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Lecture - 39
Defects in Solids —Line and Surface Defects
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In the last lecture, we talked about point defects in crystals. Today we will talk about line
defects and planar defects.
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Now, line defects are known as dislocations; you may remember that we already
mentioned dislocations and their relevance to face transitions as topological defects in

the first very first lecture of this course .

(Refer Slide Time: 01:40)

LINE DEFECTS

Line defects are called dislocations. These defects are
caused through slipping of one portion of the crystal with
respect to the other portion by a distance of about one
atomic spacing. The resulting lattice distortion will be
centered around a line and hence the name line defect.
There are two types of dislocations.

» Edge dislocation

» Screw dislocation

Today, we will see a little more about dislocations; dislocations are caused by the
slipping of one portion of the crystal with respect to the other by a distance of about one
atomic spacing. So, one portion of the crystal slips with respect to the other by a distance
of the order of one atomic spacing. Therefore, the lattice will be distorted and this
distortion will be cantered around a line, and that is the reason why we call it at line
defect. We can have two types of dislocations; one is edge dislocation, while the other is

called screw dislocation.



(Refer Slide Time: 03:12)

Edge Dislocation

The formation of an edge dislocation can be understood by
the simple illustration shown in Fig. 39.1(a) and (b).

Fig. 39.1(a) Perfect crystal lattice without dislocation
Dislocation line is

Extra half plane perpendicular to the
) p plane of the paper at B

{% Fig. 39.1(b)

MPTEL

We will now consider edge dislocation, which is shown in figure 39. 1 (a) and (b), the
figure 39. 1 (a) shows a perfect crystal without a dislocation, while this figure (b) of the
same figure shows the crystal lattice, in which there is an edge dislocation. So, you can
see that in the perfect crystal lattice, the atoms are regularly arranged, while the lattice
with an edge dislocation you have an extra half plain.

(Refer Slide Time: 03:55)
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So, you have an extra half plain, because of the relative slip. So, this extra half plain is
shown by the blue line, thick line in the upper half of the crystal lattice, well the bottom

the line is perpendicular to the plane of the paper.

(Refer Slide Time: 04:37)

Figure 39.1(a) shows the cross section of a perfect crystal
lattice.

In Fig. 39.1(b), the atoms in the bottom portion have

slipped or have been displaced with respect to the atoms in
the top portion.

This is equivalent to an extra half plane (shown by thick
line) introduced in the upper half. The line perpendicular to
the paper, just below the half plane at B (shown by a thick
dot) is called the dislocation line.
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So, the dislocation line is perpendicular to the plane of the paper. So, this is shown in the

figure by a thick dot at the bottom between the lower and upper parts of this.

(Refer Slide Time: 05:08)

That is, the dislocation line traces the edge of the exira
half, plane (perpendicular to the paper at B). The
displacement distance of atoms around the dislocation is
called the Burgers vector b..

The Burgers vector in the edge dislocation is
perpendicular to the dislocation line. If the extra half
plane gets displaced towards the right or left, the

dislocation is said to be moving.

In the example, above, the slip is such that the extra half
plane is at the top of the crystal. This is called positive
edge dislocation. The slip may be such that the extra half
plane is at the bottom of the crystal. This is called
negative edge dislocation.




So, you have a displacement. This displacement distance is represented by what is
known as the burgers vector. Now this burgers vector in the case of a edge dislocation is
perpendicular to the dislocation line.

(Refer Slide Time: 06:06)
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Edge dislocathon is dencted
by the symbol

Negative edge dislocation
is dencted by the symbol T
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Fig. 39.2 Edge dislocation (another view) AB is the
dislocation line. EF is the Burgers vector.
The Burgers vector is perpendicular to the dislocation line AB

So, this is shown in the figure 39. 2, where AB figure 39.2 AB is the dislocation line,
while EF is the burgers vector. So, the burgers vector EF is in this figure is obviously,
perpendicular to the dislocation line AB.

