a times A psi and if I have two operators A and B acting on psi, that 

is the same as first acting with B on psi and then with A on psi. This is not equal to B A 

psi in general, because the operators A and B the examples that you have seen were 

represented by matrices and two matrices need not commute with each other. 

So, these are the properties of a linear operator and this is a definition, I define it this 

way. All operators that we will deal with will be linear operators in quantum mechanics 

even in infinite dimensional linear vector spaces and while I can have functions of 

operators like this; A square on psi and so on that would be the same as A A psi, 

following this. This is what is meant by operators act linearly on states of a system. A 



crucial point is now already evident by a state of the system we need not necessarily 

mean a column vector.  
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Here for instance, is a sequence. Of course, I could have written it as a column. I could 

have written it as a sequence as c 1 c 2 c n. And, this sequence if I know all the elements 

of this sequence. I know the state of the system because mod C n square gives me the 

probability of the component of the state psi along the basis state phi n, where psi is a 

state that I have expanded in terms of the basis set phi n. 

So, ((Refer Time: 15:11)) a concept of linear operators again continues to be in infinite 

dimensional linear vector spaces.  
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There was another crucial aspect in linear vector spaces which we saw, and that was 

bounded operators. Operators in a finite dimensional linear vector space were bounded in 

the following sense: if A is an operator and it acts on ket psi. Now, suppose I take the 

norm of that state, this is some state chi so I am taking the norm of chi. That was always 

less than some positive number times norm of psi and this was very important for 

normalization of the new vector. For instance, if we go back to the example of spins we 

have S plus which was the operator, the non Hermitian operator that took the state s, m to 

s, m plus 1. 

The state s, m was orthogonal. The set of states were orthogonal to each other and each 

was normalized to 1. Now, what happen was this: the detailed calculation showed us that 

this was root of s minus m times s plus m plus 1 h cross s, m plus 1. So, this is the new 

state which is analogous to chi out there and surely this new state is not normalized to 1 

where s minus is the dagger of s plus which is what I will have when I take the complex 

conjugate, a Hermitian conjugate of the state s plus s m. That gives me s minus m times s 

plus m plus 1 h cross squared and then of course, s m plus 1, s m plus 1 and this was 1. 

But then, you see I am left with this coefficient. 

But the norm of this is some number times the norm of the original state. The norm of 

chi was less than or n times the norm of psi and that n is out here, this is in fact an 

equality. But, you see this helps me get you a new state which is normalized to 1. Now, I 



can suitably scale down chi such that the new state is normalized to 1. The smallest 

number n here which satisfies this is said to be the norm of A. So, one defines the norm 

of an operator as a smallest number that satisfies this. It turns out that all operators in a 

finite dimensional linear vector space are bounded operators and this is merely an 

example of what we saw. But, in an infinite dimensional vector space there is no need to 

imagine that all operators will be bounded operators. In fact, there are many unbounded 

operators and we will see some of them as we go along. 
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There is another important concept that we have come across and that is the concept of 

completeness: completeness of a linear vector space, completeness of an l v s. This 

concept is very important when it comes to infinite dimensional linear vector spaces and 

not at all obvious. To explain completeness, we do the following: You consider first a set 

of complex numbers, a sequence of complex numbers z 1, z 2, z n and so on. The limit 

point of this sequence exists. If modulus of z n minus z m goes to 0 in the limit n m 

going to infinity such a limit point need not exist for an infinite sequence. The series 

need not even converge. 

Now, if this holds then you are guaranteed that limit n going to infinity of z n is some 

number z and that is the limit point. So, this guarantees this. Now, when it comes to 

vectors in the linear vector space we replace these numbers by vectors and we have the 

following. 
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Suppose, you have a set of vectors: psi 1, psi 2, psi n and so on. You replace the modulus 

by the norm of psi n minus psi m and if that goes to 0 in the limit n m going to infinity. 

