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So, in the last lecture we saw the electrons self energy diagram, and we have seen how 

such a diagram gives contribution to the mass of the electrons. In this lecture, we will 

consider a diagram of this kind where there is a fermions in the loop. So, at one loop 

level this is last diagram that we need to consider. You have a virtual photon of 

momentum let us say q, and there is a pair created here which is subsequently 

annihilated. And finally, you again have a virtual photon; if I denote this momentum here 

to be k, then this will simply be k plus q. And we need to consider the contribution of 

this diagram, a diagram of this type to the photon propagator; this is what we will discuss 

in today’s lecture. 

So, we can use the Feynman diagram, we know what. So, if we forget about these two 

photon propagators, then the contribution from this loop will be given by first you have a 

vertex here for which I will put a minus i e 0; in this lecture I will denote e 0 to be the 

charge of the electron instead of e. At the end of this lecture you will see why a 0 instead 

of e. So, you will have i e 0 gamma mu for this vertex. Then you have a fermions 



propagator which goes like i divided by k slash minus m and you have for this vertex 

again you have a factor of minus i e 0 gamma nu. And for this fermions propagator it is i 

divided by k slash plus q slash minus m, and there is a there is a closed fermions loop for 

which you have to put a factor of minus 1. And you need to trace over this and because 

there is loop here you have to also integrate over the loop variable case. 

So, you have d 4 k divided by 2 pi to the power fourth and this. So, this is what you will 

get from a closed fermions loop like this. I will denote this to be i pi 2 mu nu of q if you 

integrate over k, the only thing that will be left is q. So, pi 2 will be a function of q, and 

as usual 2, 4 because it is second order in e 0 square, this and this; the contribution is of 

order e 0 square that is why I denote it as pi 2, and this is what you will get. We will 

evaluate this diagram explicitly little later. First we will discuss what the physics of such 

a contribution here. As usual we will denote all the one particle irreducible diagrams to 

be like this; I will write here as 1 PI. 

This will be all diagrams which are usually irreducible; in the sense if you remove any of 

these internal lines, then the diagram is not separated into two parts. So, all such 

diagrams I will denote them like this and sum of all such diagrams I will denote by this 

symbol here. And I will define pi mu nu such that I pi mu nu of a q and this is q it is 

given by the contribution from such a diagram. So, this is what I will denote to be I pi 

mu nu of q. 
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And then the full propagator will actually be given by the full proton propagator to all 

orders will be determined by taking sum from all such diagram. So, at tree level you 

simply have this; after that you have only one such term here and all such one particles 

irreducible diagrams included like this. So, this is what is going to give us the full proton 

propagator, and I will denote this by the symbol. 

This full propagator is denoted by this symbol; this is what I will get. So, we will like to 

know what this quantity here is; even before we try to compute this quantity, we can see 

what for this object can take place. So, using symmetry arguments and ward identity we 

can get the most general for that that this guy can take place. First of all you know that 

this is the symmetric function and also it can only be functions of q. 
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So, the only thing that it can be a function of its eta mu nu which is a symmetric second 

ring tensor, and in addition you can have q mu times q nu. So, the most general form for 

phi mu nu will be pi mu nu, for simplicity pi mu nu simply will be A times eta mu nu 

plus B times q mu q nu. But now if we use ward identity which basically says that q mu 

pi mu nu equal to 0, then this immediately give me. So, the first term A times q nu and 

from the second term I get plus B q square q mu equal to 0; therefore, A equal to minus 

B times q square. 
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So, therefore, the ward identity implies this to be minus 1 over q square; this is what you 

will get, where this quantity can actually be a scalar function of q. So, therefore, this A I 

will denote this to be sum pi of q square where pi is the scalar function and then the 

tensor reel structure is given by this structure. So, this is the most general for that pi mu 

nu can take; therefore, all we need to do is we need to compute pi here. 

So, once we know that one particle irreducible diagrams will give a contribution which is 

of this form, we can now come back and then we can compute the full propagator; the 

exact propagator to all orders in perturbation theory can be computed by summing over 

all such diagrams and this is given by. 
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So, the tree level term will give me. So, I will write this equal to this. This at tree level I 

will have minus I eta mu nu; f q is the momentum then this will simply be q square. This 

is from this term; here you will have one proton propagator which will simply be minus i 

eta mu rho over q square. Then you will have this which I denote to be i pi of rho sigma 

and you have finally, the proton propagator here which is again given by minus i eta 

sigma nu divided by q square. Then you have a diagram here which will have two such 

terms and so on. 

