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In the last class, we were discussing addition of angular momenta. And we had worked 

out certain examples, where J 1 is half and J 2 is half, also J 1 is 1 and J 2 is half. In this 

class I will continue working out a specific problem in addition of angular momenta and 

that is J 1 is 1 and J 2 is 1. This has some very interesting consequences and certainly 

helps one understand subtleties related to addition of angular momentum and the 

Clebsch-Gordan coefficients.  
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So, I would work with addition of angular momenta. So I have J 1 is 1 and J 2 is 1. So 

these are two spin one objects or isospin one objects. So, if J 1 is 1 the various uncoupled 

states corresponding to this are 1, 1, 1, 0 and 1 minus 1. Similarly, for J 2 equals 1 I have 

the states 1, 1, 1, 0 and 1 minus 1where the 1st index is J 1 and the 2nd is m 1 here the 

1st index is J 2 and 2nd is m 2 there, m 2 takes values minus J 2 to plus J 2 in steps of 1 

similarly, m 1. So, the uncoupled basis states would be 1, 1 with 1, 1, 1, 1 with 1, 0 by 

which, I mean direct product states. So the uncoupled basis states would be of the form 

and so on sub states.  

Of course, using my notation I represent that as J 1 m 1; J 2 m 2 and therefore, this state 

for instance would just be 1, 1, 1, 1. I wish to take a very specific example. In this case I 

would like to talk about an isospin one object coupling with another iso spin one object. 

As I have said earlier, the pions from an iso triplet, there are 2 pions two of them with 

charges plus e and minus e and the other with charge 0 so it is a neutral pion. These are 

the charge pions and these have iso spin and i z values 1, 1, 1, 0 and 1 minus 1 

respectively. So, this forms an iso triplet and as I have mentioned earlier, every particle 

is defined by a state which is labeled by a set of quantum numbers and certainly i and i z 

are two such quantum numbers, which label the state of the particle apart from charge, 

spin, rest mass and so on.  



So this is an iso triplet, that means i is 1 and i z is analogous to m, i itself is analogous to 

J that I have written there and i z takes values plus i to minus i in steps of 1. And that is 

how I have these three distinct states of pions, these are bosons they have got spin 0 in 

units of h cross. Now, I would like to look at this problem as a coupling of two pions. So, 

2 i equals one objects couple. So I write i 1 is 1, i 2 is 1 and 2 iso spin one objects or 2 

iso triplets, in this case specifically 2 pions couple. And we want to look at the couple 

basis and write the couple states in terms of the uncoupled basis states as a super position 

of uncoupled basis states and therefore, having a lot of Clebsch Gordon coefficients 

arising in the process. 
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So, I have the 2 pion system, coupling of iso spins. So, I have equals i 1 equals 1, i 2 

equals 1 which means I have the state 1, 1 which is the pi plus 1, 0 which is the pi naught 

and 1, minus 1 which is the pi minus. As I said earlier just I have to replace J by i and m 

by i z and the entire angular momentum machinery follows as such. So, the coupled state 

has i and i z. This is i 1 z in my notation, this is i 1 this is i 1 z perhaps i 2, i 2 z and so 

on. So, this could well be i 2, i 2 z as well. So, the coupled state has i and i z, i itself 

takes values i 1 plus i 2 to modulus of i 1 minus i 2 in steps of 1 and for a given value of 

i, i z takes values minus i 2 plus i in steps of 1 and that is 2 i plus 1 values. 
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Now, let us look at the various coupled states in the two pion systems. So, that gives me i 

