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In the last lecture, I spoke about an interesting quantum superposition of the photon 

number states.  

(Refer Slide Time: 00:27)  

 



The superposition is called the coherent state and by way of recapitulation the coherent 

state is represented by ket alpha. Alpha could be any complex number and this is e to the 

minus mod alpha squared by 2 summation n equals 0 to infinity, alpha to the n by root n 

factorial ket n, where the ket n’s are the photon number state. So, you can have a 

superposition of the 0 photon state, the 1, 2, 3 and so on with a very specific weightage 

in front of the state. This state could be got by the action of a unitary operator D of alpha 

on ket 0. So, D of alpha on ket 0 gave me ket alpha. D of alpha is a unitary operator and 

you will recall the D of alpha was e to the alpha a dagger minus alpha star a. 

While we prove this, I made a statement that D of alpha a D dagger of alpha was simply 

a shift in a. It just produced a minus alpha, this is to be read as a minus alpha times the 

identity operator. So, really there is an identity operator here, but I am just going to write 

this as a minus alpha. Similarly, D of alpha a dagger, D dagger of alpha was a dagger 

minus alpha star times identity. Once more I will write this as a dagger minus alpha star. 

So, to begin with I wish to establish these identities. I prove this using a variant of the 

Baker Campbell Hausdorff formula. There are a series of such formulae which we would 

establish later on.  

(Refer Slide Time: 03:05)  

 

We will derive them in a tutorial session, but right now I will use the end result of that 

derivation and it is a variant of the Baker Campbell Hausdorff formula and it says: if you 

have an operator A and an operator B, then e to the A B e to the minus A is simply B 



plus the commutator of A with B plus the commutator of A with the commutator of A 

with B plus so on and there is a 2 factorial here. So, the next term to complete the series 

would be the commutator of A with the commutator of A with A with B by 3 factorial 

and so on, which is precisely what we will use here, we will use this identity. 

In this problem A is simply alpha a dagger minus alpha star a. Recall that D dagger of 

alpha was simply D of minus alpha and therefore, on this side (Refer Slide Time: 00:27) 

I have D dagger of alpha in this identity, which is D of minus alpha which is minus A, 

because if I substitute minus alpha for alpha I simply get minus A. And therefore, if I 

wish to find the commutator of A with B in this problem that is the same as finding out 

the commutator of alpha a dagger minus alpha star A with B and B in this case is a. 

(Refer Slide Time: 00:27) Because I am trying to establish this identity.  

The commutator of the 2nd term alpha star a with a drops out because a commutes with 

itself. That leaves behind the commutator of alpha a dagger with a. The commutator of a 

dagger with a is minus 1 and therefore, this just gives me minus alpha. The next term 

calls for the commutator of A with the commutator of A with B. Now, that is the same as 

writing commutator of alpha a dagger minus alpha star a. The commutator of A with B is 

minus alpha times identity if you wish which is what we have not put on here. But any 

operator commutes with the identity and therefore, that is 0. As a result all these terms 

vanish and do not make a contribution. 
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I therefore, can write D of alpha a D dagger of alpha is a, from the 1st term (Refer Slide 

Time: 03:05) plus commutator of A with B, which is minus alpha. Similarly, we can find 

D of alpha a dagger D dagger of alpha. That is a dagger plus the commutator of A with B 

in this case is alpha a dagger minus alpha star a, commutator with a dagger. All other 

commutators are 0. Minus alpha star a with a dagger in the commutator and that is a 

dagger minus alpha star. Since, this is just minus alpha star times identity all other higher 

commutators out here would vanish and therefore, I have D of alpha a dagger D dagger 

of alpha is a dagger minus alpha star. (Refer Slide Time: 00:27) That is how I establish 

these identities.  

(Refer Slide Time: 07:33)  

 

So, now we have the following picture. It is a dagger minus alpha star out here and D of 

alpha on ket 0, is ket alpha. What is D of alpha on ket 1? This is simply D of alpha, but 

ket 1 is a dagger ket 0 so I put that here. I can now put in a D dagger of alpha, D of alpha 

here, because that is identity. I use the fact that D of alpha a dagger D dagger of alpha is 

a dagger minus alpha star, an identity which I have just now proved. Then there is a D of 

alpha acting on ket 0 which gives me ket alpha. 