Then you are guaranteed that limit psi n goes to psi as n the limit n goes to infinity and 

psi is the limit vector. 

So, the definition is analogous to what you have in the case of a sequence of complex 

numbers except that these could be vectors in a linear vector space and then limit vectors 

are defined in this fashion. Now, a Cauchy sequence is a sequence which has a limit 

point. The limit point exist for a Cauchy sequence.  

So, you can have a Cauchy sequence of numbers, you can have a Cauchy sequence of 

vectors. It is not at all guaranteed but even if limit points of sequences exists in the sense 

that every sequence that you can think of in the linear vector space of concerned. Even if 

it is a Cauchy sequence there is no need imagine or assume that the limit point or the 

limit vector exists in that linear vector space. So, we have another statement. 
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If, a closed set is the sequence of vectors with the limit point or with the limit vector in 

this case. So, you consider such a sequence and include psi, (Refer Slide Time: 21:13) 

the limit vector and that is the closed set. If all Cauchy sequences have limit points in the 

linear vector space or limit vectors in the linear vector space of concerned. Such a space 

is a complete space. We only look at spaces which are complete spaces. Simply because, 

we do not want the action of an operator to take a state, one of the states in the sequence 

psi n to take the state out to a limit point or a limit vector which does not even belong to 

that space. So, we will only look at complete spaces.  

The action of operators on sequences should result in state sequences of vectors or any 

one of the vectors in the sequence should result in a state which belongs to that linear 

vector space and not take it out of that linear vector space. The state that I get after the 

action of the operator should be expandable in terms of the basis states of the linear 

vector space of consideration and therefore, this is a very crucial requirement that the 

linear vector space is a complete space.  

Now, we come to the concept of a Hilbert space. (Refer Slide Time: 21:13) So as it turns 

out, if you have a finite dimensional vector space you are guaranteed that it is a complete 

space. The problem arises only for infinite dimensional vector spaces. So, let us just see 

why every finite dimensional linear vector space is a complete space. So, the way to 

prove this, I will indicate the proof to you right away. 
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Consider a vector psi p in an n dimensional vector space and therefore, it is expanded in 

terms of the basis set phi l and there are n of them because it is an n dimensional linear 

vector space. Similarly, I have psi q and this state is also expanded in terms of the basis 

set except that the coefficients are different and therefore, I put a p there and a q here. 

Now, I consider psi p minus psi q and this is clearly given by this object. Now, if this is a 

Cauchy sequence then in the limit p q going to infinity, this difference the norm of this 

goes to 0 limit p q going to infinity which automatically implies that this goes to 0 which 

means that limit p going to infinity of psi p goes to the limit vector psi. Correspondingly, 

this object C l of p minus C l of q, this implies that C l p minus C l q goes to some C or 

limit C l p in the limit p going to infinity goes to c, some value c l because there are l of 

them. 

So, the fact that there is a limit vector translates to this statement for the coefficients that 

the limit of such a sequence goes to some value C l. But now you see, I can define a 

vector psi which is summation over l C l phi l and since, that is a linear superposition of 

the basis states that is a vector in that space. By the postulate of quantum mechanics, 

“any state which is a linear superposition of the basis states is a possible state, is an 

allowed state of the system”. And therefore, this belongs to that linear vector space. So, 

the limit vector also belongs to that linear vector space. 



So, in a finite dimensional vector space, linear vector space I did not worry about 

whether the space is complete or not. The space is complete; it is guaranteed to be 

complete. (Refer Slide Time: 29:23)  

 

But in an infinite dimensional linear vector space I have to impose that as an extra 

condition. Cauchy sequences are guaranteed to have limit points where all Cauchy 

sequences have limiting vectors or limit points in the linear vector space of concerned. 

And then, this is called a complete space. So, a complete linear vector space with an 

inner product structure defined on it and therefore, the norm of vectors defined on it is a 

Hilbert space. 