1 plus i 2 to i 1 minus i 2 in steps of 1 and because, it is a coupled state I denote it by 

double braces as a matter of notation, I have a 2 lines out here. So, I have the following 

couple states: 2, 2, 2, 1, 2, 0, 2 minus 1 and 2 minus 2. Similarly, if i is 1 I have 1, 1, 1, 0, 

and 1 minus 1. The 2nd entry is i z so we have discussing the coupled states. This is the 

total isospin, the net isospin of the couple state system of 2 pions and this is the net i z 

value. And it is good to remember that i z is i 1 z plus i 2 z, that means take the i z values 

of the 1st pion, the i z value of the 2nd pion add them up like you would to scalars and 

you get i z. And then of course, I have 0 0. So, these are the complete list of coupled 

states that I can have when I combine 2 pions. My aim is to write the couple states in 

terms of the uncoupled basis.  
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So, let me start with the coupled state 2, 2. Our aim as I have said earlier is to express 

this state in terms of the uncoupled basis. This is i and that is i z, the isospin of the 

coupled state which we have got by combining two iso triplets and this is the i z value. 

How could I have got this value for i z? This should have come from i 1 z plus i 2 z. So, 

clearly the contribution has come from the uncoupled basis 1, 1 and another 1, 1 I have 

combined an i is equal i 1 is 1, i 1 z is 1 with i 2 is 1 and i 2 z is 1 and my scalar addition 

these two i 1 z and i 2 z add up to give me to 2. There is no other possibility in this 

problem of getting a coupled state, which as isospin 2 and i z 2. Since, this is the only 

state the c g coefficient there is 1 that corresponds to the stretched case where the i z 

value is the same as the i value. So that is an example of a stretched case.  

The c g coefficient being 1 now, in terms of pions what would this state be i 1 is 1, i 1 z 

is 1 so this must be the pi plus and that is another pi plus. So, basically we have 

combined two positively charged pions to get this particular coupled state 2, 2. There is 

another stretched case as well and that is 2, minus 2. On similar line I can argue and I can 

see that minus 2 can only arise from the uncoupled basis states 1, minus 1 and another 1, 

minus 1. This is i 1 that is i 1 z that is i 2 and that is i 2 z so minus 2 really came from 

minus 1 plus minus 1. Now, in terms of particle content, this state with isospin 1 and the 

3rd component of isospin being minus 1 is the pi minus and therefore, I have this case 2, 

minus 2 c g coefficient 1 and that really came from the uncoupled basis states pi minus pi 

minus. So, this is another stretched case.  



So in a stretched case the 3rd component has the value i or minus i in terms of our old 

notation, where we spoke of J and m. When m takes the value J or minus J, we call it as 

stretched case and the c g coefficient is 1. So, these are examples of stretched cases and 

there are other states as well. For instance, there is this state 2, 1 after all i z can take 

values from plus i to minus i in steps of 1. So, how do I get 2, 1? I can use an i minus on 

2, 2. If I did that I use the fact that the coefficient in this case would be root of i plus m 

times i minus m plus 1 m being is z here.  

So, i plus i z times i minus i z plus 1 so that gives me the state 2 , 2 and on this side I 

have to work with i 1 minus on this state. Keeping this state fixed, in terms of particle 

content the 2nd entry is not changed. The 1st entry the i 1 z value is brought down by 1 

and therefore, I go to pi 0 because pi 0 you will recall is a 1, 0. This is i 1 and that is i 1 z 

now and what is the coefficient? It is a 1 plus 1 times a 1 minus 1 plus 1. Now, I work 

with an i 2 minus on this state. Again by the same argument leaving the 1st entry 

untouched, i get that. In other words, I have 2 , 1 is 1 by root 2 pi 0 pi plus plus pi plus pi 

0. Look at the i 3 values or i z values. Here, i z is 1 pi naught has i z 0 and pi plus has i z 

1 so they add up to give me 1 similarly, here. That is the matter that should be checked 

out at every stage that the i z values are all right.  
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So, let me remove this part of the algebra and I can just write 2, 1 as 1 by root 2 pi 0 pi 

plus plus pi plus pi 0. I will comment on those symmetric properties a little later so that 



is what we have. The next thing is 2, 0 reduce the i z value by 1. How do I get that? By 

using i minus on this state, what is the coefficient? It is an i plus i z times i minus i z plus 

1 so that gives me a root 6. And on this side there is an overall factor 1 by root 2. I repeat 

the same kind of argument that I had earlier on. So, this object has i equals 1, i z equals 0 

and this object has i equals 1, i z equals 1. This is i 1, i 1 z, i 2, i 2 z. So, apart from the 

factor 1 by root 2 outside, pi 0 goes to pi minus with an overall coefficient 1 plus 0 times 

1 minus 0 plus 1 so that is all I have here.  