So, you see this state D of alpha acting on ket 1 can be got from ket alpha by applying a 

dagger minus alpha star. So, basically D of alpha on ket 2 is a dagger minus alpha star. 

Again an a dagger minus alpha star on alpha. This gives me a very interesting picture.  
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I can now have a diagram which says the natural basis, which I was considering had a set 

of Eigen states 0, 1, 2, 3, 4 etcetera. There was a raising operator a dagger and a lowering 

operator a. If we discuss the simple harmonic oscillator that is the language I will use. If 

I were talking about photon creation and destruction, a dagger would be the photon 

creation operator and a will be the photon destruction operator. You go from the 0 

photon state to the 1 photon state and so on using a dagger repeatedly you come down 

from the 2 photon state to the 1, to the 0 by using a. And a and a dagger satisfies this 

algebra, by this I mean the identity operator. 

Then if I act D of alpha on ket 0, I get the state ket alpha. If I work with D of alpha on 

ket 1, I get a state which I can reach from ket alpha by acting a dagger minus alpha star 

on ket alpha. (Refer Slide Time: 07:33) That is what I have proved here D of alpha on 

ket 1 is a dagger minus alpha star on ket alpha. Similarly, D of alpha on ket 2 would 

involve using a dagger minus alpha star on this state. Now, these states could well be 

labeled 1, alpha because D of alpha acted on ket 1 to produce this state. This state could 

be labeled 2, alpha. This is merely a notation, D of alpha acting on ket 2 give me this 

state and so on. The lowering operator is a minus alpha. I can go here using a minus 

alpha. 

It is clear that if I represent by A dagger, a dagger minus alpha star, a dagger minus alpha 

star as A star and a minus alpha is A. It is evident that A, A dagger is 1. What is it that 



we have done? We have done a change of basis through a unitary transformation. The 

unitary operator that was used was the displacement operator D of alpha and this 

displacement operator took the basis set, the natural basis ket 0, ket 1, ket 2 ket 3 and so 

on to ket alpha, 1, alpha, 2, alpha and so on. 

These states are all orthogonal to each other, as much as these states are all orthogonal to 

each other. The states have all been normalized to unity. And here therefore, is an 

example of a very specific unitary transformation which has taken us from one basis set 

in the Hilbert space spanned by ket 0, 1, 2, 3 etcetera to another basis set in the same 

Hilbert space. Any state in the Hilbert space could be written as a linear superposition of 

this infinite set or as a linear superposition of that infinite set. Since states changed by 

using d of alpha on ket n gives me ket n, alpha. Operators will change in the fashion that 

was mentioned earlier (Refer Slide Time: 07:33). 

The operator gets sandwiched between D and D dagger. As a result of which the algebra 

does not change. Initially I had a, and a dagger and their commutator was 1. Now, I have 

A and A dagger and their commutator is 1. So, the algebra does not change. The new 

basis set is also mutually orthogonal and they are all normalized to 1, each state in the 

new basis set, so was the old basis set. And the whole transformation on the operators 

and on the basis set has been brought about by this particular unitary operator D of alpha. 

While we are at it, it is good to list out another property of D of alpha. 

(Refer Slide Time: 14:15)  

 



Consider D of alpha plus beta. Now, this object is e to the alpha a dagger minus alpha 

star a plus beta a dagger minus beta star a. Now, we could represent alpha a dagger 

minus alpha star a as the operator A and beta a dagger minus beta star a as the operator 

B. So, D of alpha plus beta has the structure e to the A plus B, by the Baker Campbell 

Hausdroff formula which is now familiar to you.  

(Refer Slide Time: 15:06)  

 

I can write D of alpha plus beta in the following manner. So, D of alpha plus beta is e to 

the A plus B and that is the same as e to the A e to the B e to the minus half commutator 

of A with B. But, it is also the same as e to the B, e to the A, e to the plus half 

commutator of A with B. I therefore, have now e to the A is simply D of alpha, e to the B 

is d of beta, e to the minus half commutator of A with B is e to the B which is D of beta e 

to the A which is D of alpha, e to the plus half commutator of A with B. Therefore, D of 

alpha and D of beta do not commute with each other. I have this object as an extra piece, 

they do not commute and D of alpha, D of beta is D of beta, D of alpha, e to the 

commutator of A with B.  