(Refer Slide Time: 06:50)




Now, this is the case, with an edge dislocation, you can also have a screw dislocation. If
the screw dislocation the burgers vector is not perpendicular, but parallel to the
dislocation line, such a situation is used usually created by a shear stress acting on the 2

parts of the crystal.

(Refer Slide Time: 07:26)

~_— Dislocation line

Fig 39.3 Screw dislocation. The Burgers vector EF is
parallel to the dislocation line AB
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So, this is shown in the figure 39.3. So, you have the dislocation line and the burgers

vector EF is actually parallel to the dislocation line AB.

(Refer Slide Time: 07:43)

In a screw dislocation, the upper half of the crystal is
displaced in the direction parallel to the dislocation line BA.
The Burgers vector b = EF is parallel to the dislocation line
as shown in the Fig. 39.3.

A screw dislocation results in the atomic planes in the
lattice near the dislocation forming a spiral ramp or a helix-
like structure. Hence the name screw dislocation.




So, there is this results in a kind of spiral dislocation forming a spiral ramp, and therefore
this is known as screw dislocation. Now in general, you can have a mixed kind of

situation, where the dislocation is neither an edge dislocation nor a screw dislocation.

(Refer Slide Time: 08:07)

Normally, dislocations in crystals are not pure edge type or
screw type.

A common dislocation is of the mixed type with both edge

and screw components. The general displacement can be

resolved into two components, one parallel and the other
perpendicular to the dislocation line and hence can be
considered as a combination of a screw dislocation and an
edge dislocation.
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But a combination of these two that is the usual situation, and you can break it up into a
component, which is parallel, and another component which is perpendicular to the

dislocation. Therefore it is a combination of a screw and an edged dislocation.

(Refer Slide Time: 08:29)

Burgers Vector

The Burgers vector EF = b defined above expresses the
strength of the dislocation. Another way of looking at the
Burger's vector is to imagine a closed circuit called the
Burger's circuit drawn on the atomic plane enclosing an
edge dislocation.

The Burger's circuit is a closed loop drawn around a
dislocation, starting from an undistorted region and moving

in steps of integral multiples of the atomic spacing a of the
lattice, and ending at the starting point.




Now, this burgers vector, this gives a measure of the strength of the dislocation. In order
to see this, it would be nice to consider, what is known as the burger circuit, which is

shown in the next figure.
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So, it is a close loop drawn around the dislocation, it starts from the undistorted region,

and moves in steps of integral multiples of the atomic spacing, and ends back in

distorting point.

(Refer Slide Time: 09:42)
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Fig 39.4 (a) and (b)




The next figure 39. 4 shows this burger circuit; and in the figure 39. 4 (a) you sees a
perfect lattice without a dislocation, where the burger circuit is comes back and closes;
whereas, in the figure (b) of the same you have a dislocation. So, there is a slip, which
has occurred and therefore, the burgers circuit is not closed.

(Refer Slide Time: 10:20)

Starting point

End point

Starting and
end point

Fig 39.4 (c) and (d)

And this is in connection with a screw dislocation, and the same situation is shown in a
for an edge dislocation in 39. 4 (c) and (d). So, you can see that the circuits closest in a
perfect lattice whereas, in a lattice with dislocation, the circuit does not close an
additional step of (b) equal to the burgers vector has to be traversed in order that the

circuit is closed.
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Dislocation Energy

« The formation of dislocation involves displacement of
atoms and so certain strain energy is associated with a
dislocation. The strain energy may be expressed in
terms of the Burger's vector.

* Consider a cylindrical element (a shell) of radius r and
wall thickness dr surrounding a screw dislocation as
shown in Fig. 39.5.

We said that the burgers vector is a measure the strength of the dislocation. So, we will
consider dislocation energy in order to see this, what is the energy involved in creating a
dislocation. So, the formation of a dislocation involves displacement of atoms. So, there
is a certain strain energy associated with the formation of a dislocation. So, this strain
energy so the presence of a dislocation causes a strain in the lattice, and we are talking

about the energy associated with this train.

