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So far, in our discussion of magnetism we have always talked about electrons as if or spins as if 

they are localized in space inside the crystal lattice. So all our treatment has been under the 

assumption that the spins, which are responsible for the magnetic behavior are all localized in 

space and stay fixed in a particular point or space. For all time, we know that this assumption is 

not justified in the case of metals in which conduction electrons in metals are somewhat free to 

move around and so they are not fixed in space. So this assumption is certainly not justified 

when discussing the magnetism due to spins which are in metals. So if you want to discuss 

magnetic behavior of metallic systems, we have to have a different approach, the assumption 

breaks down of a fixed position in space, and therefore we have to allow for these in our 

discussion. 
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So this is what we will do today and we will find that very interesting effects take place when we 

do this. So the main contribution to paramagnetism, let us discuss paramagnetism first is from 

the free electron spin magnetic moment; free electrons spin associated with this spin angular 

momentum there is a magnetic moment. And we know this magnetic moment is given by… Well 

we write a negative sign to show that, that is electron. And where here, this is the g due to free 

spin, and g is known to be very close to two; it is the ((Refer Time: 03:10)) factor. And therefore, 

we can write the magnetic moment as… 
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So that is the magnetic moment of an individual free electron which a when we apply an external 

magnetic field acquires an energy - magnetic energy, which is this magnetic moment times…  
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So and we know that in a magnetic field, then electron has two orientation, which are parallel 
and anti parallel to the field which are given by the spin magnetic quantum number minus half, 
plus half. So we have corresponding to the two different configurations, the magnetic energy 
turns out to be plus or minus mu B B. 
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So when an external magnetic field is applied, the energy of the electrons with spin quantum 

number minus half will decrease by an amount mu B B. While the energy of the electrons whose 

spin quantum number is plus half will increase by the same amount mu B B. So this is what we 

show in this figure, so we just plot e versus k, but we conveniently split the band into two, so this 

is 0. So positive k is we have a parabolic energy depends as we know already and this is show on 

both sides. So these are the two spins sub bands corresponding to m s equal to minus half and 

plus half. 

So now this the once with anti parallel orientation will go up in energy now. While those with 

parallel orientation will go down in energy, so that will be the situation, so these will be the new 

configuration corresponding to parallel and anti parallel, anti parallel spins and these are parallel 

spins. This is the sub band corresponding to the parallel spins, so that would be the situation and 

the amount by which this change take place is what we wrote as mu B B. So this is the same as 

mu B B here. So this is the situation in an external magnetic field. 
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So equilibrium will be attained so as to make the energy of the spin up and spin down band 

electrons equal at the Fermi level, so this is what we shown in the next figure. So we have a net 

magnetization, because the density of states of the electrons D of e d e depends on this is equal to 

4 pi into 2 m by h cross square to the power 3 by 2 into e power half d e. So if this is e minus mu 

B B or e plus mu B B the density of state will be different. 
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So, the consequence of this will be that the electron concentration. 
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If you consider the electron concentration in the spin up sign band that will be half integral… In 

the presence of an applied magnetic field, the strength B, the density of states will be given with 

by this and we have the factor half, because only the one half of the number of electrons will 

occupy one spins of band. 
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Similarly, n down or n anti parallel, n down spins will have half integral… So this is the 

concentration or different because the density of states are different corresponding to different 

energy. 

(Refer Slide Time: 09:04) 

 

So, because of that there in the absence of the magnetic field, the concentrations were equal, but 

now there is an unequal concentration and therefore we have a net difference and which we write 

as the difference between the two configurations. 
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So we have this net can easily be calculated and that is given as so that would be the net 

difference in concentration. 
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And this can be simplified for small values of the applied magnetic field, we can write this by 

using binomial theorem. 
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So expanding the square root using binomial theorem, we get this population different, the final 

difference in population is turns out to be, so that would be the difference. 
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And the corresponding magnetization is just this times mu B; this is nothing but… 
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So this magnetization due to the difference in orientation of the ((Refer Time: 11:10)), it turns 

out to be times well. 
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We can the simplification of the stage using the expression for the Fermi energy is… So using 

this, we finally arrive at the expression for the magnetization in the form. And therefore, the 

susceptibility is just M by B. So this susceptibility turns out to be… And this is known as the 

Pauli paramagnetic, Pauli who first determine this. So this is the paramagnetic susceptibility as 

seen of the positive sign and this has the magnitude of the sign. Now the question is this is the 

difference in electron concentration, this is the Bohr magneton, the square of the Bohr magneton 

and this is the Fermi energy. 