So, this is what you are going to get here. Now suppose I will introduce this function this 

tensor here delta of rho sigma to be delta rho sigma minus q rho q sigma divided by q 

square. Then you can see this quantity here if I multiply this with this, then i times minus 

i gives me plus 1, and this here will simply be. 
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So, pi of rho sigma is simply eta rho sigma minus q rho q sigma divided by q square; to 

that I will multiply by eta sigma nu. So, if I have eta sigma nu then you have eta sigma 

nu which is basically delta of rho nu minus q nu q rho divided by q square. So, this is this 

delta of rho nu. So, this is what I will get if I multiply i eta sigma nu with i times pi rho 

sigma. For pi of q square I will use this notation here. Remember you have this q square 

and this term. So, I can as well write it as q square times this times pi of q square. So, my 

definition of pi of q square will involve a q square here. So, in terms of that this is just 

for convenience so that I will not have a 1 over q square here. 

So, eat mu nu times eta rho sigma divided by q square minus i times i pi is given by this 

times pi of q square here. So, you will have a factor of pi of q square here, and then 

finally, you have pi of q square. So, this is just to say that if I leave the first term here, 

then the second and third term, the product of second and third term is nothing but delta 

rho nu times pi of q square. So, if this is my delta rho sigma, then what I get here is this 

term here is given by first term is going to remain as it is. So, it is i eta mu nu divided by 

q square, and the second term to emphasize what I said I denote pi of rho sigma. I know 

pi of rho sigma can only take this form; it can be given by q square eta rho sigma minus 

q rho q sigma. 

Ward identity uniquely determines this form times any some scalar function of pi of q 

square which we need to determine by doing explicit computation. So, if this is what is 



pi of rho sigma, then this term is given by minus i eta mu rho divided by q square times 

the product of these two terms is simply delta, sigma is contracted. So, delta rho nu times 

pi of q square. The next term will again be written n power one minus i eta mu rho 

divided by q square. Then you will have delta of rho sigma, delta of sigma nu pi of q 

square whole square, and it will continue. So, this is what we are going to get, alright. 

So, this first term is given by this; the second one is this one, and the third diagram will 

give a term like this and then so on. Now you notice if this is our delta rho sigma, then 

delta rho sigma delta sigma nu is nearly given by delta rho sigma minus q rho q sigma 

over q square times delta sigma nu minus q sigma q nu divided by q square. And the first 

term when it multiplies here gives me a delta rho nu, the second term minus q rho q nu 

divided by q square. 

This term here minus q rho q nu divided by q square and the last term here plus you can 

see q rho q nu; again there will be 1 over q forth here but q sigma q sigma is again q 

square. So, this will be plus q rho q nu divided by q square. This will cancel, and as a 

result this is merely given by delta of rho nu. So, this quantity here is simply delta of rho 

nu, and that will keep continuing. So, what we can do is that we have a common factor i 

eta mu nu over q square or. 
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So, I can write the first term as minus i eta mi rho delta of rho nu over q square, then i eta 

nu rho is there in all terms. So, I can write it as i eta mu rho divided by q square times 

this chronicle delta rho mu, and then the second term will give me delta rho nu pi q 

square. The third term delta rho nu pi q square whole square and so on; this is what I am 

going to get. The first term also I can write it as delta rho nu is delta rho nu plus q rho q 

nu divided by q square. If I substitute it here, then this is going to give me minus i eta rho 

nu over q square; there will be delta rho nu in all terms. So, I will get delta rho nu and 

then whatever left is a geometrics series; it is 1 plus pi plus pi square and so on which I 

will simply denote as 1 over 1 minus pi of q square. 

And finally, because I have a chronicle delta here instead of this, I will get an additional 

term here which is given by minus i eta nu rho divided by q square times q rho q nu 

divided by q square; this is what I am going to get at the end of the day, alright. So, what 

I have here it is a simply minus i eta rho nu over q square delta rho nu divided by 1 

minus pi of q square and here minus I, this can contract and it will give me q mu q nu 

divided by q to the power fourth; this is what I am going to get. I can simplify this eta 

rho nu if I multiply it with; sorry, it is eta mu rho, it is not eta rho nu, it is eta mu rho. So, 

I have a eta mu rho in this term. 