(Refer Slide Time: 11:38)

Dislocation line
{axis of the cylinder)

Fig. 39.5 Cylindrical shell around a screw dislocation

A displacement / parallel to the dislocation line produces a
shear strain. The shear strain is given by
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So, let us consider a cylindrical element, a shell of radius or an wall thickness d r around
the screw dislocation. So, suppose we talk about a displacement parallel to the
dislocation line. So, that produces a shear strain. So, if the displacement is I, then the

shear strain e is | by 2 pi r, where r is the radius of the cylinder.

(Refer Slide Time: 12:26)

If the shear modulus of the crystal is G, the shear stress is
given by

An infinitesimal displacement d/ involves work given by

dW =0 xarea xdl= gl——xarea xdl
2nr

the area on which the shear stress acts is L x dr, where L is
the length of the cylinder, so that

So, if the shear modulus is G, then a shear stress is just stress by strain in the modulus.
So, we know the strain, so strain times so G L by 2 pi r that is the shear stress. Now this

displacement involves work.

(Refer Slide Time: 13:13)
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Suppose | have a displacement an infinitesimal displacement d I. Now that means that
the work associated with this is the stress times times the area; so that gives the force into
displacement. So, the shear stress is G L by 2 pi r times the area this is if the length of the
cylinder is I, then it is L d r that is the area and then you have d | as a displacement. So,

that would be the work.

(Refer Slide Time: 14:17)

The total work done per unit length or energy per unit
length is

G %dr?
:[Tlldl

2 _ 4n T,

Here r, is the radius of the dislocation core and R is an
upper limit to the range of the strain field determined by the
dislocation density.

So, if I want the total work per unit length of the cylinder is W by capital L which is G
by 2 pi integral d r by r from r nought to r integral dl dl is 2 b.

(Refer Slide Time: 14:58)
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Here r 0 is the radius of the dislocation core and r is the distance up to which strain field

exist. So, evaluating this we get G | have left out | Gb square by 4 pi r by r 0.

(Refer Slide Time: 15:57)

The energy associated with the dislocation is thus
proportional to square of the Burger's vector.

So the dislocation always tends to have the smallest
Burger's vector, corresponding to an interatomic spacing in
the slip direction.

To minimize the free energy, a large number of dislocations

each having the smallest b (rather than one dislocation with

a large b) is formed.

It is not possible for b to be less than an interatomic
& @acing in the slip direction.

So, we see that the strain energy this total work which is the a measure of the strain
energy goes as the square of the burgers vector. So, strain energy associated with this
display dislocation goes as the square of the burgers vector. So, the dislocation always
therefore, tends to have the smallest burgers vector in order to minimise the energy. So,
the free energy is minimized by having a large number of dislocation with small burgers
vector rather than a one dislocation with a large burgers vector of course, the burgers

vector cannot be smaller than one interatomic spacing.
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Now, how many such dislocations are usually present in other words the density of the

dislocations; obviously, in a perfect crystal the dislocation density is small.

(Refer Slide Time: 17:20)

= Density of dislocations The density of dislocations is
defined as the number of dislocations that intersect a
unit area in the crystal. Normally the density is in the
range from 102 to 102 dislocations/cm?.

The semiconducting Ge and Si crystals grown with great
care may have about 102 dislocations/cm?, and a highly
deformed crystal may have about 10'? dislocations/cm?.

So, the density is defined as the number of dislocations that intersect unit area in the
crystal. So, normally it is in the range of 10 to power 2 to 10 to power twelve per
centimetre. So, if you consider semi-conductors like germanium or silicon which are
grown in a very pure form the dislocation density is more in the order of 10 to power 2

dislocations per centimetre square whereas, if you have a highly deformed crystal.



this is of the order of 10 to power 12 per centimetre square

(Refer Slide Time: 18:13)

Movement of Dislocations

In perfect crystals, the atomic planes cannot normally slide
easily across each other. But the presence of edge
dislocations facilitates easy slipping of one plane with
respect to the other.

This slipping is possible by the movement of the edge
dislocation from one end to the other of the crystal. The
presence of an edge dislocation causes the portion of the
crystal near the dislocation to get compressed due to the
extra half-plane as described earlier.

