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Electron Dynamic in a Periodic Solid 
 

There are some very interesting consequence to the what we saw yesterday to the 

formation of energy bands in crystals. In particular we will discuss a particularly 

interesting feature of this propagation of electron waves in the crystal lattice. 
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There is a break in the e verses k curve at his own boundary corresponding to k equal to 

plus minus phi by a. These give you a discontinuity in e which corresponds to a 

forbidden energy gap, the existence of these forbidden zones may be interpreted as being 

due to Bragg reflection of the electron waves in by the crystallographic planes. 
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Now, what happens is these values of k at which these discontinuities occur maybe 

shown to liven side with the condition for Bragg reflection or Bragg diffraction, in order 

to understand this. 
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Let us consider an electron wave moving in the x-direction as shown in figure. This 

electron waves are incident normally incident on the set of crystal plans, and according 

to the Bragg's law defection occur the Bragg condition is well known corresponds to two 

d sin theta equal to n lambda n, where n is an integer the electron waves are incident 



normally. Therefore, this is the condition for diffraction same as that for x-rays here d is 

the inter planner spacing theta is the angle between the incident. And the diffracted 

lambda is the wave length of the electron wave n is the order of diffraction inter planning 

spacing is d for normal incidents theta is 90, and d equal to a the spacing between 

principal planes. Therefore, this condition becomes 2 a equals to lambda or k which is 2 

phi by lambda is 2 phi by 3 a into n or n into phi by a. So, this is the same as this here 

really this is n phi by a and we are talking about the reduce zone in which n is 1. 
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So, the two conditions are identical therefore, the conditions for Bragg reflection of the 

electron waves by the crystal planes is identical to the condition corresponding to the 

discontinuities at the zone boundary, which corresponds to the forbidden gaps. So, this is 

very interesting concept that electron waves behave in exactly the same way of x-rays, 

but are reflected at the zone boundary, therefore it also follows that the motion of the 

electron inside of solid, where there is a periodic potential due to the ion course in the 

crystal lattice the motion of the electron is restricted. And this restriction can be 

understood by looking at the e versus k curve which is shown in figure. 
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The bottom most well here in order to understand the motion of the electron, we 

considered the group velocity of the electron waves.  
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This is vg is d omega by dk, this is the standard definition of the group velocity. And 

since we know e is h cross omega we can also write this as. So, you can see there is a 

close connection between the group velocity and the slope of the e versus k curve at any 

point in the zone boundary in particular at the zone boundary the group velocity since the 

e versus k curve becomes this slope is 0. 



So, this is 0 at zone boundary were Bragg reflection occurs actually we can see . So, 

these are the zone boundaries. So, you can see that the velocity the group velocity is a 

maximum at a point of inflection in the e versus k curve that corresponds to this point. 

So, this slope is negative above this and actually it start from zero here at the center of 

the zone and then increases is positive and increases, and reaches a maximum value at 

this point have inflection and then starts decreasing this slope is negative till the slope 

becomes actually zero. So, this phenomena of the curvature of the e versus k curve can 

be understood by introducing. 
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The concept of what is known as effective mass usually denoted as m star so. We will 

assign a effective mass to the electron which reflects the influence of the periodic 

potential, and emotion of the electron in order to understand the concept affair effective 

mass let us consider an external field electric field. So, we have the energy increment in 

an applied electric field is e e d x this is the field this is the energy. 

So, the external field act on the electron and causes a display spent d x in d t in interval 

of time d t and the velocity is just d x by d t. So, using this we can right d e as e e v d t. 

And the since we have d e and we also want to write d e as starting with this the velocity 

is given by this. So, we can write substitute here the particle velocity of the electron is 

the same as the group velocity of the electron waves. So, we can borrow this expression 

and write 1 by h cross d e by d k into d t. 
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Now, d e can be written as d e by d k into d k by d t therefore, I can write d k by d t by 

going from this. So, I have d e by d k which can be written as therefore, I get e e with the 

electric field by h cross. So, since I have d k by d t, what is d k by d t d k by d t is 

nothing but the acceleration because k is related to the momentum. 
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So, a is d v by d t which can be written as one by h cross this square e by d k square 

times d e. So, you can see that the acceleration of the electron is related to the curvature 

the second derivative of the energy with respect to k, and usually the acceleration is e e 



by m which we will denote as m star, because it therefore need to identify this as the 

effective mass. So, I have expression finally, for the effective mass. 
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So, we see that the man star the effective mass is inversely proportional to the second 

derivative of the e versus k curve.  
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So, the effective mass is also shown in the figure, which also depict along with the e 

versus k curve the variation of the group velocity as well as that of the effective mass m 

star. So, they concept of effective mass is therefore, closely related to the second 



derivative of the e versus k curve. So, the effective mass is positive for k values which lie 

from 0. And the maximum value on either side minus k naught and plus k naught well k 

naught corresponds to the wave vector corresponding to the point of inflection were the 

group velocity is the maximum beyond k naught m star becomes negative on either side. 