If I multiply eta mu rho by delta mu nu, what I will get is simply I take minus i q square 

times 1 minus pi of q square. So, minus i divided by q square 1 minus pi of q square 

times. This time this is merely given by eta mu nu minus q mu q nu divided by q square; 

that is the first term. And the second term is simply given by plus minus i over q square q 

mu q nu divided by q square. So, this is what I will get for the full propagator. Now this 

quantity has to be considered; for example, suppose we consider any physical process, 

then this will contribute to the s-matrix. When I evaluate this the matrix elements of the 

s-matrix, we already know this there will be three terms here; firs term eta mu nu times 

this, the second and third term are of this form. 
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So, for example, finally, we know that whatever quantity we will get some chi mu nu 

kind of thing, it will have this form A eta mu nu plus B q mu q nu and so on. This 

quantity the s-matrix will have a term like that, and then it need to satisfy the ward 

identity. So, the ward identity basically says that q mu times this is equal to 0. So, 

therefore, you have a q mu here, you have a q mu here. So, if q square is nonzero then 

this B will have to be equal to 0; therefore, the ward identity tells that although the full 

propagator for the photon has all this term here. If you evaluate the s-matrix elements, 

then this term here in the second term in this expression as well as this term, they will not 

give any contribution. 

The contribution coming from these two terms they will simply vanish; they will cancel 

and finally, it will become 0. So, for the purpose of computing the s-matrix element the 

full propagator is given by this term here; therefore, the full propagators we will simply 

write the full propagator to be. So, we can see that the ward identity plays a very 

important role here; without doing explicitly computation we can tell the form of the 

exact propagator by using the ward identity. 
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And for the proton propagator this is simply given by minus i eta mu nu divided by q 

square times 1 minus pi of q square; this is what is this propagator. Now what we will do 

is that we will see what this propagator can do for us. First of all this pi of q square, if 

you remember this is given by this one particle irreducible diagrams; this is our pi of q 

square. And so, this is pi mu nu q square i pi mu nu q square where pi mu nu is merely 

given by q square eta mu nu minus q mu q nu times pi of q square. And this diagram 

does not contain any internal proton line which is massless; therefore, because of this 

fact this pi of q square is going to remain finite. 

If I just consider this term here this diagram contribution from this diagram, it does not 

have any massless propagators here. So, therefore, q square does not vanish; therefore, 

this quantity is finite when q square equal to 0, because q square the full proton 

propagator has this form. So, this result basically tells that the full propagator actually 

has a simple pole at q square equal to 0. So, it has a pole at q square equal to 0. 

Remember in contrast when we evaluated the electron self energy diagram, we did not 

have a simple pole; we had a simple pole at p square equal to m square, but in addition 

we had double pole triple pole and so on at p square equal to m square. And when we 

summed up all contributions, at the end of the day we got a simple pole which is given 

by p slash minus m 0 minus sigma of p slash or something like that. 



When we summed all diagram we got once we got a term like this; therefore, this pole 

here is the simple pole actually got shifted because of the higher order contributions. 

Unlike the electrons self energy case, here the pole is not shifted; we still have because pi 

of q square does not have any pole. It is actually regular at q square equal to 0; because 

of that the exact propagator has a simple pole at q square equal to 0. And therefore, the 

pole is not shifted, and because of that the photon remains massless to all orders in 

perturbation theory; it is massless to all perturbative orders. So, therefore the mass of the 

photon is not shifted because of these corrections. 
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So, what do they do? What do these propagators do actually? To understand that, we can 

consider the s-matrix elements for some physical process; let us say for example, you 

have electron-electron scattering or something like that, and let us assume this scattering 

is actually by a low energy photon. Then the full diagram here will be given by this, the 

full proton propagator is given by this. So, at the tree level if you had nothing what you 

would have is for this propagator you would have got a contributions minus i e square 

divided by q square eta. So, you would have got a factor of minus e from here, minus e 

from here. 

At the end of the day you would got, if e 0 is the charge of electron then you would have 

got e 0 divided by q square for such a diagram. Instead when you consider when you 

sum up all such diagram you do not get this if you include this, this quantity is simply 



replaced by this times eta mu nu; this is what you would have got, or this is what you get 

from this propagator at tree level. Now if we include all the quantum corrections, then 

instead of this we have just now showed that. 
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What we get instead of this is simply eta mu nu divided by q square times 1 minus pi of 

mu square times e 0 square. And suppose this is a low energy photon the virtual photon 

is low energy, then you can say that this is merely given by eta mu nu times sum z 3 e 0 

square divided by q square where z 3 is given by 1 by 1 minus pi of 0. So, suppose you 

are evaluating this near q square equal to 0, then you can simply replace here instead of 

pi of q square, you can replace it by pi of 0. And I will define z 3 to be 1 over 1 minus pi 

of 0. 