)
F

Now, in a perfect crystal the atomic planes cannot normally slide easily across each
other, but if I have a edge dislocation it facilitates an edge dislocation facilitates the slip.
So, a plane of the crystal can slip over another this slipping is possible by the movement
of edge dislocation the slip is made possible by movement of edge dislocation, as we
discussed even in the lecture one. So, the presence of an edge dislocation causes the one

portion of the crystal near the dislocation to get compressed due to the half plane.

(Refer Slide Time: 19:26)

+ The movement of dislocation is possible because the
compressed region moves easily along the crystal.
When a shear stress is applied to a crystal, the critical
shear modulus is much lower for a crystal with edge

dislocations than for a perfect crystal.




The movement of dislocation is possible because this compressed region moves easily
along the crystal, when a shear stress is applied the critical shear stress is the stress that is
required in order to facilitate such a movement. And this is much lower for is for a
deformed crystal of a crystal with dislocation is much smaller than that of that for the

perfect dislocation free crystal.

(Refer Slide Time: 20:42)

« The easy movement of dislocations in a crystal can be
understood by the following analogy. A heavy carpet
spread on the ground cannot be slid easily as a whole on
the floor. But if a small hump is created in the carpet (by

compressing a small portion) as shown in Fig. 39.6, and
the carpet is shaken to move the hump, the hump can
easily be moved along the length of the carpet. When
the hump reaches the end, the carpet would have slid a
small distance.

Now, this can be understood by a simple mechanical analogy like when you have a
heavy carpet spread on the ground, it cannot be slid easily as a whole on the floor, but if
there is a small hump in which is created in the carpet by compressing a portion as

shown in the figure.



(Refer Slide Time: 21:01)

Fig. 39.6 A hump is created in the carpet to move the carpet
easily along the floor. The hump is analogous to the
compressed portion in the edge dislocation

0
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And then the carpet is shaken to move the hump then the hump can easily be moved
along the length of the carpet, and the hump reaches the end the carpet would have slid a

small distance, that is shown in the next figure.

(Refer Slide Time: 21:15)

* The hump is analogous to the extra half plane in the
edge dislocation. The half plane moves easily and thus
the dislocation moves in the crystal.

The hump is the analogue of the extra half plane in the edge dislocation. So, this half

plane moves easily and thus the dislocation moves in the crystal.
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Dislocations move along specific crystallographic planes
called slip planes. Usually slip planes are the planes of
highest packing of atoms. The direction of the slip is the
direction of highest atomic packing.

For example, in FCC metal, the possible slip planes are (lll )
and slip direction is <110>, Burgers vectors are denoted by
the displacement followed by the slip direction like,

a< 110>, a/2 <111 >, etc.

They move along crystallographic specific crystallographic planes, these crystallographic

planes along which they move are known as the slip planes.
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So, the movement is not along any arbitrary direction usually these slip planes are planes
of highest atomic packing. So, the atomic density is highest. So, the direction of the slip
is the direction of the highest atomic packing. For example, if you have an FCC metal
then the possible slip planes are 111, and the slip direction is 110. So, the burgers vectors

corresponding to this are shown like a 110 are a by 2, 111, etcetera.



(Refer Slide Time: 23:09)

Burgers vector is the shortest lattice translation vector in
the slip direction. This is because the energy of formation of
dislocation is proportional to b?; (see Eq. 39.1).

For example in BCC lattice if there is a Burgers vector
equal to a with the slip direction < 100>, it will split into two
dislocations each of Burgers vector a/2 with slip direction
<111>,

Now, the burgers vector is the shortest a lattice translation vector in the direction of the
slip, this is because the energy as we discussed of formation of the dislocation is
proportional to b square. So, if you have a BCC lattice if there is a burgers vector equal
to a if that is. So, in the direction in the slip direction 100, then it will split into 2
dislocations of each of burgers vector this will split into 2 burgers vectors of magnitude a
by 2 in the direction 111.

