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So, in this course we will be studying quantum field theory, you might ask you have 

already learnt a quantum mechanics in your under graduate in the first year course. So, 

why do you need to study quantum field theory? The motivation for studying quantum 

field theory is that suppose you consider a particle the way you do it in your quantum 

mechanics is you write down Schrodinger equation. And you solve this Schrodinger 

equation you find the solution to this Schrodinger equation, which is the probability 

which should. However, there are process which for example, if you consider the decay 

process; let us assume that you consider the mu and ((Refer Time: 01:15)) mu minus 

going to e minus plus mu e bar mu nu. Then there is no way you can understand a 

process like this in your a non relativistic quantum mechanics. 
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So, the question that you can ask is suppose you write down the you want to consider 

this generalization relativistic generalization; relativistic generalization of the 

Schrodinger equations Klein and Gordon I have already done that. And Dirac also a 

relativistic generalization; Klein and Gordon generalized it for a scalar field and Dirac 

generalize it for a spinner; what you find here is that if you want to interprete the Klein 

Gordon or the Dirac equation the way you interpreted the Schrodinger equation then you 

run into various inconsistencies.  

So, if you want to interpret as a particle mechanics; then you run into various in 

consistencies. For example, the probability amplitude a does not give the definite 

positive probability and so on. So, you are force to introduce quantum field theory. In 

this lecture we will study quantum field theory in much more detail; what I will do that is 

I will give of the references that will be used in this course. And then we will quickly 

discuss scalar field theory, classical field theory and then we will study our how to 

quantize classical field theory? 
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So, the reference are quantum field theory by Srednicki; then quantum field theory by 

Itzykson and Zuber and an introduction to quantum field theory by Pesktin and 

Schroeder. 
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Quantum field theory by Mandal and Shaw then quantum theory of fields by Weinberg 

gauge theories in particle physics by Aitcheson and Hey. And hey quantum field theory 

in a nutshell by A Zee; then quantum field theory by Ryder ramanand and so on. So, 

almost everything that will be discussed in this course will be borrowed from one or two 



of these books. So, what I will do now is I will briefly review classical field theory. And 

then I will discuss how to quantize classical field theory and what are their application of 

the quantum field theory? 
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So, let us briefly discuss classical filed theory. So, the classical field theories that we are 

going to quantize various. So, we are going to discuss the classical field theory feature. 

For example, local in the sense that the equation of motions content finite numbers of 

that vectors; equations of motions contains finite number; they will also discuss field 

theory which are relativistic we will impose Laurence and variance. 
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And, we will also require that the energy have a lower bound. So, we should have we 

will consider the field theory which have positive definite; let us first discuss the 

Lagrangian formulation. So, in Lagrangian formulation what you do; you consider the 

action which is S integration L d t; the Lagrangian itself we can write down as L as an 

integration of L over the entire space d cube x; over this L here is known as the 

Lagrangian density. 
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L is the Lagrangian density; in general L is a function of the field which I will denote as 

pi and its derivatives. So, the action can actually be express is S equal to integration of L 

pi del u pi d 4 x; the volume element d 4 x is d t times d cube x. We will find the 

equation of motion from this action by using the principle of least action. 
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So, what we will do is that we will set the variation of the action to be 0 with the 

restriction that the variation of the field delta pi equal to 0 at boundary; this condition 

will give us the equations of motion. So, let us derive the equations of motions from this 

condition. So, what is delta S? Delta S is integration d 4 x delta L. 
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And, this is equal to del L over del pi times delta pi plus del L over del del mu pi delta of 

del mu pi. Here, I am assuming that the lag range in contains only single derivative of the 

field pi as well as itself function pi. If there are multiple derivative for example, if the 



Lagrangian contains second derivatives of field pi. Then you will have one more term 

and so on; however we will not consider that case at this moment. 
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So, let us rewrite the second term; here you can see that the second term can actually be 

written as del mu of del L over del del mu pi delta pi minus del mu of del L over del mu 

pi delta pi. Here, I am assuming that this delta actually commutes with del mu; then you 

can write this term as a total derivative minus this term. So, now what I can do is that I 

can substitute this here. 
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Then, what I get is delta S is equal to integration d 4 x del L over del pi delta pi minus 

del mu of del over del del mu pi delta pi plus del mu del L over del del mu pi delta pi. 