Once more, this time pi 0 is unchanged, pi plus goes to pi 0 and what is the overall 

coefficient? 1 plus 1 times 1 minus 1 plus 1 so that is root 2 again. The 3rd term comes 

from here with pi plus going to pi 0 again pulling out a root two as earlier. The 4th term 

is a pi plus pi minus because pi 0 goes to pi minus pulling out the coefficient root 2 so 

root 2 is canceled out. And what do I have? I have 2, 0 is 1 by root 6 pi minus pi plus 

plus pi plus pi minus plus twice pi 0 pi 0. It is a pi 0 pi 0 there and pi 0 pi 0 here. Let us 

mod square this. This gives me between these two I get a two sixth and that is a four 

sixth, that gives me a total probability of 1. 

At every stage one has to check, that the mod square of the individual c g coefficients 

when summed over gives me 1. So, that is a half from here and a half from there that 

gives me 1 and so on.  
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So, how do I get 2, minus 1? That is the only thing that is left behind. I could have done 

that by using an i minus on 2, 0. But this involves 3 states, the algebras a little bit more 

messy. So, instead let me start with 2, minus 2. Now, if I did that, I get an i plus acting 

on 2, minus 2 gives me 2, minus 1. What is the overall coefficient? It is root 4 because it 

is i minus m times i plus m plus 1 that is on the left hand side. On the right hand side I 

use an i plus on this. 
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So, the 1st pi minus goes to pi 0 leaving the 2nd entry as such, the coefficient itself gives 

me a 1 plus 1 there and then of course, again I have a root 2 pi minus pi 0. In other 

words, 2, minus 1 is 1 by root 2 pi 0 pi minus plus pi minus pi 0. Look at the i 3 values; 

this is minus 1 that is a minus 1 plus 0 which is a minus 1. Here it is a 0, this has i 3 

minus 1 that has i 3 plus 1. So, term by term you can find that the i 3 values match. So, 

indeed we have got all these states. Now, before we proceed it is worth understanding 

two things, first of all when we say pi 0 pi plus plus pi plus pi 0 as in the coupled state 2 , 

1. How do you distinguish between the two states? The particle content is the same and 

basically, when we say pi 0 pi plus. We mean that there are two beams of pions and the 

pi 0 is from the 1st beam and the pi plus is from the 2nd. 

Similarly, when we say pi plus pi 0 the pi plus is from the 1st beam and the pi 0 is from 

the 2nd. So, this is the way we distinguish between the state pi 0 pi plus where pi 0 is the 

1st entry and pi plus as the 2nd entry, in contrast to a state with pi plus as the 1st entry 



and pi 0 is the 2nd entry. The same argument holds when we discussed the coupled state 

2, 0 for instance where we have pi minus pi plus plus pi plus pi minus plus 2 pi 0 pi 0. 

Now, the 2nd remark is on the symmetry properties. In all these states take for instance, 

the stretch case 2, 2 if you interchange i 1 z with i 2 z, the state remains the same. In 2, 1 

for instance that amounts to interchanging pi 0 with pi plus. Such an interchange simply 

picks up an overall plus sin and the state is symmetric under that interchange.  