(Refer Slide Time: 24:29)

This is because b? for a <110> is greater than twice b? for
a/2<111> as shown below:

b’ [fora<110 > ] =a’ [ +I* +0]=2a’

27 | for 2 <111 .l=2a“'|~-\i-|i]=3a:
L 2 | 4L 2

Table 39.1 gives the possible slip plane, slip directions the
Burgers vector some simple crystal structures.




This is because b square for 110 a 1 1 0 is greater than twice b square foraby 211 1 for
example, a square into 1 square plus 1 square plus 0 square, that will be 2 a square.
Whereas in the other case it will be a by 2 square into one square plus 1 square plus 1
square which is three into a square by 4. So, this is even though there are now there are 2
such. So, this will be three a square by 2 whereas, this is 2 a square. So, this is 1.5 a
square. So, splitting of this burgers vector into 2 along 111 gives a lower energy than
this.

(Refer Slide Time: 25:44)

Crystal Possible slip plane | Slip direction | Burgers vector
structure
SC

[100} <100> a<100>
FEC [111] <110> a/2<110>
BCC [110] <111> a/2<110>
HCP [001] <110> a<110>

[101] <110> a<110>

Table 39.1 Possible slip planes, slip directions, the Burgers
vector for some simple crystal structure

7
Sk

MPTEL

So, in the table 39 1, we are given the possible slip planes, and the slip direction along
with the burgers vector for different crystal structures like the simple cubic face centred

cubic body centred cubic and HCP hexagonal closed packing.
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Now, dislocations have a very important bearing on the mechanical properties, if
dislocations are present the crystal is mechanically weak.

(Refer Slide Time: 26:53)

Dislocations and Mechanical Properties of
Crystals

« The presence of dislocations makes a crystal
mechanically weak because of the easy movement of
dislocations.

« The strength of materials can be increased by removing
all dislocations and making the material a perfect crystal.

« This is difficult to achieve except in very small hair-like
crystals (called whiskers).

So, the strength of materials can be increased by removing all dislocations, and making
the crystal nearly a perfect crystal usually, this is extremely difficult toughening make
hardening or toughening a crystal by removing of dislocations is usually an extremely
difficult thing to achieve and except in what are known as whiskers.



(Refer Slide Time: 27:43)

Another more practical method of increasing the strength of
the material is to impede the motion of dislocations. In
metallic alloys the movement of dislocations can be
impeded by the following methods:

Mechanical blocking of the motion of dislocations:

This can be done by introducing tiny particles of a second
phase into the crystal lattice e.g. to strengthen steel, iron
carbide particles are precipitated into iron. To strengthen

aluminum, A1,Cu particles are precipitated into Al.

s
; \i
i 5

So, these are hair like crystals. So, another more practical method is to impede this is
removal the second is impeding the motion of dislocations. For example, in metallic
alloys the movement of dislocations is impeded, when you have a mechanical block by
introducing tiny particles of a second phase introduce tiny particles of a second phase in
a metallic alloy; that is a possible way of doing this. For example, iron carbide particles
are precipitated into iron to make the iron tough to strengthen aluminium for example,
you have Al to Cu, this is the phase, which is put into aluminium. So, these are some
typical situations in which the motion of the dislocations is impeded by the introduction

of the second phase.
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Yet another method is to pin the dislocations. So, this is another method by solute atoms
the solubility of a foreign atom will be greater in the vicinity of a dislocation then
elsewhere therefore, the solute atoms tend to get collected near each dislocation during
cooling. So, this increases the energy required for moving the dislocation thus preventing

their movement. So, that is called the pinning.

(Refer Slide Time: 30:40)

Increasing the dislocation density

When the dislocation density is large, tangling of
dislocation occurs, thus impeding their motion.

The dislocation movement will be more difficult across a
slip plane in which there are many dislocations.

Increasing the strength of a material by introducing large
number of dislocations is called work-hardening or strain-
hardening.

It is necessary to get a uniformly high dislocation density in
the entire material. This is achieved by special thermal-
mechanical treatments.

So, this strengthens the alloy then you can also increase the dislocation density, you can

introduce more dislocations, if the dislocation density is large then the dislocations get



entangled. And thereby are prevented from moving. So, this will be the dislocation
movement will be more difficult across a spin slip plane when there are many

dislocations. So, in order to do this you do what is known as work-hardening.