Let us now focus at the last term; you can see that this will give you a surface 

integration. However, here we are imposing the boundary condition that the variation of 

the field is 0 at the boundary. So, when we use this condition this term will actually 

vanish. So, the last term in this equation become 0. 
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Therefore, delta S is actually equal to delta S is equal to d 4 x times del L of our del pi 

minus del mu of del L over del del mu pi times delta pi; however delta pi is arbitrary. 

Therefore, the integrant must be equal to 0 if delta S is equal to 0 then the integrant must 

be 0. So, this implies del L over del pi minus del mu of del L over del mu pi is equal to 0; 

this is our earlier langrage equation of motion. So, let us now find the Hamiltonian for 

the system; again you do it just the way you find the Hamiltonian in mechanics; in 

mechanics what you do? 
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You have you introduce the conjugate momentum P which is del L over del q dot. And 

then you define the Hamiltonian which is a functional of q and P to be P q dot minus L. 
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Here, you do exactly the same thing what you do is you introduce the conjugate 

momentum density which I will denote as pi of x; and the momentum density is defined 

to be delta L over del del 0 pi. And the Hamiltonian density so this is the momentum 

density then the Hamiltonian density H pi of x pi dot of x minus L of pi del pi. Let us 



consider a very simple example; the example of a real scalar field and then let us derive 

the equation of motion as well as Hamiltonian. 
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So, you will consider the example of a real scalar field. And then we will think what the 

equation of motion is and what is that Hamiltonian and so on? Before that let me explain 

the notation that we will be use it throughout the course; I will use the space favor 

matrix. So, eta mu nu it is 1 minus 1 minus 1 minus 1 or in other words the invariant 

length of a vector A mu A mu which is equal to also eta mu nu A mu A nu mu; this is a 0 

square minus A dot A; throughout the lecture we will be using this method. And also we 

will use natural units. So, we will set h bar equal to C equal to 1throughout the course. 

Now, let us consider a real scalar field. 
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The Lagrangian density for real scalar field is half pi dot square minus half del pi square 

minus half m square pi square; you can rewrite this is half del mu pi del mu pi minus half 

m square pi square all right. So, what is the equation of motion for the system? The 

equation of motion is given by del L over del pi minus del mu del L over del of del mu pi 

s equal to 0. So, let us derive each of the term. 
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Del L over del pi is equal to m square pi and del L over del del mu pi. So, how will you 

derive del L over del L del mu pi? This is in the Lagrangian only this first term will 

contribute. So, as you can see these terms only depends on del mu pi del is independent 

of del mu. So, we will consider this ((Refer Time: 24:41)). So, this is equal to del of del 

mu pi times half; this acting on half del mu pi del mu pi. If you note this I have use this 

symbol nu here instead of mu; that is because I have the free index mu here; I must say 

that I am using Einstein summation convention. So, whenever a symbol an index is 

repeated it is summed over the value it takes. 
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So, for if I consider for A mu A mu the index mu here runs from 0 over 1, 2, 3. So, A mu 

A mu is that equal to A 0 A 0 plus A 1 A 1 plus A 2 A 2 plus A 3 A 3. And hence A mu 

A mu is also equal to A nu A nu; this mu here and this expression is a dummy index. So, 

we can put any level we want for this here; that is what I have done in this expression 

instead of mu I have used nu here. So, this is now equal to so this implies this del L over 

del del mu pi is just equal to half times twice del mu pi times del of del mu pi divided by 

del of del mu pi. Now, what is this quantity here? This is just delta mu you no. So, this is 

nothing but del mu pi delta mu nu. So, this is just del mu pi. 
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So, what we saw here is that  

Student: ((Refer Time: 27:28)). 