Now, what is the commutator of A with B in this case? Alpha a dagger minus alpha star 

a, commutator with beta a dagger minus beta star a. Alpha a dagger commutes with beta 

a dagger, but alpha a dagger with minus beta star a gives me a contribution which is 

alpha times minus beta star commutator of a dagger with a, which is minus 1 therefore, 

giving me a plus sign there. Now, look at the 2nd term minus alpha star a commutator 



with beta a dagger gives me minus alpha star beta. The commutator of a with a dagger is 

1. However, minus alpha star a commutes with minus beta star a and therefore, this is the 

only contribution. But this object is simply twice 2 i imaginary part of alpha beta star. 

(Refer Slide Time: 17:42)  

 

I therefore, have an interesting relation D of alpha D of beta is equal to D of beta D of 

alpha and then there is an extra piece, which is e to the 2 i, imaginary part of alpha beta 

star. So, it is important to realize that these two unitary operators, the displacement 

operator in question, with for an alpha and a beta as a argument. These two operators do 

not commute with each other. They certainly pickup an extra phase out here. There are 

several other interesting quantum superpositions of the photon number states.  

Even as the coherent state is the ideal laser light and has been generated in the laboratory 

and is very useful in various branches of physics and has immense applications as well. 

There are other interesting quantum superpositions like the squeeze state of light which 

too has been realized in the laboratory. The squeezed state of light and example of 

squeezed light has already been given earlier. We had the state psi which is root 3 by 2 

ket 0 plus half ket 1. 

So, this was a specific squeezed state which was the superposition of the 0 photon state, 

with the 1 photon state. There are other interesting superpositions and even as the 

coherent state is the superposition of an infinite set of photon number states. I define a 

squeezing operator which could act on the vacuum and produce a very specific 



interesting infinite superposition of photon number states, which also display squeezing 

properties. So, similar to the displacement operator one introduces the squeezing 

operator, S of beta where beta is any complex number. This is the squeezing operator. S 

of beta is defined in the following manner.  

(Refer Slide Time: 20:27)  

  

S of beta is e to the minus half beta a dagger squared minus beta star a squared. It is clear 

therefore, that only even photon number states will appear when S of beta acts on the 

vacuum for instance. And when S of beta acts on any photon number state, it increases or 

decreases the number of photons in the infinite superposition by 2 at a time, because of a 

dagger squared and a squared being present there. 

Now, S of minus beta is e to the half beta a dagger squared minus beta star a squared. It 

is clear that S of beta S of minus beta is equal to 1 and that is the same as S of minus beta 

S of beta. By 1 I mean the identity operator. Therefore, S dagger of beta is S of minus 

beta. This is the unitary operator and therefore, S dagger of beta is S inverse of beta. 

Even as the displacement operator is a unitary operator, the squeezing operator is another 

unitary operator. Now, let us find out the action of the squeezing operator on a and a 

dagger.  
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I wish to find the following: S dagger of beta a S of beta where S dagger and S are 

defined there. Once more, I recall the identity e to the A B e to the minus A is B plus 

commutator of A with B plus commutator of A with A with B by 2 factorial plus 

commutator of A with A with A with B by 3 factorial and so on. In this case A is simply 

half beta a dagger squared minus beta star a squared. That is what we have here. (Refer 

Slide Time: 20:29) S dagger of beta is S of minus beta and that is here, e to the half beta 

a dagger squared minus beta star a squared. B itself is the operator a, and we need to find 

these commutators and simplify. 

(Refer Slide Time: 23:41) 

 



So, we have commutator of A with B is half beta a dagger squared minus beta star a 

squared with a certainly, the 1st term contributes. I pull out a beta and I have commutator 

a dagger squared with a. The 2nd term here commutes with a because there is an a 

squared here and there is an a there and any object commutes with itself or its powers. I 

use the a b c rule here so that is beta by 2 a dagger commutator of a dagger with a plus a 

dagger a commutator with a dagger.  

Now, a dagger a commutator is minus 1 and therefore, this is minus 2 beta a dagger by 2 

which is equal to minus beta a dagger. So, this is what I have for the commutator of A 

with B. (Refer Slide Time: 20:29) Now, I need to find the next term which is the 

commutator of A with A with B by 2 factorial.  