(Refer Slide Time: 31:44)
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Next we go on to planar defects their planar are really surface imperfections they can be
of different kinds. Now this again have thickness of a few atomic diameters. So, one of

one typical class of these planar defects is known as grain boundaries.

(Refer Slide Time: 32:23)

Planar defects or surface imperfections

Surface imperfections are imperfections on a crystal
surface having a thickness of a few atomic diameters.
Surface imperfections are generally of the following three

types:

Grain boundaries: A polycrystalline material consists of a
large number of tiny crystals called crystallites or grains.
These tiny grains are perfect crystals and they are all
oriented randomly with respect to one another.




Any actual crystal will consist of poly crystalline materiel. So, it has many crystallites.
So, these are also known as grains. So, inside the crystallite they are perfect crystals, and

they are all the crystallites are oriented randomly with respect to one another.

(Refer Slide Time: 32:59)

Fig. 39.7 Alow-angle tilt
boundary (a type of low angle
grain boundary) can be
regarded as formed from a
sequence of edge dislocations.
If the section B of the crystal is
twisted relative to A about the
axis shown by a small amount,
we may generate (in addition)

a twist component in the
boundary. A twist boundary, if
of small angle, may be viewed
as composed of a sequence of
screw dislocations.

Then the next figure shows a low angle tilt boundary a tip type of low angle grain
boundary, which can be regarded as formed from a sequence of edged dislocations. So,
you have a large number of edged dislocations as well as screw dislocations and in the

boundary region between 2 adjacent grains that is known as the grain boundary.

(Refer Slide Time: 33:36)

In the boundary region between two adjacent grains the
atoms are irregularly arranged and so the lattice is
distorted. The boundary region which extends over a few
atomic diameters is called the grain boundary. The relative
orientation of the adjacent grains is normally greater than
10-15°

Stacking fault: We have seen that close packed structures
like FCC and HCP are formed by stacking of closely
packed atomic planes. In FCC the arrangement is
ABCABCABCA........., whereas in HCP the arrangement is




So, the atoms are irregularly arranged as can be seen from this figure. So, this is the
relative orientation of the different grains is usually of the order of 10 to 15 degrees the

angle between the different grains

(Refer Slide Time: 34:15)

Another class of planar defects is known as packing faults, this is because if you have
hexagonal closed packing or cubic closed packing in FCC or HCP. If you take the
different planes the stacking is has the sequence.

(Refer Slide Time: 34:56)

In crystals with these close packed structures, if one of the
planes slips or one of the planes is missing, then the
arrangement has a fault. For example, in FCC crystal if the
arrangement is

l

ABCABCABABCABC

One of the planes in the sequence is missing ( C plane is
missing as indicated by the arrow). At this point, the
stacking has become ABAB like HCP stacking. Such an
imperfection is a stacking fault.




So, the stacking is different in the 2 cases and the if one of the plane slip or one of the
planes is missing then there is a fault. So, suppose you have an FCC and then one of
them is missing for example, one of the C is missing in this region this will become a
HCP kind of packing because of the missing C. So, then you have a fault a stacking fault
due to the difference in stacking, then you can have also a twin boundary which is a

boundary between crystals which are twins.

(Refer Slide Time: 35:44)

Twin boundary: When slip occurs in a crystal in several
planes which are widely separated, then partial
displacement occurs successively on each of many
neighbouring atomic planes. This kind of distortion is called
twinning.

When twinning takes place the deformed part of the crystal
will be a mirror image of the undeformed part. This type of
surface imperfections are normally found in HCP and BCC
crystals

)
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So, you have partial displacement occurring successively on each of many neighbouring
atomic planes. So, this is known as twining. So, this kind of the boundary between

twinning’s.
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How do we observe dislocations one method is known as etch pit. So, you take the
crystal for example, tungsten.

(Refer Slide Time: 36:32)

Figure. 39.8 shows the etch pits on Tungsten crystals due
to dislocations

So, figure 39 8 shows tungsten crystals who’s surface is etched with acid, and then you
can see look at the dislocations.