Hilbert spaces are what we use in quantum mechanics. Since, every finite dimensional 

vector space is a complete space and since we have defined inner product structures. You 

have already looked at several examples of Hilbert spaces except that I have not used the 

word. The linear vector space corresponding to the two level atom, the linear vector 

space corresponding to the three level atom. The translated into the language of the spin 

system: the spin half system, the spin one system and so on. All of them are examples of 

complete spaces because they are finite dimensional linear vector spaces and since there 

was an inner product structure defined on them, they happen to be examples of Hilbert 

spaces. 
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Now, the very crucial statement is the following: a separable Hilbert space is a complete 

space with an inner product structure defined on it. A separable Hilbert space has, and 

we are talking about an infinite dimensional linear vector space. Infinite dimensional has 

the denumerable, countable infinity of basis states. Again count the basis states, if you 

wish I can call them phi 1 all the way and therefore, I could call it just by a label n where 

n takes values: 0, 1, 2 all the way to infinity. 

It is possible therefore, once I am given a denumerable infinity of basis states to write 

them in the column vector representation and I could refer to them as 1 0 0 0, 0 1 0 0 all 

the way to infinity. These are infinite columns. Now, it turns out that a bounded linear 

operator can be represented by an infinite dimensional matrix and here is a situation 

where I have a denumerable infinity of basis states. And therefore, I can choose these 

states to be of this type, analogous to what you had in the case of the two level and a 

three level atom. So, in this case, in systems which, where I can write the basis states in 

the following manner and the operators are represented by infinite dimensional matrices. 

I can take over the machinery of matrix multiplication and so on which is what we have 

used in the case of finite dimensional linear vector spaces that we have seen. I can carry 

that over to such systems although they are infinite dimensional linear vector spaced 

systems. Such a situation would arise when we study the simple harmonic oscillator 

which we will be doing shortly in one of the few lectures that comes right after this.  
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Now, having said this it is evident that there are going to be major differences between 

infinite dimensional vector spaces and finite dimensional vector spaces. The concepts are 

already getting to be somewhat more difficult. To give a simple example, suppose I were 

to talk of inverse of operators. In a finite dimensional vector space consider operator A 

and suppose we find an A inverse by using some standard procedure such that A A 

inverse is the identity operator. I do not have to check that A inverse A is identity. It 

follows that if A A inverse is identity, A inverse A is also identity. I cannot make that 

statement in infinite dimensions. 

For instance, consider the linear operator A which acts on this infinite sequence such that 

A acts on sequence: x 1, x 2 to give me 0, x 1, x 2 and so on and this is an infinite 

sequence. So, that is another infinite sequence. Consider the operator B. Now, B acts on 

the sequence and it has the following effect. It simply removes x 1, the 1st entry is 

removed and it leaves behind another infinite sequence. So, what is B, A acting on this 

sequence? 
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B A acting on the sequence: x 1, x 2 and so on. Since it acts linearly it is B acting on 0, x 

1, x 2 and so on. But the action of B is to remove the 1st entry and therefore, it restores 

the original sequence and therefore, B A acts like the identity operator. So, it looks like B 

is A inverse because A inverse A is the identity operator. But now, let us find out A B 

acting on the sequence. Now this is A, B acts on the sequence to just give me: x 2, x 3 

and so on and A simply puts a 0 in front and therefore, I do not get the original sequence 

back. That means that, A B is not equal to the identity operator. So, the fact that there is a 

left inverse does not guarantee that there is a right inverse. It does not guarantee that A A 

inverse is identity where I have identified B with A inverse in this problem. 

 (Refer Slide Time: 37:05)  



 

This is just one of the several aspects which are different between infinite dimensional 

linear vector spaces and finite dimensional linear vector spaces. The fact that there is a 

unitary operator u which satisfies u, u inverse equals identity does not imply that u, 

inverse u is identity so on for orthogonal matrices and so on. You have to check the fact 

that this condition satisfied does not mean this and you have to check for this 

independently, separately. So, these are some of the differences that you see between 

infinite dimensional linear vector spaces and finite dimensional linear vector spaces. 