(Refer Slide Time: 25:26)  

 

So, let us work out that commutator now. (Refer Slide Time: 23:41) Commutator of A 

with A with B is a half beta a dagger squared minus beta star a squared. Its commutator 

with minus beta a dagger. So, that is minus beta by 2, I have pulled out the beta and the 

minus sign. This is the commutator that I need to find, a dagger squared commutes with 

a dagger. Therefore, this commutator the 1st term commutes with a dagger leaving 

behind a minus beta star commutator of a squared with a dagger, which is the same as 

mod beta squared by 2, commutator of a squared with a dagger.  

And this commutator again can be evaluated using the a b c rule. The commutator of a 

with a dagger is plus 1 and therefore, this gives me mod beta squared by 2 times 2 a, 



which is mod beta squared a. (Refer Slide Time: 22:22) Of course, I need to take into 

account the fact that there is a 1 by 2 factorial multiplying that term which I can put 

down. Now, I need to find the commutator of A with A, with A, with B by 3 factorial. 

(Refer Slide Time: 25:27) So, this object here is simply the commutator of A with A with 

B. 

(Refer Slide Time: 27:34)  

 

So, let us just do one more term and that is the commutator of A with this object. That is 

the same as half commutator of beta a dagger squared minus beta star a squared. (Refer 

Slide Time: 25:26) With this commutator, which is what I have put down here mod beta 

squared a I can pull out the mod beta squared. The 1st term is the commutator of beta a 

dagger squared with a, because I have pulled this one out here. The 2nd term does not 

contribute because a squared commutes with a. This gives me a beta mod beta squared 

by 2 and again I use the a b c rule. It is a dagger commutator of a dagger with a plus 

commutator of a dagger with a times a dagger.  

And, this as we know by now is minus 1 and therefore, I have minus beta, mod beta 

squared by 2, 2 a dagger which is minus beta mod beta squared a dagger. Of course, I 

will have a 1 by 3 factorial multiplying this term. So, let us put down all the terms 

together. 
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And therefore, I have S dagger of beta a S of beta. It is simply a as a 1st term, minus beta 

a dagger that is the 2nd term. Then I have (Refer Slide Time: 22:22) plus commutator of 

A with A with B by 2 factorial and that is out there plus mod beta squared by 2 factorial 

a. And then I have that (Refer Slide Time: 27:34) commutator of A with A with A with B 

that gives me a minus beta mod beta squared a dagger. That comes with the 3 factorial 

and so on.  

So, clearly there are terms multiplying a and there are terms multiplying a dagger. And it 

should be possible now to do the following: you can write this as a times 1 plus mod beta 

squared by 2 factorial plus mod beta to the power of 4 by 4 factorial plus so on. Minus a 

dagger beta plus mod beta squared by 3 factorial times beta plus so on. That is the same 

as a and let me define beta in the polar form as r e to the i theta. So, in the mod squared I 

just have an r squared and an r to the power of 4 and so on. So, this quantity is a cos h r.  

There is always a beta here. So I can pull out an e to the i theta and what is left behind is 

an r plus there is an r squared here and an r here so an r cube by 3 factorial and so on. 

And this is what I have. So I have S dagger of beta a S of beta is simply a cos h r minus a 

dagger e to the i theta sin h r.  



(Refer Slide Time: 32:01)  

 

We can proceed in the same way and show the following that S dagger of beta a dagger 

S of beta is a dagger cos h r minus a e to the minus i theta sin h r. Now, let us consider S 

dagger of minus beta a dagger S of minus beta. Simply means replace all betas by minus 

betas, but that would just be identical to S of beta a dagger S dagger of beta, because S 

dagger of minus beta is merely S of beta. These relations are good to know and 

remember because right away we will be looking at a very interesting quantum 

superposition, which is the squeezed vacuum. The squeezed vacuum, which I will denote 

by ket beta is simply S of beta acting on ket 0. 

So, if we are talking about the simple harmonic oscillator, it is S of beta acting on the 

ground state of the oscillator or the vacuum state. And if it is quantum optics, then this is 

a 0 photon state or the vacuum state and S of beta acts on the vacuum. To produce ket 

beta we can check that ket beta is a squeezed state and that is why it is called the 

squeezed vacuum. Remember that beta is any complex number. It is very clear that ket 

beta is normalized to unity because this is the same as S dagger of beta S of beta ket 0 

and this object is identity and therefore, this is the same as the inner product of 0 with ket 

0 with bra 0 and that is 1. So, this is the normalized state. What we need to show is that, 

it is the squeezed state.  
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So we recall that we had X which was a plus a dagger by root 2 and the variance in X 

was expectation X squared minus expectation X the whole squared. We need to compute 

this and find out if it is less than half or greater than half. If it is less than half, it is a 

squeezed state with squeezing in the X quadrature. To calculate expectation X the whole 

squared in the case of the squeezed vacuum, we need to first find expectation X and that 

is this object S dagger of beta plus a dagger S of beta 0 divided by root 2. But we know 

this.  