So, the lower. Portion the lower half of the energy band, you have positive m star values 

and the upper half has negative m star values will it reaches this zone boundary we 

reached the zone boundary where m star is actually 0. 
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So, you have the important concept of effective mass which flows from the concept of 

the fact that the e versus k curve has breaks discontinuities at this one boundary. So, have 

and so on. So, this is the gap unlike the free electron approximation which predicts a 

simple parabolic variation without any breakup this is free-electron approximation this is 

a periodic potential electron in a periodic potential inside this solid. So, this periodic 

potential creates a discontinuity in the e versus k curve at this zone boundary and 

correspondingly, there are very many there are interesting deviations from this 

discontinuous parabolic variations.  

And these interesting deviations are associated with the fact that the effective mass of the 

electron under the influence of the periodic potential is such that it goes from zero to a 

maximum value in the lower half of the energy band. And then from the maximum 

value, it becomes it goes to 0 corresponding to a negative group velocity. And then it 



even gets there is Bragg reflection, therefore the electron actually gets reflected at the 

zone boundary.  

So, these are some very important and interesting consequences of the formation of 

energy bands and crystals which we will use. Now, when we start discussing 

semiconductors we already discussed how materials can be classified has metals 

insulators and semiconductors based on the nature of the band. For example, in a metal 

the highest occupied band is here and then this as a partially occupied or half occupied 

this is there is a gap. So, partially occupied conduction band, and this is completely 

occupied valence band. So, because of this partial occupation this is the picture for a 

metal whereas, in the case of an insulators, it is different. 
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So, you have a completely occupied valence band, and the forbidden gap in the energy 

value, and then a completely empty conduction band with a large energy gap because 

this energy gap is very large the carriers, which are completely occupied the state's inside 

the valence band are unable to cross or overcome this barrier. And get into the 

conduction band therefore, conduction is not possible and this is the behavior of an 

insulators and then be talked about a semiconductor in which this picture is the same, but 

the energy gap is much smaller. And because the energy gap is smaller thermal 

activation excitation of carriers from the valence band into the conduction band is 

possible and when the valence band an electron leaves the valence band, then it leaves 



behind what is known as a hole this is another important concept by which comes from 

the energy band theory. 

So, there is a hole here and this electron gets excited across when this energy gap is 

small. So, this hole goes across this energy gap into an empty state in the conduction 

band the electron moves in the conduction of band and the hole moves in the valence 

band. So, in a semiconductor conduction by electrons un holes in a semiconductor.  
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So, these are some of the important features, which arise as a consequence of the 

periodic potential. We next consider the concept of holes in semiconductors for this let 

us consider valence band a valence band is here, and this is the conduction band. Let us 

consider a state here in the valence band which is completely filled it is full.  



(Refer Slide Time: 21:47) 

 

But let us consider one state here as being one from which an electron which occupy is 

this gets excited thermally into the conduction band leaving a vacancy here an 

unoccupied state. Now, this is unoccupied state in and otherwise completely filled 

valence band this is called a hole. Now we should not regard the hole as simply an empty 

state if this is. So, in the conduction band there are a lot of empty state that does not 

mean that there are lot of holes in the conduction band a hole is defined only in a filled 

valence band. 
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In which some the states are not occupied to give were an analogy is an air bubble in a 

tank of water.  

(Refer Slide Time: 23:32) 

 

Suppose if this tank is filled with water and there is a small space which is not occupied 

by water then the air will fill their. and we will have an air bubble, but that does not 

mean that a container which is completely empty cannot be said to be filled with the air 

bubbles it is filled with air. So, consider a single hole let us consider a single hole in the 

valence band of the semiconductor. Now if this hole is to respond to an electric field how 

it will it respond response to an external an electric field now if this field is zero in zero 

field we know that there is no current we know their lives the current. In other words the 

current density which is e sigma vi that is the j this is zero over all the i’s. Now let us 

right these i over all the states which are there. 
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Now, we can write the summation e sigma i e i as e let us put an negative sign because 

these is we are considering the current due to the electrons. So, that can be written as. E b 

e plus sigma e v j over j where j not equal to i, and we can write or let us say i i not equal 

to j. 
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That is we are taking a state j a out at these totality of state's I, and that is kept outside the 

summation and then all the rest of them where the i does not include j. They are 



connected consider in the sum now this is this total is 0 in other words be can write e v j 

that is minus e or sigma e e i i not equal to j. 