So, therefore, this quantity is nearly equal to this when q square is small. So, the role of 

these quantum corrections as we have seen instead of simply e 0 square eta mu nu which 

you get at tree level. When you include quantum corrections you get z 3 times e 0 square 

eta mu nu divided by q square. So, the role of this term here actually basically modifies 

the charge of the electrons. It renormalizes the charge of the electron, and e 0 is replaced 

by e which is given by square root of z 3 times e 0. 

E 0 is known as the bear charge of electron; e is the physical charge of the electron and 

the bear charge times square root of z 3 gives the physical charge of the electron. Any 

physical process sees only the physical charge of the electron, and all these quantum 



corrections are encoded in this term pi of q square here or in the term z 3 here. So, this is 

what you will get for one q square is close to 0, but any finite q square you consider this 

is what is the contribution that you get. So, effectively you have an effective charge of 

the electrons which depend on q square; it is also the charge 

So, the charge or if I just denote alpha equal to e square divided by 4 pi, then the 

effective alpha effective ion structure constant basically is given by e 0 square divided by 

4 pi times 1 minus pi of q square, and the effective fine structure constant is dependent 

on q square and the full form of the fine structure constant is given by this expression. 

And this pi of q square contains the information about all the quantum corrections. At a 

tree level to zero th order if you consider merely a process like this, then you get alpha is 

simply e 0 square divided by 4 prime; however, the quantum corrections modify this, and 

then this is what you get. 

So, if we know what is pi of q square then we know what is the effective coupling here, 

and this pi of q square we can explicitly determine order by order by explicitly 

computing all the diagrams. So, let us now compute this pi of q square at least to the 

second order; at one loop this pi of q square is simply given by pi 2 of q square and we 

know how to do loop integration. So, this is what we will discuss in the remaining part of 

our lecture. So, let us do a computation, and let us get the expression for pi of q square at 

one loop. 
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So, what we will like to do is one loop we will like to compute the one loop contribution 

to pi mu nu of q square or simply pi of q square, equivalently pi of q square. So, we need 

to consider this diagram here. This is q, this is k, and this is k plus q; sorry, this is mu nu. 

We know what is the amplitude for such a process, this is basically given by. So, this is i 

pi 2 mu nu of q square, and this is simply minus e 0 square integration d 4 k divided by 2 

pi to the power fourth, trace of gamma mu 1 over k slash minus m gamma nu 1 over k 

slash plus q slash in a sum; this is what we have, and we would like to evaluate this 

integration here. 

So, I will rewrite this term to be minus e 0 square d 4 k over 2 pi to the power fourth, 

trace of gamma mu. Then this will be k slash plus m here, gamma nu k slash plus q slash 

plus m divided by k slash k square minus m square times k plus q square minus m 

square. So, this denominator again as usual we will use the Feynman parameterization to 

rewrite this denominator as an integral of x, and the numerator it is just a trace involving 

four gamma matrices. So, it is very straightforward; we can work it out in explicitly. 
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So, let us do that. The denominator is given by 1 over k square minus m square times k 

plus q whole square minus m square, and this quantity I will write it as integration 0 to 1 

d x times 1 divided by k square plus 2 x k dot q plus x q square minus m square whole 

square; this is what I will get when I use the Feynman parameterization. And now again 

you see there is a linear term in k, and there is a quadratic term in k. 



I want to complete this square. So, I will introduce the variable l which is basically k plus 

x cube, and I will express it in terms of l square. When I do that what I will get is it is 

simply 0 to 1 d x 1 over l square minus delta whole square, where delta basically is given 

by m square minus x into 1 minus x q square. So, this is what delta is. So, this is what I 

will get in the denominators; numerator again I can simplify this. 
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So, the numerator is given by trace gamma mu k slash plus m gamma nu k slash plus q 

slash plus m. And this is nothing but I can rewrite this as trace of gamma mu k slash 

gamma nu k slash plus q slash plus m square trace of gamma mu gamma nu; all other 

terms involve three gamma matrices whose trace vanish. So, this is what you will get, 

and this term here is merely given by 4 eta mu nu m square. And this term involves four 

gamma matrices; we know what is the trace of four gamma matrices. So, you have trace 

of gamma mu gamma nu gamma rho gamma sigma which is basically given by 4 eta mu 

nu eta rho sigma minus eta mu rho eta nu sigma plus eta mu sigma eta nu rho. 