No. So, let me explain this symbol again eta mu nu is equal to 1 0 0 0 0 minus 1 0 0 0 

minus1 0 0 0 0 minus 1. And now delta mu is the identity matrix instead of 1 minus 1 

this is just 1 0 0 0 and so on; all the diagonal elements are 1 and all of diagonal elements 

are 0. Now, when you look at this; if mu is not equal to nu this will just gives you a 0. If 

mu is equal to nu this is 1. 

So, however eta mu nu as well as it inverse eta mu nu which is numerically equal to the 

same thing eta 0 0 is 1 whereas eta 1 1 eta 2 2 and eta 3 3 are minus 1. However, here 

you can see if no matter whether mu and nu whether mu is 0 or 1 or 2 or 3 it always 

gives you 1; if identity if mu is equal to nu otherwise it gives you 0. Therefore, this 

quantity here is has to be equal to delta mu nu not eta mu nu; we are not using something 

like this delta mu nu we are using and also the tensional property here is such that it is 

calorie mixed tensor. If you look at the Laurence transference property of this quantity 

this does not transfer like contra variant tensor of rate 2; it transfer likes a mixed tensor 

of rank 2. So, therefore the index structure has to match. And also the notation that we 

have we are using is such that this is equal to delta mu nu right. 

Student: ((Refer Time: 29:58)). 



Thank you; this mu here is actually a contra variant index not a co variant index. 

Student: ((Refer Time: 30:12)). 

 No, I see ok thank you. So, this is actually equal to eta mu nu. So, this is del mu pi clear 

let us so summaries what you have seen here. 
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What he say is I define del L over del pi is equal to m square pi and 

Student: ((Refer Time: 30:58)). 

Minus m square pi thanks again minus m square pi and del l of del mu pi is equal to del 

mu pi. So, now we can substitute this in to equation of motion. And what is see is minus 

m square pi minus del mu del mu pi is equal to 0 or in other words this is just del mu del 

mu pi plus m square pi s equal to 0; what you define is the Klein Gordon equation. So, 

this field here is this actually a Klein Gordon field. Now, what we will do is we will find 

the Hamiltonian density for this system and you will see what you get? 
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So, you have already introduce the Hamiltonian density H equals to del pi of x del L over 

del of del 0 x pi minus L of pi del mu pi. So, this is equal to pi of x and we can see from 

this expression that del L over del del 0 pi is again del 0 pi. So, you can use this 

expression here; no no sorry this is simply del 0 d I q I dot del 0 pi minus L. So, pi of x is 

del l of del del 0 pi this quantity is again del 0 pi. So, we can use we can substitute this 

for pi of x. Then what we get is Hamiltonian density H equal to pi of x del 0 pi del 0 pi 

minus half del mu pi del mu pi minus half m square pi square; this is equal to pi square 

of x minus half del 0 pi square plus half grade pi square plus half m square pi square; we 

can again substitute this for pi of x. 
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And, then what we get is that Hamiltonian density H (x) is equal to half pi of x square 

plus half grade pi square plus half. As you can see this very simple system actually 

satisfied all the criteria that we have a specified in the beginning of this lecture; in the 

sense that the system will actually Laurence and variant. The action is invariant in the 

Laurence transformation, the equations of motions are co variant under Laurence 

transformation it is local because the equation of motion only is a 2 derivative it contains 

on the 2 derivative terms. Therefore, itself local field theory and the energy density as a 

lower bound; all the terms here are positive definite. So, this satisfied all the criteria. 

So, what we will do this what we will do in this subsequent lecture is that; we will start 

quantize this very simple system. And then we will study more and more complex field 

theories. So, with this we will close today’s lecture; tomorrow I will discuss some of the 

symmetric and conservation loss. And then we will actually start quantization ((Refer 

Time: 37:02)) theory.  

Thank you. 