(Refer Slide Time: 36:42)

Another standard and reliable method of observing
dislocation is by electron micrograph.

Figure. 39.9 shows a transmission electron micrograph of a

titanium alloy. The dark lines are the dislocations.
- .

77~ Fig. 39.9 A transmission electron micrograph of a
'%ﬁ)mnmm Alloy. The dark lines are the dislocations.

NPTEL

Another method is by electron micrograph. The next figure shows an transmission
electron micrograph of a titanium alloy in which the dark lines show the dislocation

lines. Now, before concluding we want to talk about the theoretical critical shear stress.
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TRerreh el ek ect nhes abriss

Pone B |
Eo Mhest Chows

(78 FUL.ZO'SLC r?uwlw'\« :

ﬂ&ﬁu A Q@{EPF«,M%X‘

T T SRS

ac

So, this is critical shear stress is the minimum stress in the slip direction, that is capable
of producing a relative motion of the atomic planes.
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So, this can be calculated by considering 2 atomic planes A, and B as shown in the figure
suppose | consider 2 planes glides over plane A.

(Refer Slide Time: 38:07)

If the plane B glides with respect to the top plane A towards
the right, the shear stress required is a periodic function of
the displacement x, given by

(39.2)

where a is the interatomic spacing. This can be understood
from Fig. 39.10 .The shear stresses on the plane B for
displacements a/4 and 3a/4, are maximum (with opposite
signs) and the shear stress for displacement a/2 is zero.

)

So, the shear stress required for example, is a periodic function of the displacement x.
So, we can write this as tau is some tau max sin 2 pi X by a, where a is the interatomic
spacing this can be seen in the figure 39 10, where the slip shows that the stress is zero in
a the position a while the stress is a maximum. When there is a displacement of a by 4 as

shown in b then the stress is again zero for ¢, where the displacement is a by 2 and again



goes to a maximum in the section d which a has a, which corresponds to a displacement
of three a by 4. Then again the stress becomes zero when it becomes a, so there is a

oscillatory kind of variation of the shear stress.
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And if the separation between the 2 planes is d, then we can calculate shear stress using
the shear modulus.
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So, this will be the shear stress tau in G the shear modulus times the strain x by d. So,

therefore, this will be equal to tau max sin.
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From Eqs (39.2) and (39.3) ,

For displacements x, small relative to the interatomic
spacing a
(2nx

Tt | o |-G

And for small displacements we can replace this sin by therefore, these 2 we can write

tau max as is G by 2 pi into. So, G by 2 pi into...

(Refer Slide Time: 40:57)

(39.4)

max 2n

T.ax IS the critical resolved stress T. referred to in the last
section.

The rigidity modulus of metals is of the order of 10° Pascals.
So according to Eq. (39.4) the critical shear stress required
for slipping of the crystal planes is about G/6, which is very
large. But the observed critical shear stresses are = 10 G.

Since, these are comparable for therefore, we have this as G by 2 pi. So, the theoretical
stress critical shear stress is just one sixth of the shear modulus, which is a very large
quantity, but the actual measured critical shear stresses are of the order of 10 to power
minus 4 measured values are only about 10 to power minus 4 G. So, there is a big

difference by 4 orders a magnitude and this is because of dislocations.
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This is because of the presence of dislocations. The
dislocation causes displacement equal to an interatomic
separation. The dislocation line moves just by
rearrangement of atoms in the neighbourhood. If the
dislocation line runs out of the crystal, a step would be

created on the surface and the upper portion of the crystal
would have moved relative to the lower, without rigidly
moving blocks of the crystal!

In perfect crystals devoid of dislocations, the critical shear
_stress is much greater, as expected from the theory.
4

So, the presence of dislocation is able to explain the reason why measured critical
sheared stress is 4 orders of magnitude lower than the calculated values. So, they
dislocations cause a very spectacular change in the mechanical strength of a solid. So,
the concept of a perfect solid fails, and dislocations is the really the accounts for the

actual observed behaviour of solids.



