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So, in the last lecture we have derived formula for the n point correlation function, which 

is the vacuum acceptation value time ordered product of n fields. Using the Wik’s 

theorem, this can be expressed in terms of the normal order product of the fields. Then 

all possible contractions times the normal order products. In today’s lecture, we will 

derived the formula for cross section the k width and so on. Because these are the 

quantities that are these are the measurable quantities. So, you need to have a formula for 

these scattering cross section when you consider two or more particles scatter with each 

of their, if you have unstable particles they can decay by themselves. Then you can 

determine the rate of the decay width and so on. These are the two basic things that we 

will be working out. So, we will have a formula for this scattering cross section, as well 

as formula for the decay rate for unstable particles 

So, scattering cross section of course you can have two particles coming and then 

interacting and then going out. For example, let us say you have e plus e minus or 



whatever the outgoing particle may or not may be the same set of particles or there may 

be different number of particles. For example, when you consider e plus e minus 

scattering you may get e plus e minus mu plus mu minus or mu plus mu minus gamma 

all kinds of things that you will be getting as outgoing particles. You need to find out the 

cross section for all these particles. So, let us or you can have also more than two 

particles, let us say three particles interacting with these. So, there and going out and so 

on. 

What we will be discussing in today’s lecture is the case where two particles come. Let 

us say particle one, which is incident on particle two, which is at rest in the laboratory 

Then there had a bunch of outgoing particles, we need to find the cross section for such a 

process. 

So, what do what exactly mean by cross section? You consider lets you have a target 

here, which I will call as the particle two. Then you have a beam of particle one. So, this 

is the target and this is the incident particle of particle one of type one. So, it falls on this, 

what you need to know is what are the number of scattering events in this process. 

Naturally, there will be more events coming out. Let’s say if this target is where it is 

more number of scattering events will come out. If the incident be, which is also dense, 

very dense. So, the number of scattering event naturally depends on the density of the 

target, which I will call as rho 2. 
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It also depends on the density of incident beam. If it is not dense at all then the number 

of events scattering events will be less and so on. This will as depend let us on the 

thickness of the target here. So, this I will call this as let us say l 2 this length here. 

Similarly, it will also depend on this l 1, what else it can depend? It can also depend on 

the cross sectional area here. 

If it is the beam incident beam comes only on a very small region here on this target, 

then the number of events will be less. If it comes on the entire thing it will be more. Let 

us say both the incident beam as well as the targets here a common cross sectional area. 

Then the number of scattering events will also depend on the cross sectional area, which 

is common to both of these thing, so the number of events, which I will call as n. 
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It will be proportional to all these quantities rho one l 1 rho 2 l 2 and A. The proportional 

to constant is what I will call as the cross section. So, the cross section for this scattering 

is determine by the dividing this number of events by this quantity here. Similarly, you 

are when a particle decays decay rate is the formula for the decay rate is even simpler, 

you consider some substance some unstable particle here. Then there is probability that 

one of these particle will decay. This decay rate here will depend decide of the system 

here, the total number of particles. So, the decay rate is basically defined by the number 

of particles decaying per unit time divided by total number of particles contain in that 

system. That is what is going to give you the decay rate. 



So, in these, so we will be basically discussing scattering cross section and decay width 

decay rates. We will derive formula for these quantities. Then we will see how can we 

apply these things. So, in our case we are considering interacting field width. It’s 

basically, let us say you consider two type of particles they were free as at t tends to 

minus infinity.  

(Refer Slide Time: 08:45)  

 

Essentially, they were free particles at some finite time, they come closer they interact 

they scatter. Then there will be outgoing particle. So, 1 plus 2 goes to a bunch of 

particles 1 prime, 2 prime, n prime, this is the process that we are going to study. What 

you want to do is you want to construct a wave packet. Let us say for particle one as well 

as particle two or a wave packet for the two particles system, let it evolve interact. Then 

you go what is the probability amplitude for this system to go to final state. 

So, essence let us try to construct the wave packet for particle one, which I will denote as 

1. Normally, if it is free particle then you normally if the particle is and Eigen state of the 

momentum, then this is just, let us say a k 1 dagger acting on the vacuum. This is a 1 

particle state with a definite momentum k 1. Normally, what we would like to consider is 

wave packets, which do not have a very well defined momentum, but there is a spread in 

the momentum. So, there is a momentum distribution with its pit around a ten value let 

us say, which is k 1 bar. 



So, the particle one is a wave packet, which is basically integrated over d cube k divided 

by 2 pi q 2 k 0 time some distribution, which I will call as f 1 of k and then k here. So, 

this if this f 1 is a delta function if f 1 k is delta k minus k bar, then you get the particle 

one to be a Eigen state of the momentum. It has a very well define momentum otherwise 

it’s you can consider some momentum distribution here. Then you can construct a wave 

packet this way. This f 1 is some distribution you do not need to know the exact for of 

this f 1. Except, that it has a fairly well define momentum with it is the average 

momentum is peak around at ten value, which I will call as k 1 bar. So, you have a 

distribution with a peak around k 1 bar.  