This quantity is just 1 by root 2. The 1st term is 0, S dagger of beta a S of beta 0. The 

2nd term is 0 S dagger of beta a dagger S of beta 0. This is expectation X in the state S of 

beta ket 0. (Refer Slide Time: 32:01) This object is known to us S dagger of beta a S of 

beta is out here. (Refer Slide Time: 29:09) It is a cos h r minus a dagger e to the i theta 

sin h r. 

So, this is a cos h r minus a dagger e to the i theta sin h r and S dagger of beta a dagger S 

of beta. This object is a dagger cos h r minus a e to the minus i theta sin h r. What would 

this give us? These are numbers cos h r, sin h r, e to the i theta are merely numbers. So, 

here I have the expectation value of a in the state ket 0 and that is 0 because a annihilates 

ket 0. Now, a dagger acts on ket 0 to give me ket 1, but bra 0 is orthogonal to ket 1 and 

therefore, the contribution from here is 0. Similarly, a dagger acts on ket 0 to give me ket 

1. The inner product of bra 0 with ket 1 is 0. 



So the 1st term does not contribute. As to the 2nd term a simply annihilates ket 0 and 

therefore, none of the terms contribute and I have expectation value X 0 which implies 

expectation value X the whole squared is also 0. The non-trivial contribution therefore, 

comes from expectation X squared which is what we will proceed to find now.  
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Now, X squared is simply 1 by root 2 a plus a dagger the whole squared and therefore, 

that gives me a half a plus a dagger times a plus a dagger. We have done this in the 

earlier lecture and this gives us a squared plus a dagger squared plus a dagger a plus a a 

dagger, that is 2 a dagger a plus 1. So, this is X squared therefore, have to find various 

expectation values. First of all, we need to figure out this object. We need to find out 

expectation value of a squared when it is sandwiched between ket beta and bra beta. This 

is something we need to find out.  

Similarly, we need to find out 0 S dagger a dagger squared S 0. The third thing we need 

to find out 0 S dagger a dagger a S ket 0. The last term is clear and is simply 0 S dagger. 

The identity operator and therefore, this is 1.Tthere is an overall factor half multiplying 

these terms. 
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So we begin with the first term. Now, 0 S dagger a squared S acting on ket 0 can be 

written as 0 S dagger a and I can insert an S S dagger, because this is an identity out 

there. The a squared was written as a times a, S ket 0. But I know what is S dagger a S? 

And therefore, this is 0. S dagger a S is a cos h r minus a dagger e to the i theta sin h r. 

That repeats because there is another S dagger a S here. So, that is an a cos h r minus a 

dagger e to the i theta sin h r acting on ket 0. 

So, I multiply this term by term. The first term is a squared cos squared h r minus a 

dagger a e to the i theta sin h r cos h r minus a a dagger e to the i theta sin h r cos h r and 

then the last term is plus a dagger squared e to the 2 i theta sin squared h r. And this I 

need to find the expectation value of this object in the state ket 0. It is evident that the 

first term does not contribute because a squared on ket 0 is 0. Now a dagger a on ket 0 is 

also 0, because ket 0 is an Eigen state of a dagger a with Eigenvalue 0. So, these terms 

do not contribute, a dagger squared acting on ket 0 gets me ket 2 and by the 

orthonormality property, that ket 0 is orthogonal to ket 2. This 2 will not contribute and 

then I have minus a, a dagger left. 

So, this is the same as minus ket 0 a a dagger e to the i theta sin h r cos h r ket 0. I know 

that a a dagger is 1 plus a dagger a and there is an e to the i theta sin h r cos h r ket 0. 