Now, one thing emerges that if we have a finite dimensional linear vector space, as we 

did in a in the examples that we have looked at till now, all finite dimensional linear 

vector spaces are isomorphic to the Euclidean space of the same dimensions.  
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Finite dimensional linear vector spaces are isomorphic; that means that there is a one to 

one mapping to the Euclidean space of the same dimension. In other words, in a 

Euclidean space I would choose basis states: 1 0, 0 1 and so on depending upon, the 

number of entries here would depend upon the dimension of Euclidean space. 

Since, all finite dimensional linear vector spaces are isomorphic to the Euclidean space. I 

could choose these column vectors as the basis states of a finite dimensional linear vector 

space and indeed that is what I have been doing till now without as much as saying. So, 

we found that we would always choose basis states: 1 0, 0 1 in the case of the two 

dimensional linear vector space, 1 0 0, 0 1 0, 0 0 1 for the three dimensional linear vector 

space and so on. So, a state in a linear vector space could be represented by ket phi, ket 

psi and so on.  

This is an abstract notation. If it is a finite dimensional linear vector space you could 

choose basis states: 1 0 0, 0 1 0 and so on. This is finite dimensional linear vector space 

and any state can be expanded as a sequence C n where the state itself is written as 

summation over n C n phi n where phi n are the basis states of that linear vector space. 

Knowledge of: C 1, C 2 and so on till C n has all knowledge about the state psi and 

understanding the state psi would amount to measuring: mod c 1 square, mod c 2 square, 

mod c 3 square which are the probabilities. 
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Now, an infinite dimensional linear vector space which is a separable space that means 

that there is a denumerable infinity of basis states or a Hilbert space, a separable Hilbert 

space has an Orthonormal basis. You are guaranteed that because there is a denumerable 

infinity of basis states and I could write them in the form 1 0 0 and so on. That is one 

way of writing it. I could also represent it in many other ways and I will talk about it 

shortly. A separable Hilbert space has an Orthonormal basis. It is isomorphic to L 2, the 

space of square summable sequences.  

So, I just have this infinite sequence, infinite string of numbers, complex numbers in 

general: c 1, c 2, c 3 and so on. So that every state is represented by a unique set: c 1, c 2 

satisfying summation over n equals 1 to infinity mod c n square, is less than infinity. 

That is what is square summable and that as we have already seen is required for the 

probabilistic interpretation of quantum mechanics. But, as I said basis states are a matter 

of convenience choice preference. Now, you may choose to work with one set of basis 

states in a given problem and I could choose another set of basis states. In fact there are n 

infinite set of basis states. So, instead of choosing this basis state I could have chosen 

something else, where set of states that belong to the linear vector space. 
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One of the choice is that I can have is a set of functions of some argument x satisfying 

the following property, square integrability. The states are simply square integrable 

functions where this L 2 is defined in the range a b that means x takes values, the 

argument takes values between a and b, f’s could in general be complex. It is less than 

infinity. 

So, this is simply direct extrapolation of the concept of square summability and here I 

have square integrability. It is clear that now we are talking about continuous functions 

of an argument x. Now, can these objects be basis states in a linear vector space? It is 

possible. Let us give an example. Suppose we are looking at L 2 of 0 1. 1st of all we 

have to check that these satisfy the requirements of states in a linear vector space. It 

follows directly. If you look at the properties of the linear vector space that we have gone 

over and you define functions in the following fashion: Function f 1 plus function f 2 of 

x is f 1 of x, plus f 2 of x, a f 1 of x where a is a scalar, is a times the function of x.  

So, I defined addition and multiplication, scalar multiplication in the following manner. 

Then it is easy to check that such functions would also be states in a linear vector space. 