So, this can be return as the hole current this is same as the current due to all the electron 

in which the unoccupied state is not consider and the total current density is consider. So, 

this is the hole current. Now if we have an external field then the way the current density 

changes with time dependence on the time derivative off this. So, this k prime the current 

density. 
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Let me right it has a capital the way the hole current changes, then there is when the field 

is on.  
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That can be written from here as e d v j by d t prime and that is e time minus e by m star 

where e is the electric field a put a negative sign, because it is a hole which has a charge 

which is opposite of that of the negative sign. Because of charge of hole is opposite to 

that of electron. Now if we want an increase in the hole current as a result of the it field 

being switched on then; that means, m star should be negative for all hole current to 

increase. In the presence of e, and if we consider the effective mass m star should be 

negative where is the m star negative here a we come across such as a situation we can 

see that in figure 352, we have plotted. 
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The effective mass versus k, and we find that the m star is negative in the upper half of 

the valence band the holes resides in the upper portion of the energy band the valence 

band. 
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So, holes are thus defined as vacant states in the upper portion of the valance band where 

the effective mass is negative. So, they have a positive charge positive charge, and 

negative mass they have a charge opposite in sign to that of the electron and negative 

effective mass these are the two characteristics of course. 
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Next we wished to talk about we have been considering energy band structure.  
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In one dimension oppose energy bands in a three in a three-dimensional solid this is 

because if we have the shape of the e versus k curve depends on the direction of k, so in 

the three-dimensional solid suppose, we have electron traveling in 100 directions. So, it 

will not have in this direction electron traveling in 100 direction will not have the same e 

versus k curve as an electron traveling along 111 say that is because the lattice constants 

the lattice repeat distance. And the Brillivan zone extents from minus phi by a to plus phi 

by a where a is repeated distance. Since the repeat distance changes depending on 

whether it is 100 or 111 correspondingly the e versus k curve will also be different. 
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So, the limit of the Brillivan zone are different for electrons moving in different 

directions.  
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So, the maxima and minima in the e versus k curve may not go inside their may or may 

not lay at the same k value in different directions.  
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So, what is the consequence of this the consequence that this is shown in figure where, 

the energy versus k curve is shown for the valence band edge and the conduction band. 
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Suppose. So, I have the this is conduction band this is valence band here the maximum 

valence band lay’s at the same k value as the minimum in the conduction band. So, this 

known as a direct band gap semi conductance any kind he founded gallium arsenide has 

such a band structure on the other hand. If you consider materials like silicon they do not 

have such a band structure Silicon. 
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For example, for germanium or indirect band gap semiconductors what does it mean? 

This means that the e versus k curve will be such that there is a maximum in the valence 

band this is the valence band and the minimum in the conduction band is situated 

somewhere else. So, we have this, and this is the band gap in the indirect band gap the 

maximum of the valence band. 
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And the minimum of the conduction band do not occur at the same k value. So, the 

minimum of the conduction band will be in a different k value, and we will have to 



consider this energy difference between these two extreme, which use your a band gap of 

something like 1.2 e v for silicon, because there is a change in the k value corresponding 

to the there is a change in the momentum. 

(Refer Slide Time: 38:51) 

 

And therefore, the kinetic energy. So, that has to be added. So, there is also not only a 

change in energy a transition from the valence band into the conduction band involves a 

change in the energy equal to the energy gap, this gap plus a change in momentum 

corresponding to a change in wave vector from here to here.  
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So, such semiconductors are known as indirect band gap semiconductors direct band gap 

semiconductors are as special interest now having considered holes.  
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We can briefly rework back to what we discuss in connection with a high temperature 

superconductor you may recall that we have a high-temperature superconductors, such as 

y B a 2 C u 3 o 6.9, that is a high temperature superconductor, which we call the hole 

superconductor. We can now understand why this called like this considering the valence 

of this victims is three plus various is two plus copper is also two plus and oxygen is 

minus. So, if you consider the charge balance we have three plus four two into two plus 

three into two which is six which is 13 that is plus and o.  

if I have o seven for example, suppose I have seven then o seven will give me fourteen 

minus. So, for charge balance you require exactly, if it is o six for example, this is twelve 

where, but we have positive ion case is 13 plus. So, the charge balance require that this 

should be more than six point five actually this becomes you reduce it by a small amount 

to delta from the strike cemetery of seven. We get the behavior of high temperature 

superconductor, and this is because this charge balances affected living if you holes in 

the conduction band and that is the reason for superconductivity. So, that is why we call 

this a hole superconductor were as the medium was called as an electron like apartment 

again for the same reason. So, this is the reason for the nomenclature and it is hole 



conduction in a pairing a hole, which is possible for superconductivity in the high-

temperature superconductor hip we now pass on to a discussion of semiconductors. 


