
Condensed Matter Physics 
Prof. G. Rangarajan 

Department of Physics 
Indian Institute of Technology, Madras 

 
Lecture – 26 

Band Magnetism; itinerant electrons; Stoner model 
 

We have seen so far how the exchange interaction between localized electrons spins leads to 

ferromagnetism and other form of magnetic ordering as a result of the Dirac Isenberg exchange 

interaction. 
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But of course, this is somewhat not our going to limited interest, because we know that the well-

known ferromagnets do not have localized spins. 
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Namely the ferromagnetic metals, such as iron, cobalt and nickel are metals with delocalized, not 

localized electrons. So in order to account for the ferromagnetic ordering in these metals, it is 

necessary to consider exchange interaction between itinerant or conduction electrons in a d band 

metals. We can use the same concept that we consider for the exchange interaction between a 

pair of electrons and build in the idea of the electron wave function for itinerant electron. 

(Refer Slide Time: 02:54) 

 



So we can write the effective wave function for such a pair of electrons i and j as one by root two 

V e to the power i k i r i e to the power i k j dot r j minus e to the power i k i dot r j e to the power 

i k j dot r i. This is the positions at r i and r j, the electrons at r i and r j and wave vector k and k i 

and k j. Now this is the exchange because of the in disguise visibility of the electrons this is the 

exchanged term and the two electron wave function should be anti-symmetry with respect to the 

spatial part in order to give raise to a ferromagnetic or spin parallel wave function. 

So rewriting this, we can write this as into one minus… Therefore, psi i j square, mod psi i j 

square dr i dr j will be from this, we can easily see that this will have the form taking r i minus r i 

j as the separation r between the two electrons. We can now write the probability for two spin 

being parallel, two electrons spin being parallel, and being separated as just this. Now this should 

be multiplied by d r here, and this will giving you n up. 
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Where n up is the number of electrons spins. 
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In this spin up sign band which is equal to n by 2, so that using this we can write this exchange 

charge density as by multiplying the electronic charge and… We take this average, this dash, this 

dash over this form – bracketed term is just the average, now we average over the Fermi sphere, 

so that we have rho exchange over r as. 
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So that would be the form of this exchange charge density. Now to this of course, we must add 

the charge density e n by 2 due to anti parallel plus the charge density, due to anti parallel spin. 
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Doing this, we finally arrive at the effective charge density as… 

(Refer Slide Time: 08:57) 

 

So that would be the form of the effective charge. 



(Refer Slide Time: 09:39) 

 

And this is shown in the form of a plot of this effective charge normalized by e n versus as a 

function of k F r and that shows so called the exchange hole. This means that the presence of the 

exchange interaction leads to a situation where the effective charge density is reduced because of 

this exchange correlation. 
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So this leads to a renormalization of the electron energies, which is the stating points of the 

Hahree -Fock approximation.  

(Refer Slide Time: 10:52) 

 

We will not go into details of this, but use this idea to discuss the so called band model of 

ferromagnetism. This was first proposed by Stoner and Wohlfarth, effectively that means that the 

energy of the electrons in the spin up band and in the spin down band can be written as basic 

original energy minus I into n up divided by N, and this is minus I down by N. Where N is of 

course, n up plus n down that is the total number of electrons, and I is the Stoner parameter, 

which describes the energy reduction due to electron correlation. We define a parameter R which 

is n up minus n down by N. So this is the difference between the number of electrons with up 

and down spins and therefore, this should be proportional to the magnetization. In order to put 

this electron energy, which we have written in a slightly more transparent form, we redefine the 

zero of energy with respect to by subtracting. 
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I times n up plus n down by 2 N, so subtract, this from the energy. And redefine the energy, so 

we denote this by e tilt minus I R by 2. This can be easily verified and similarly e down turns out 

to be given by… 

(Refer Slide Time: 14:12) 

 

Where e tilt of k equals e of k minus this quantity. So starting with these, these are the 

renormalized electrons sub band energies and our aim is to calculate the magnetization, which is 



proportional to parameter R. So we can write R as 1 by N sigma f up k minus f down k the 

summation over, all k values, where f k is the Fermi Dirac distribution function which we have 

discussed already. So substituting for this, R turns out to be one by N sigma over K writing the 

actual form of the Fermi Dirac distribution function and substituting for e up and e down values 

the energies. So this will be e minus e tilt minus e F minus I R by 2 by k B T, because there is a 

negative sign there plus 1 minus 1 by… 

(Refer Slide Time: 16:44) 

 

So we simplify this by noting that we have a function f of X minus delta x here, and the function 

with f of X plus delta x. So this is given because of the exponential, we can write this as plus 

higher order term involving delta x cube into f x by 3 factorial etcetera. So using this, and 

applying it to this, we get the parameter R as 1 by N sigma K d f k by d e k times I R, neglecting 

the other terms, which is necessarily positive, the times f dash. So this is we know the Fermi 

Dirac distribution function has a negative sign here, whereas the next term involving the third 

order derivative is positive.  