Similarly, in the coupled state 2, minus 1 you interchange pi 0 with pi minus, nothing 

changes there is just an overall plus sign that is picked up. So, all these states with 

isospin two are symmetric and the interchange of i 1 z and i 2 z. I will comment on this 

later. (Refer Slide Time: 06:52) Now, let us look at the triplet state 1, 1, 1, 0, 1, minus 1. 

Now 1, 1 is orthogonal to 2, 1 of course, 1, 1 is also orthogonal to all the other coupled 

states. But here we are trying to fix the c g coefficients in the expansion of the couple 

state 1, 1 and for this purpose we will only choose other coupled states with the same i z 

value that is i z equals 1. 

(Refer Slide Time: 22:23)  

 

So, I know 2, 1 and I know that 1, 1 is expanded in the following manner similar to 2, 1. 

(Refer Slide Time: 14:42) It will get a contribution from the state pi naught pi plus also 

from the state pi plus pi naught. I wish to reemphasize the fact that by this we need pi 

naught from the 1st beam and pi plus from the 2nd beam, by this we mean pi plus from 

the 1st beam and pi naught from the 2nd beam and if in your mind you imagine that, 



these particles came with badges, white badges for this beam and black badges for that 

beam. Then you know the difference. This comes from the 1st beam, this from the 2nd, 

this comes from the 1st beam and that from the 2nd. 

So there is a definite difference although, the particle content is the same. There is one 

neutral pion and one positively charged pion. So, returning to 1, 1. I know that it should 

be a superposition of pi naught pi plus and pi plus pi naught. These are the only states 

that can contribute to 1, 1, but since I know 2, 1 to be the symmetric state 1 by root 2 pi 

naught pi plus plus 1 by root 2 pi plus pi naught.  
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And I also know that a squared plus b squared is 1. So, I have a squared plus b squared is 

1. We check the c g coefficients to be real without loss of generality. And they will come 

with phase, otherwise and we would write mod a square plus mod b square equals 1. 

Now, taking the c g coefficients to be real I have this (Refer Slide Time: 22:23) and 

therefore, from the fact that 2, 1 is orthogonal to 1, 1. I have a by root 2 plus b by root 2 

0, which implies that a is minus b. I need to use my convention now. So, I find the 1 , 1 

could be written as 1 by root 2 pi 0 pi plus minus 1 by root 2 pi plus pi 0 or minus 1 by 

root 2 pi 0 pi plus plus 1 by root 2 pi plus pi 0.  

The both would be all right. What is important is the relative negative sign, but I choose 

a convention and I use that convention, the same convention throughout this problem. 

My convention is a following: Look at the 2nd entry, this is the pi plus here and a pi 0 



there. Pi 0 has an m value or i z value which is smaller than the i z value of the pi plus. 

So, the 2nd entry has a smaller m value here and I would use a plus there and a minus 

there, same as this. That is simply a convention. Now, you could have gone ahead and 

put a plus here and minus there and you have to stick to that convention throughout the 

problem. So, this is 1, 1. Now, I need to get 1, 0. Notice that 1, 1 is an antisymmetric 

state, it is antisymmetric under interchange of the i 1 z and i 2 z values. Because this 

state has an overall negative sign and that has an overall positive sign here and therefore, 

when I interchange pi naught with pi plus, which is the same as interchanging the i z 

values of the individual particles I pickup an overall negative sign. 

 So, this is antisymmetric, and the interchange of the isospin labels. Now, if you look at 

1, 0 there are two ways of getting this. I could have used an i minus on this, done it the 

way (Refer Slide Time: 14:42) I got 2, 1 from 2, 2. Another way of doing this is by 

realizing that (Refer Slide Time: 22:23) 1, 0 is orthogonal to 2, 0 unfortunately that 

cannot be used at this stage because it is also orthogonal to 0, 0. And since, this is also 

unknown in the sense I do not know how to expand this in terms of the uncoupled basis 

yet. I cannot use the fact that this state is orthogonal to those two states and find the c g 

coefficients. I will be forced to use i minus.  