This is what as the initial state is not a 1 particle state it is a 2 particle state, you we are 

considering a process, where particle of type one and type two interact with each. So, 

there and go to some final state. So, the initial state is basically d cube k 1 divided by 2 

pi cube two k 1 0 d cube k 2 divided by 2 pi cube 2 to k 2 0. Then f 1 of k 1 some 

distribution f two k 2, so this state evolve. The two both the particles interact at some 

finite time. Then what you would like to know is the probability amplitude, for this state 

to evolve to some final state, which I will as f with its some momentum k 1 or k 1 prime 

k 2 prime up to k n prime. 
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Normally, the outgoing particles can have fairly well defined momentum. You can detect 

these outgoing particles by your by some detector, which have very good resolution. So, 



that you can consider these outgoing particles in some momentum range d cube k 1 

prime d cube k 2 prime and so on. We already know what is the probability amplitude 

for such a process, the probability amplitude will be given by. So, if this the fine final 

state then the final state for the state i to the found in is given by. Where, s is the s matrix 

for which we have derived the expression in one of the earlier lectures. 

We do not need to assume this the outgoing state to be a momentum Eigen state. So, 

what you will do is when calculate the cross section. We would like to find the 

differential cross section, where the outgoing particles will have momentum with lies in 

some range d cube k 1 prime. 
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So, let us say the outgoing particle with momentum k 1 prime. That is the one prime is 

the particle its momentum lies in certain range d cube k prime. Because, when you have 

the detector the detector not only can measure what is the particle type. It can also 

measure the momentum of this particle in fairly, accurately. So, if we do not need the 

momentum of the outgoing particle, what we can do is. We can consider the differential 

scattering cross section. We can integrate over all possible value of the momentum that 

will give as, what is the total cross section irrespective of, what is the momentum of the 

outgoing particle. 

So, at this moment we will not assume anything about the final state. We will just 

assume this initial state to be two different wave packets coming out close to each. So, 



there and then interacting and then there is some outgoing set off particles, that is all we 

are assuming. We will also not assume any particular form for these function f 1 k and f 

two k. Except, that they there is some momentum distribution with its peak with is a 

peak around certain value. 
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So, let us compute the probability of going some initial for the particle from some initial 

state to some final state W f i. That will be given by the modes square of this quantity. 

We will be computing this quantity in a moment. You know this S matrix has an 

exponential form. 
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Hence, I can basically write this as the identity operator plus the rest of the term, which I 

will denote as i times T. Then the probability amplitude will basically be this one. What 

will the first term give? So, this term basically says that there is a finite probability. That 

is why you consider particle one incident on particle two on some target. There is a finite 

probability that these particle do not interact at all there are just go without interacting. 

This is the term even if there is an interaction in the system, this particles can simply 

pass without interacting each. So, there and this term represents that, so this is the 

forward scattering part we will we will not be interested in such a term.  

So, will just ignore the first term and this expression we will be evaluating the second 

term. Then when the interaction takes place what is the probability of this system of two 

particles? Some, which are in this state i going to some final state. So, we will be 

evaluating the mode square of this quantity, which is a W i i will define this to be mode 

square of f i T. Lets substitute this expression for the incoming state in this formula. 

Then let us try to simplify the expression. So, let us say what we get when we substitute 

that this quantity here? I will call this is again f i T i star times f, it’s absolutely trivial. 

Now, I will put this formula there. So, what I will get is for the first term d cube k 1 

divided by 2 pi cube to k 1 0 d cube k 2 over 2 pi cube two k 2 0. Then f 1 star of k 1 f 

two star of k 2 then f i T k 1 k 2 star. Then I will have integration over d cube k 1 tilde 

over 2 pi cube 2 k 1 tilde 0 d cube k 2 tilde over 2 pi cube 2 k 2 tilde 0. Then f 1 of k 1 

tilde f 2 of k 2 tilde final state inner product with i T times k 1 tilde k 2 tilde. So, this is 

what we have to simplify. Then I have to express in. To do that, let’s see this expression, 

here I can take a Fourier transform of this quantity. 
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So, I will define as f i will define some quantity, which I will call as f tilde 1 of X, which 

will be d cube k times a to the power minus i k dot x f 1 k. You define f 1 tilde of x to be 

the Fourier transform of this f 1 k. This distribution function you can show that the this 

complex killer field, in fact satisfies the Klein Gordon equation. There is this integration 

measure 2 pi cube 2 k 0. This is first of all a complex killer field, this field will satisfy 

the Klein Gordon equation for the particle. What we will do is, we will consider this term 

here we will insert one identity. So, you consider one of these amplitudes here. This lets 

say this one f i t k 1 tilde k 2 tilde. 
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Then outgoing particles have momenta k 1 prime up to k n prime. They need to conserve 

the total momentum, the momentum of incident particle are k 1. This state has well 

defined momentum, this is a two particle state with momenta k 1 tilde and k 2 tilde. So, 

the momentum conservation tells you that this amplitude here must be proportional to the 

delta function. It will be zero, unless k 1 tilde plus k 2 tilde is equal to the sum of all 

these outgoing momenta, of all these particles. 