Again a dagger a does not contribute because a dagger a acting on ket 0 gives me 0. So 

this is just minus e to the i theta sin h r cos h r ket 0 with bra 0. That is the same as minus 



e to the i theta sin h r cos h r. This is how I find this object when a squared is sandwiched 

between ket beta and bra beta. This is the manner in which I proceed and figure out what 

the answer is and this is what I get. I get minus e to the i theta sin h r cos h r.  
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So, returning to this the first item here has already been simplified and I get minus e to 

the i theta sin h r cos h r. I need to now find out a dagger squared S 0. Now suppose, I 

took the dagger of this object, ket beta would become bra beta, bra beta would become 

ket beta and a squared would become a dagger squared. So, I simply need to take the 

dagger of this object in order to find out what is ket 0 S dagger a dagger squared S ket 0 

and therefore, I get the answer in this case to be minus e to the minus i theta sin h r cos h 

r. Now, the difference is out here, where I had e to the i theta in the first case, I have e to 

the minus i theta in the 2nd case. The fourth is already clear, it is 1. All I need to do is 

find out 0 S dagger a dagger a S ket 0 and I will proceed to do that now. 
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So here we go, we need to find 0 S dagger a dagger a S ket 0, that is item 3 here. Once 

more I use the old trick and I introduce an S S dagger in between here on ket 0. Now S 

dagger a dagger S is a dagger cos h r minus a e to the minus i theta sin h r and S dagger a 

S is a cos h r minus a dagger e to the i theta sin h r and of course, there is a ket 0. Once 

more I can expand the terms. The first term is an a dagger a cos squared h r. Then I have 

a minus a squared e to the minus i theta sin h r cos h r. Then I have a minus a dagger 

squared e to the i theta sin h r cos h r and the last term is plus a a dagger sin h r sin 

squared h r and this whole thing acts on ket 0. This can be simplified as before.  

Look at the first term a dagger a acting on ket 0 gives me 0 so that does not contribute, a 

squared simply annihilates ket 0, a dagger squared acting on ket 0 takes it to ket 2 and by 

orthogonality this is 0 and I am left with 0 a a dagger sin squared h r 0. As before I can 

work it out and this object is simply 0, 1 plus a dagger a sin squared h r ket 0 and while a 

dagger a does not contribute the one does and I get a sin squared h r. So, this is all that I 

have here. 



(Refer Slide Time: 47:21)  

 

 So, I have various terms which I have put down. This object is simply sin squared h r 

and all we need to do is re-substitute these in X squared and find out the expectation 

value.  

(Refer Slide Time: 47:41)  

  

So let us look at what is expectation X squared. Expectation X squared in the state beta is 

what we are out to find. (Refer Slide Time: 47:21) And that is half expectation a squared 

which is minus e to the i theta sin h r cos h r minus e to the minus i theta sin h r cos h r. 

So, that takes care of a squared plus a dagger squared plus twice a dagger a. (Refer Slide 



Time: 47:21).That is 2 sin squared h r plus 1 and that is just a 1 there and the whole thing 

multiplies half. Let set theta equal to 0. Example: theta is a phase it can take various 

values. If we say theta is equal to 0 that is minus 2 sin h r cos h r plus 2 sin squared h r 

plus 1. That is half minus sin 2 h r plus 2 sin squared h r plus 1. 

This object is always less than half. Beta X squared, beta is always less than half for r 

greater than 0, r has to be greater than 0 because you will recall that beta is r e to the i 

theta and for all values of r, this object is less than half. Since expectation X the whole 

squared was 0 because expectation X was 0 and expectation X squared is less than half 

for this example when theta is equal to 0. This implies delta x the whole squared is 

expectation X squared minus expectation X the whole squared. Since, this object is less 

than half. It is less than half for theta equal to 0. 

So, with this value of theta at least, we have seen that there is squeezing in the X 

quadrature. We can calculate delta p, where p is a minus a dagger by root 2 i as defined 

in an earlier lecture. We will find that for theta equal to phi, there is squeezing in the p 

quadrature. The squeezed vacuum is very interesting for the following reason that for 

various values of the parameter theta, you could either get squeezing or no squeezing.  

And therefore, I can change the parameter and change the various squeezing properties 

of this particular state, the squeezed vacuum. Such interesting quantum superpositions of 

light have been realized in the laboratory. The coherent state, superpositions of the 

coherent state, ket alpha and say 1, alpha 2, alpha etcetera call the photon added coherent 

states, the squeezed vacuum and so on have been produced in the laboratory and used for 

various purposes. 