They are elements of a linear vector space and that brings us to a crucial point. A state in 

a linear vector space need not necessarily have to be a column vector. In abstract 

notation it is simply the ket. The state could well be a column vector. It could be a 

function, the space considered itself could be a function space and so on. And, with this 



definition we can check that this class of functions the square integrable functions are 

very respectable members of a linear vector space, states in a linear vector space. So, the 

basis states would also be functions. 

So, let us look at square integrable functions, specific examples of square integrable 

functions.  
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Let me consider L 2 of minus 1 1. What kind of functions, which are orthogonal to each 

other? Can I think of that could be a part of the basis set here? Suppose, I take the 

argument of the function to be cos theta, cos theta certainly goes over the range minus 1 

1 and if I consider the P n of cos theta, these special functions would be good basis states 

in this space of square integrable functions. To begin with, with n taking values: 0, 1, 2 

and so on P 0 of cos theta is 1, P 1 of cos theta is cos theta itself, P 2 of cos theta is 3 cos 

square theta minus 1 by 2 and so on. 

There is an interesting property here. An odd function, an even function of cos theta and 

so on. So, these are specific parity properties which I will discuss later. They also satisfy 

Orthonormality conditions, Integral minus 1 to 1, P n of cos theta P m of cos theta. Now 

these are all real functions, so I do not put a star there d cos theta is 2 by 2 n plus 1 delta 

m n. Now, this is the Orthonormality property that the P n satisfy. The delta m n takes 

care of the fact that these are orthogonal to each other if n is not equal to m. Of course, 



you have a constant, a number out here 2 by 2 n plus 1. But, this is certainly the analogue 

of the statement phi n phi m is delta m n.  

You can have different types of special functions which act as basis states in function 

spaces. For instance, if instead of minus 1 and 1 here, I have minus infinity infinity. The 

Hermite polynomials are an example of basis states in L 2 of minus infinity infinity.  
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Now, in general you would expect the Orthonormality property to be of the form f n star 

of x, f m of x, d x and there could be a measure here, is equal to A delta m n. So, there is 

a measure here and there is A there, like (Refer Slide Time: 45:25) 2 by 2 n plus 1. And, 

in the case of the Hermite polynomials, this is a Gaussian. It is e to the minus x square, 

of course, in that case the range would be minus infinity to infinity. 

Apart from this, I also have a completeness relation. But, before we put that down look at 

the following: (Refer Slide Time: 45:25) n is a discrete index. So, there is a denumerable 

infinity of basis states in this separable Hilbert space. But, each basis state is a function. 

In this case it is a function of cos theta. So, why the number of basis states is countably 

infinite? You have now replaced column vectors of the type: 1 0, 0 1 and so on with 

functions. (Refer Slide Time: 45:25) I can use functions as basis states in a linear vector 

space and for such functions there is a completeness relation. For instance, in the case of 

the Legendre polynomials summation n equals 0 to infinity 2 n plus 1 by 2 P n of x P n 

of x prime is delta x minus x prime, where this is the Dirac delta function. 



Now, in terms of the Dirac notation, earlier the completeness relation was written as 

follows. We would have summation over n phi n phi n is the identity operator. So, this is 

clearly the analogue of that. Where you know that integral f of x, f of x prime delta of x 

minus x prime d x prime is f of x. So, it is in that sense that instead of the identity 

operator we have delta of x minus x prime here.  

The important thing is the following: Most of you would have seen the Schrodinger 

equation where the wave function psi of x is involved. Psi of x is a function of x and psi 

of x can be expanded normally in terms of basis states which are also functions of x. 

That is how function spaces become very important. Because, the Schrodinger 

formulation of quantum mechanics which we normally refer to as wave mechanics relies 

on basis states in a function space. And, we will talk about square integrable functions, 

the space of square integrable functions. It is for that reason that one discusses special 

functions of this kind in the context of quantum mechanics. 