So, this quantity here will be for convenience I will put some factor of 2 pi to the power 

fourth. Here, it will have a delta function delta of k 1 tilde plus k 2 tilde minus k f, where 

k f is the sum of momenta of all the outgoing particles. So, it will have such a term here, 

then the remaining part of the amplitude I will denote this as f i this curly T k 1 tilde k 2 

tilde. 

So, similarly you have the second term here you can, so let us consider this expression 

with this w f i will become d cube k 1 over 2 pi cube 2 k 1 0 d cube k 2 over t pi cube 2 k 

2 0, then d cube k 1 tilde. Then there are factors 2 pi fourth delta of k 1 plus k 2 minus k 

f. Then 2 pi to the power fourth delta of k 1 tilde plus k 2 tilde minus k f, then these two 

matrix elements. So, which are f i T k 1 k 2 star times f i T k 1 tilde k 2 tilde. Then also I 

have f 1 star k 1 f 2 star k 2 f 1 k 1 tilde f 2 k 2 tilde, this is what I get. Now, notice this 

there are these two delta functions here I can combine these two delta fruitions. Then I 

can write this as delta of k 1 plus k 2 minus k f delta of k 1 tilde plus k 2 tilde minus k l a 

is equal to delta of k 1 plus k 2 minus k 1 tilde minus k 2 tilde times delta of k 1 tilde 

plus k 2 tilde minus k l. 

So, we will use this form here. Therefore, instead of this I can simply write here this 

minus k 1 tilde minus k 2 tilde. Then the remaining part will go as it is this is just delta of 

x minus a f of x is basically delta of x minus a f of x. This is what is the formula that I 

have used here. Now, I can consider this term and I can write delta of k 1 plus k 2 minus 

k 1 tilde minus k 2 tilde as if you consider the four dimensional delta function.  

So, not only the energy, but the momenta are also not only the momenta, but also energy 

also needs to be conserved. So, you have to have four dimensional functions here instead 

of 3 d delta. I will use this formula for the delta function there is a 2 pi to the power 4. 

So, 2 pi to the power fourth times this is given by this I will substitute here and when I 

substitute what I will get is the following, d cube k 1 over 2 pi cube 2 k 1 0. 
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Then d cube k 2 over 2 pi cube two k 2 0, then d cube k 1 tilde over 2 pi cube 2 k 1 tilde 

0 d cube k cube tilde over 2 pi cube k 2 tilde zero. Then d 4 X times e to the minus i x 

dot k 1 plus k 2 minus k 1 tilde minus k 2 tilde. Then 2 pi to the power 4 delta of k 1 

tilde plus k 2 tilde minus k f i have f 1 star of k 1 f 2 star of k 2 f 1 of k 1 tilde f 2 of k 2 

tilde f i star tilde. 

So, it is a fairly straight forward job. Now, what I will do is that I will combine this k 

integration will just carry out the k integrations by making the following assumption, 

what is the assumption is that. Because, we have assumed this function f 1 k etcetera at 

some distribution, which is a peaked at some value k bar. Let us say f 1 k is peaked at k 1 

bar and so on. Therefore, the amplitudes here I will assume that these amplitudes are 

basically equal to k 1 k 2. I will say that this is nearly equal to f i T k 1 bar k 2 bar and 

also this is fairly close to i k 1 tilde bar k 2 tilde bar.  

Then what I can do is that for this I will just substitute modes square of this. So, 

therefore this, the assumption here is that these matrix elements are slowly varying. Then 

they are close to this they are nearly equal to this quantity here. Therefore, this 

probability density here is, nearly equal to this modes square of this quantity with this k 1 

and k 2 are replace by k 1 bar and k 2 bar 

So, I am not assuming this k dependence here then of course, it is fairly simple. Because, 

what you get here is basically the Fourier transform of these four S. So, they are nothing 



but integration d 4 X. This one will give you f 1 of X this one, one of these thing. This 

factor will combine this to give you f 2 star of X. Similarly, here you will get f 1 of X f 

two of X. Therefore, the transition probability per unit volume per unit time, which I will 

denote as d w f i over the d v d T will be given by simply this expression without this 

integration over d 4 X. 

So, what you have derived here is the transition probability per unit volume per unit 

time. We need to find the scattering cross section, which is basically this quantity 

divided by the incident plugs, when you have a single scattering centered. So, what you 

need to do is, you need to the differential scattering cross section is…  
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Basically, the transition probability per unit volume per unit time divided by the density 

of the number density of the target times the incident plugs. So, let us derived the 

formula for the incident plugs and the number density for the target. Then plug it here we 

will get the formula for the differential scattering cross section. 