So, this is a point to note. I did not face this problem when I found out 1, 1 in terms of 

the uncoupled basis states, because there was exactly one state it was orthogonal to and 

that was 2, 1. I knew 2, 1 therefore, I could get 1, 1. But here I just have to use i minus so 

when i do that I pickup a coefficient root 2 1, 0 is minus 1 by root 2. The pi 0 goes to pi 

minus picking up root 2 leaving the pi plus alone. Then the pi plus goes to pi 0 with an 

overall coefficient root 2 because that is a 1 plus 1. This i value is 1 the i z value is 1 so it 

is root of 1 plus 1 times 1 minus 1 plus 1 so there we are.  

But there is an overall minus 1 by root 2, then the 2nd term plus 1 by root 2. Similarly, pi 

plus goes to pi 0 with a root 2. The last term is pi 0 goes to pi minus with a root 2. 

Canceling out the root 2 allover I have 1, 0 is 1 by root 2. The neutral pions do not seem 

to contribute I just have pi plus pi minus minus pi minus pi plus. This is an important 

point for the following reason: that if you told me that I need to form an i equals 1 i z 

equals 0 state from two iso triplets, I would expect a contribution to come from the i 

equals 1, i z equals 0, i equals 1, i z equals 0 combination as well. Because i 1 z is 0 i 2 z 



is 0 and i is 0, but it turns out once I workout the algebra in detail, it turns out that two 

neutral pions cannot be in the i equals 1 i equal i 3 equal i z equals 0 coupled state. 

This is not just an accident. The fact that pi naught pi naught cannot exist in the coupled 

state i equals 1, i z equals 0 is really statement of very important symmetry in particle 

physics called Bose symmetry. I will get to that later right now, it is nearly an 

observation. The details of the algebra show me that there is no contribution from two 

neutral pions to the 1, 0 states.  
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So, let me list those states here, in any case. So, I have 1, 1 is an antisymmetric state. It is 

1 by root 2 pi plus pi naught minus pi naught pi plus 1, 0 is another antisymmetric state, 

that is here. It is 1 by root 2 pi plus pi minus minus pi minus pi plus. I need to get 1, 

minus 1 I can use the fact that this is orthogonal to 2, minus 1 and I know 2, minus 1. 

(Refer Slide Time: 14:42) So, 2, minus 1 well, 1, minus 1 is also expandable in terms of 

pi naught pi minus plus pi minus pi naught. And 2, minus 1 is the symmetric state 1 by 

root 2 pi naught pi minus plus pi minus pi naught. I have a squared plus b squared equals 

1 as always and this gives me the fact that 2, minus 1 is orthogonal to 1, minus 1 gives 

me the 2nd relation, a equals minus b which implies that if a is plus 1 by root 2 b is 

minus 1 by root 2 and vice versa. I use the convention that I used earlier. Look at this 

state, look at the 2nd entry that is my convention. Pi minus has an i z value which is less 



than pi naught I put a plus sign here and a minus sign there. So, I choose a equals 1 by 

root 2 and b equals minus 1 by root 2.  
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So, this is the working out of the thing a is 1 by root 2 and b is minus 1 by root 2. So, 

there we are that is 1, minus 1. So, we have the 3 i equals one state let me just put down 

all the states in 1 place. (Refer Slide Time: 22:23) We are only left with 0, 0 which we 

will find shortly.  
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The i equals two states are totally symmetric states. That symmetric under interchange of 

the i z labels so that is a pi plus pi plus 2, 1 is 1 by root 2 pi plus pi 0 plus pi 0 pi plus. 2, 

0 had more contributions. (Refer Slide Time: 14:42) This is 2, 1 out here we got 2, minus 

1. We need to get 2, 0 as well and 2, 0 had many contributions to it. So, let me write that 

down. So, it had two neutral pions contributing to it, 2, minus 1 is (Refer Slide Time: 