(Refer Slide Time: 18:53) 

 

So if we want a positive magnetization, a non-zero magnetization, which means that R should be 

positive. We arrive at the Stoner criterion for ferromagnetism, we can see readily from this, this 

criterion to be… 
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This will have a maximum value at t equal to 0, and it will have a particularly simple form at 

absolute 0. So you will evaluate this at absolute 0 over the summation can be written as… And 



we know this is going to give you a delta function, therefore, we can simplify this as… So that 

would become, where D of e f is the electron density of states of the Fermi energy.  

(Refer Slide Time: 21:33) 

 

So from this, we get Stoner criterion as… 

(Refer Slide Time: 22:27) 

 

And we can redefine V by 2 N D of E F as some D tilt of E F, in which case we get particularly 

compact form for this Stoner criterion for ferromagnet. Now this has been calculated, the 



electronic density of states at the Fermi level for the various metal have been calculated and 

using these values, the product I times D tilt of E F can be calculated and that is shown in the 

picture. 
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And it can be seen that the Stoner criterion is fulfilled only for iron, cobalt and nickel, so that is a 

very remarkable result predicting ferromagnetism according to the simple Stoner criterion in D 

band metals namely iron, cobalt and nickel, which are well-known to be metallic ferromagnets. 
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So that is how this simple Stoner model accounts for ferromagnetism in these metals. 

(Refer Slide Time: 20:21) 

 

Now the next question is what happens in an external magnetic field. It is quite simple and 

straight forward, so this Stoner parameter the R becomes… Where this is the two mu B B is the 

Zeeman splitting in the presence of the applied magnetic field. So instead of I R, it becomes I R 

plus two mu B B and the magnetization is nothing but N by V times R. So that can be written 



straight a way in the form, so the magnetization therefore we get the magnetization is given in 

this form in the presence of an applied field. Therefore, we can define the susceptibility as the 

ratio between M and B which is given by, so it has the form chi 0 by 1 minus I times D tilt e F, 

so this is known as an enhancement factor, this is called a Stoner enhancement of the magnetic 

susceptibility. So this is the Stoner enhancement factor, which increases the magnetic 

susceptibility. 

(Refer Slide Time: 25:56) 

 

Next, we would like to calculate the spontaneous magnetization and its temperature dependence.  



(Refer Slide Time: 26:04) 

 

You know to calculate this, we assume a delta function behavior for the electron density of 

states, D electron density of states at the Fermi energy. In order to keep the calculation simple 

and with that assumption, we get the parameter R as we have same as before exponential mu B B 

naught minus I R by 2 plus 1 minus 1 by exponential mu B B naught plus I R by 2 plus 1. We set 

to bring it to a simpler form, we make the following substitution, we set T c, a parameter T c as I 

and mu B effective by mu B into 4 k B. 

(Refer Slide Time: 28:04) 

 



We also take R tilt as mu B effective by mu B times R, so that in terms of this, the R tilt becomes 

simply 1 by exponential two R T c by T plus 1 minus… This shows the correct behavior, this 

tends to equals to 1 for T equal to 0 and equal to 0 for T equal to T c. So T c defined in this way 

is the Curie temperature of this ferromagnet. In addition for T very small compared to T c, it is 

well below the Curie temperature, this R tilt is given by 1 minus 2 e to the power minus 2 T c by 

T. And the neighborhood of T c, this is given by root three times 1 minus T by T c. 

(Refer Slide Time: 30:12) 

 

So this gives a number of things to compare with experiment, the figure shows the factor 

parameter R tilt as the function of T by T c. 
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So this is the near the critical temperature, the expected behavior according to this model is root 

3 times 1 minus T by T c to the power half, giving rise to a so called a critical exponent of half. 

But what is experimentally observed is one-thirds has can be seen from the next figure. 
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So the critical exponent magnetization goes as one minus T by T c to the power one-thirds in the 

neighborhood of the critical temperature, so there is a strong deviation in the critical behavior at 



the ferromagnetic Curie temperature. Also the low temperature behavior, there is considerable 

deviation of the experimental results data points from the expected theoretical curve. 
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So these are due to the shortcomings of the Stoner model, especially that gives Stoner model 

does not take proper account of the excited states. Because in addition to spin flips, a cumbering 

the excitation from band to another, other element excitation with a smaller quantum of energy 

or possible and they can also cause spin flip. 
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This is not taken into account in the Stoner model. 
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Now for T above the Curie temperature, T greater than T c, we can expand the exponentials and 

write R as mu B by 2 K B T into B naught plus T c by T into R, so that is leads to a susceptibility 

which goes as C by T minus T c. And this we can readily recognizes as the Curie Weiss 

behavior. So in short, we have described in terms of the simple Stoner model, how one can 



account for ferromagnetism in a d-band metal, such as iron, cobalt and nickel and how this leads 

to features, which predict the correct Curie Weiss behavior and also leads to a Stoner 

enhancement of the susceptibility. 

The temperature dependence of the spontaneous magnetization of course you have the correct 

overall behavior for the order parameter namely the magnetization, but the critical behavior as 

well as the low temperature behavior are not very well described by Stoner model, because of the 

improper treatment of the excited states. So with we have some idea of how band of model of 

ferromagnetism can be used to describe magnetic ordering in metals. With this we conclude our 

discussion of magnetism. 