So, this is what we already know. Using this you can simplify that, and when we use that 

finally, what we will get is four times k mu k plus q mu plus k mu k plus q mu minus eta 

mu nu k dot k plus q minus m square. This is what is my numerator, but now I have 

introduced this variable l here which is k plus x q. And I would like to express this 

numerator in terms of l, and I know in the denominator, the denominator is a function of 



l square. So, I will rewrite it; I will write it in the variable l using the variable l, and I will 

keep only terms which contains even powers of l. 

For example, if I have a l mu l nu I will keep it; if I have a term which is liner in element 

then that will give a zero contribution when I integrate it over all values of l. So, keeping 

that in mind what I have is for k equal to l minus x q. So, this is l minus x q mu l plus 1 

minus x q mu plus l minus x q nu l plus 1 minus x q mu. And finally, here minus eta mu 

nu times l minus x cube dot l plus 1 minus x q minus m square; this is what I have. 
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So, what I will get here is I will just get 4; this will give me a l mu l nu. This will again 

give me a l nu l mu. So, I have twice l mu l nu; l mu times this will give a term which is 

linear in l mu. So, I will not write it; however, this term multiplied by this term gives me 

minus x times 1 minus x q mu q nu. I will get one such term from here. So, this is minus 

2 x 1 minus x q mu q nu. Finally, I have. So, this is the contribution from these two 

terms, and this term here will give me minus eta mu nu times, here it is l square, then 

minus x into 1 minus x q square; the other two terms are liner in l. So, I will not write 

them and finally, minus m square. So, this is what I have for the numerator. 

So, when I put everything together what I will get now is i pi mu nu i pi 2 mu nu of q is 

going to be there is a minus e square and this is 4. So, minus 4 e square integration; now 

I have I am using the variable l. So, d 4 l divvied by 2 pi to the power fourth and then x is 

integrated from 0 to 1 d x; this is what you have in the numerator except the factor of 4. 

So, I have a 2 l mu l nu minus eta mu nu l square minus 2 x 1 minus x q mu q nu plus eta 

mu nu m square plus x into 1 minus x q square. This is in the numerator, and in the 

denominator I have l square plus delta whole square. We need to evaluate this integration 

here. We can see where delta is given by m square minus x into 1 minus x q square; this 

is what we will evaluate. We can further simplify this term here. 

Remember, suppose we have some f of q square or f of l square some function of l 

square l mu l nu; when you integrate it over l, when to you integrate d 4 l at the end, 

because it is symmetric in l. The only thing that you can get is some quantity times eta 

mu nu. If you contract this with eta mu nu, what you get here is l square f of l square d x 

d 4 l is simply A times eta mu nu eta mu nu which is 4 A. On the other hand, if you 

consider l square. So, therefore, in this integration your A is merely given by this divided 

by 4; this equal to A is this divided by 4. So, in this integration here you can merely 

replace l mu l nu by l square divided by 4. So, this is what you can do. 
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If you have l mu l nu inside the integration then this is merely given by eta mu nu l 

square divided by 4; this is what I can use here. So, when I do that I will simply get eta 

mu nu divided by 4 times l square. So, this we need to evaluate. This is again going to be 

divergent integral; first we need to do a week rotation Euclidian continuation and write it 

in terms of the variable of l e square. And then finally, we need to evaluate this integral 

here. It will again we divergent integral. In fact, it is going to be quadratically divergent. 

So, what we will do is in the next lecture we will first introduce a UV cutoff and then we 

will evaluate this integration explicitly. We will see that this is quadratically divergent. 

In fact, if we use a UV cutoff, then pi mu nu does not preserve ward identity. It violates 

ward identity. So, in the next lecture we will introduce another regularization which is 

known as the dimensional regularization, and then we will evaluate this integration by 

using dimensional regularization. And then we will see that the dimensional 

regularization in fact, preserve ward identity. Finally, using the dimensional 

regularization we will evaluate the one loop contribution to the photon propagator. This 

is all we are going to do in the next lecture.  

Thank you. 