24:00) simply 1 by root 2 pi 0 pi minus plus pi minus pi 0, 2, minus 2 was a stretch case 

1, 1 was the antisymmetric case.  
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So, let me just write that down (Refer Slide Time: 24:00) 1, 1 is out here, it is minus 1 by 

root 2 pi 0 pi plus plus 1 by root 2 pi plus pi 0. 1, 0 is 1 by root 2 pi plus pi minus minus 

pi minus pi plus. These are the two antisymmetric states (Refer Slide Time: 14:42) and 1, 

minus 1 is out there; it is 1 by root 2 pi 0 pi minus minus pi minus pi 0. I need to now 

find the coupled state 0, 0 the iso singlet state. In terms of the uncoupled basis, I know 

that the contributions come from the same set of states that contributed to (Refer Slide 

Time: 33:17) 2, 0 or 1, 0 in general 2, 0. Recall that 1, 0 did not have pi naught pi naught 

in it. So, basically I can write this as a times pi plus pi minus plus b pi minus pi plus plus 

c pi naught pi naught.  
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I have the following relations. I have three unknowns and I can determine them using the 

fact that a squared plus b squared plus c squared equals 1. That is the 1st thing and then 0 

0 is orthogonal to 2 0 (Refer Slide Time: 33:17) so that gives me a by root 6 plus b by 

root 6 plus 2 c by root 6 equals 0. So, a plus b plus 2 c equals 0. This came from the fact 

that 2, 0 was orthogonal to 0, 0. But 0, 0 is also orthogonal to 1, 0 and therefore, I have a 

by root 2 minus b by root 2 equals 0. So, a equals b or a minus b equals 0, this came from 

the fact that 1, 0 is orthogonal to 0, 0. So, I have a equals b so here I have 2 a plus 2 c 

equals 0 which implies that a equals b equals minus c. So, I go back there and I have a 

squared plus b squared plus c squared equals 1 which implies that a is plus or minus 1 by 

root 3. Correspondingly, b is plus or minus 1 by root 3 and c is minus or plus 1 by root 3. 

I could choose any of this, but once more I follow the convention and I write 0, 0 (Refer 

Slide Time: 35:15) the 3rd entry c is pi 0. Of course, pi 0 is has an isospin less than pi 

plus and more than pi minus so I could choose any of these conventions and I have 1 by 

root 3 pi plus pi minus plus pi minus pi plus minus 1 by root 3 pi naught pi naught. This 

is again a symmetric state. Symmetric under interchange of the 3rd component of isospin 

term by term so this is 0, 0. 
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I have now listed out all the states, that is a minus 1 by root 3 here. I have now listed out 

all the states and now, we have the following comments following observations to make. 

The 1st observation is this. The stretched case that means 2, 2, 2, minus 2 and anything 

else in that multiplet, turn out to be symmetric states under interchange of the isospin 

labels. Whatever, I say for isospin also holds for any J 1 and J 2, but in this context we 

will be discussing a certain consequence I have already mentioned it both symmetry. 

(Refer Slide Time: 33:17)  

But, now coming back to this, this set of state is symmetric under the interchange of m 1 

and m 2, the 3rd component of isospin in this context. We would like to prove this in 

general, that if the J, J state in this case the i, i state is symmetric under interchange of 

the labels. All the other states in that multiplet also satisfy the same symmetric property. 

Now, if you look at this. Again if you look at this, this state is antisymmetric under 

interchange of the 3rd component labels and all the other states in that multiplet are again 

antisymmetric.  
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I need to show that in general, you have a coupled state J m. Let us start with a state 

which is symmetric which is J 1, m 1. My J 1 was equal to J 2 because I am considering 

2 i equals one state so in this problem perhaps it would be more sensible to write i 1, i 1 

z, i 1, i 2 z and call this i and i z. In general I would call this J m for the coupled states 

and this is like pi plus pi plus so for instance it is J 1 m 1, it is a same J 1 m 2 because J 1 

equals J 2 in my problem it is 1 and remember that m is equal to m 1 plus m 2. So, this is 

symmetric under interchange of m 1 and m 2 it is clear. 

So, now i use J minus on this. It gives me root of J plus m times J minus m plus 1 apart 

from the h crosses which I have said equal to 1 J , m minus 1; this is what I have on the 

left hand side. On the right hand side I have the 1st term gives me root of J 1 plus m 1 

times J 1 minus m 1 plus 1 and the state itself becomes J 1 m 1 minus 1 J 1 m 2 that is a 

1st term. The 2nd time the operator acts on this leaving this alone. So, I have root of J 1 

plus m 2 times J 1 minus m 2 plus 1. The 1st states stays put the 2nd one the m 2 value 

changes by 1. So, this is what I would have got. The original state was symmetric under 

interchange of m 1 and m 2. 

Now, if you look at this state again I see the same thing. If I interchange m 1 with m 2 

this becomes J 1 plus m 2 times J 1 minus m 2 plus 1 J 1, m 2 minus 1, J 1, m 1. So, you 

see this state becomes that and that state becomes this. This state goes to that and that 

state goes to this is an overall plus sign and this is just an overall coefficient. So, I can 



see that using J minus on a state which is symmetric is not going to change the 

symmetric properties of a state. (Refer Slide Time: 33:17) So, that is why, if 2, 2 was 

symmetric all the other states in the i equals 2 multiplet they are also symmetric under 

interchange of the labels. Similarly, if I have a state which is antisymmetric under 

interchange of the labels I would pick up the same antisymmetric property when I do a J 

minus on that state. (Refer Slide Time: 39:12) and that is what we have in the 1, 1, 1, 0 1, 

minus 1 series.  

So, symmetry and antisymmetric properties are preserved under the action of J minus 

and J plus. We now go back to the observation that we made earlier. The two neutral 

Pions do not contribute to the i equals 1, i z equals 0 state.  

(Refer Slide Time: 44:38)  

 

I am looking at this particular one here where I have expanded the coupled basis in terms 

of these uncoupled basis and I wonder if there is a deeper symmetry which prevents a 

contribution from pi naught pi naught to this state, because certainly if m is 0 or i z is 0, i 

1 z can 0 and i 2 z can be 0 that is allowed. (Refer Slide Time: 33:17) So, at the face of it 

I would expect pi naught pi naught contribution here the same that there was the pi 

naught pi naught contribution to 2, 0 and also to 0, 0 out there.  

So, why is it that this is happening? This is happening for a very deep reason it is called 

the generalized Bose symmetry. Pions or bosons the statement is the following, for 

fermion there is an analogous statement, but I am now looking at bosons. The two 



neutral pions are identical bosons. They also happen to be iso-partners in the sense if you 

take a pi 0 and take it is i z value to minus i z nothing changes. It is its own partner pi 

naught goes to pi naught under i z going to minus i z, because the neutral pi naught has i 

z equals 0.  

Whereas, pi plus and pi minus are iso-partners when I take i z equals 1 to minus 1 I get pi 

minus vice versa. So, pi plus pi minus are so-partners the pi naught pi naught again it is 

they are iso-partners, pi naught is its own iso-partner if you know what I mean. So, you 

see the statement is this: if I have two identical bosons like pi naught pi naught the total 

state in any case for a set of particles is going to carry a list of quantum numbers. Some 

quantum numbers related to space could be the space coordinates then the spin quantum 

numbers and then the isospin quantum numbers and so on.  
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The total state of the particle the pi naught pi naught system or any two particles. We 

will look at this problem specifically, is made up of a space part which involves the 

space coordinates of the two particles. The spin labels s and s z of the two particles and 

the isospin labels of the two particles. Now, for two identical bosons this is like if you go 

back to the harmonic isolator problem, where I had two harmonic oscillators. The next 

state of the two dimensional oscillator was given in my notation by ket n a direct product 

with ket n b, where n a was the quantum number corresponding to the 1st oscillator and n 



b the quantum number, corresponding to the 2nd oscillator. So, these are different 

quantum numbers.  

There are some labels here perhaps psi space in the case of the 2 pi naughts would be psi 

space would be a function of r 1 and r 2 where r 1 is the coordinate corresponding to the 

1st pi naught and r 2 to the 2nd pi naught and so on. Similarly, if you look at psi spin, it 

will have s of the 1st pi naught s z of the 1st pi naught, s of the 2nd pi naught and s z 

value of the 2nd pi naught isospin i, i 1 z, i 1, i 1 z, i 2, i 2 z as we have said in this 

problem. So, for two identical bosons the net state or the coupled state is symmetric 

under pairwise interchange of the space and spin labels. So, if you look at pi naught pi 

naught. They are two identical bosons and if you interchange the space and spin labels, 

the psi space psi spin the net state which is psi space psi spin picks up an overall positive 

sign. So, it is symmetric under pairwise interchange, goes to itself picks up an overall 

positive sign.  

(Refer Slide Time: 50:01)  

 

Now, for iso-partners, example pi plus pi minus, pi 0, pi 0 and so on. The net state is 

symmetric under pairwise interchange of the space spin and isospin labels that means i 1 

z and i 2 z. By this we mean i 1 z going to i 2 z and i 2 z going to i 1 z by interchange of 

the spin labels we mean M 1 going to M 2 and M 2 going to M 1, whereby M 1 and M 2 

I mean the 3rd component values of spin. And space would mean r 1 going to r 2 and r 2 

going to r 1, where r 1 and r 2 are the coordinates of the two particles. The net wave 



function, the net state is symmetric under pairwise interchange of all these labels, not one 

at time, all of them, all these labels. (Refer Slide Time: 46:51) So, let us get back to pi 0 

pi 0 the case of pi 0 0. This is the generalized Bose symmetry or Bose principle.  

(Refer Slide Time: 51:46)  

 

This is the Bose principle, Bose symmetry. We have already seen that since pi 0 pi 0 are 

identical bosons under interchange of the space and spin labels. The net space spin part 

of its state does not change, just picks up an overall positive sign. But, they also happen 

with the iso-partner pi naught is its own iso-partner. So, now if you look at pi naught pi 

naught and use this. (Refer Slide Time: 50:01) Since psi space psi spin is already 

symmetric under interchange of the space spin labels. And the net state which includes 

isospin as well should be symmetric under interchange of all the labels, just psi isospin 

alone should be symmetric under interchange of i 1 z and i 2 z. Which means that the 

isospin coupled state cannot be antisymmetric under interchange of the 2 pi naughts 

(Refer Slide Time: 33:17)  

Look at 2, 0 here. This is symmetric under interchange of the 2 pi naughts, there is no 

problem anyway it would be symmetric under interchange of the 2 pi naughts, because 

they are identical particles in any case. (Refer Slide Time: 44:38) And therefore, they 

cannot be present here. This is antisymmetric under interchange of pi plus pi minus picks 

up an overall negative sign, but that is ok because these are not identical bosons. They 

are iso-partner bosons and between the isospin labels and the space spin labels, I would 



expect the total state of pi plus pi minus to be symmetric. (Refer Slide Time: 51:46) 

Whereas, in the case of pi naught pi naught already just the space spin part is symmetric 

and therefore, by the generalized Bose principle the isospin part alone should be 

symmetric under interchange of the two labels. (Refer Slide Time: 44:38) Therefore, it 

does not contribute to an antisymmetric isospin wave function. So, there is a deep 

principle behind what we saw by brute force algebra that 1, 0 surprisingly did not have a 

contribution from two neutral pions the reason is Bose symmetry. 