Now the question arises can be experimentally observe this, well the answer is it is rather hard, 

because this is complicated by additional effects, it is by the overall diamagnetism of the ion 

cores in the metal lattice also as we will see. There is another effect called Landau diamagnetism 

which will consider presently, so both these effects the diamagnetism of the ion core as well as 

the Landau diamagnetism susceptibility complicate add to this and therefore the net 

susceptibility that one will observe in metallic specimen is the resultant of all these three. So that 

we already saw in the previous lecture on magnetic resonance, we talked about the NMR – 

Nuclear Magnetic Resonance in a metal. 
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We talked about the conduction electrons and their interaction, the hyperfine interaction between 

the conduction electrons, which are in the s-states and the nuclei, so this provides so called the 

Fermi hyperfine interaction, which leads to establish went of a local magnetic field which adds to 

the field applied, because the resonance. 
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And therefore, there is a shift which is known as the knight shift, we discuss this in the lecture on 

the magnetic resonance. Now this knight shift is also related to the Pauli paramagnetic 

susceptibility and so both these effects are related. 
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Now we move onto discuss this other effect, which is known as Landau diamagnetism. 
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Now what is this effect give to, this is the name implies this is due to the not the spin angular 

momentum, but the orbital motion of the electron in a magnetic field, and when we say electron 



we mean the the conductional effect, not the orbital electrons, but the conduction electrons which 

is free. So, when you apply a magnetic field, we usually write B equal to del cross A, where A is 

the vector potential, magnetic vector potential. So, if we apply a uniform magnetic field along 

the z component then this can correspond to a vector potential which has the components… 

So in the presence of such a vector potential, we can write the Schrodinger equation for the 

electron, which is d square by dx square plus d square by dz square psi plus d by dy minus i e B 

x by h cross square operating term psi plus two m by h cross square psi equal zero. That would 

be the Schrodinger equation, which has this additional term due to the magnetic field. So we 

have to solve this by the method of separation of variable, so obtain the energy Eigen value in 

the stationary states. 
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So following the method of separation of variable, we know that these two parts correspond to 

the free electron, therefore we can write times U of x, because there is a extra dependent term. So 

the x part of the wave function will not have the free electron form, and so this U of x is the 

function corresponds to the x part of the wave function. The y and z parts are free electron wave 

functions, as in the case of the free electron in the absence of the magnetic field. So substituting 

this back here, we can write the equation which is satisfied by the function U here, that would be 

the equation satisfied by the function U where e prime is e minus h cross square k z square… 
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Now we define two quantities the cyclotron frequency which we are already familiar, omega 

equal to e B by M. And we also define X 0 as h cross by e B into k y.  
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With these two substitutions, this equation can be simplified to the following form. 
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The Schrodinger equation, it turns out that the equation is identical to that of a displaced 

harmonic oscillator of mass-m, charge-e, angular frequency-omega, and displaced amount –X 

naught, which is defined there. So the energy Eigen values of such a displaced simple harmonic 

oscillator are well known from quantum mechanics, they are given by… Where n is an integer, 

say zero, 1, 2 etcetera. 
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So that the total energy Eigen value for such a electron orbiting around in the presence of a 

magnetic field turns out to be… Where e prime e n given above. So what is the result of all these, 

the motion now of the free electron or the conduction electrons which originally had a plane 

wave like states, you know all the three direction, it means that they are free electron states. And 

now because of the application of the magnetic field mu is so this omega depends on this 

magnetic field. So because of the applied magnetic field, energy levels only along the z direction 

or free electron plane wavelike while the energy level in the other plane perpendicular to the z 

axis, the direction of the field direction are quantized the units of the cyclotron frequency omega, 

h cross omega. 
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So, this means that we have these energy levels are known as Landau levels, because Landau 

first describe this. The result of this is that now we have to add the Zeeman term, well-known 

Zeeman term to this and find its effect. So we can usual procedure is to calculate the free energy 

in terms of the partition function, once we know the energy level Eigen values, we can write the 

partition function and so calculate the free energy. And then the magnetization can be calculated 

from the free energy as the first derivative of the magnetic, with respect to the magnetic field. So 

the magnetization can be calculated, the calculation of these algebraic somewhat complicated, I 

will not go through it here, I will simply give the result of this calculation. 
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It turn out that this magnetization corresponds to a susceptibility, which is of the form chi P plus 

chi L. Here chi P is the Pauli principal spin which we already discussed. And chi L is the Landau 

diamagnetic susceptibility. It is found to have a value, minus half N mu B square by e F. So the 

Landau diamagnetic susceptibility, the magnitude is just one-third, the Pauli susceptibility is 3 by 

2 with a positive sign, so this is equal to one-third of chi P. So the Landau susceptibility has a 

magnitude which is just one-third of the Pauli susceptibility, so the comparable to the Pauli spin 

susceptibility. 
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In addition, it is also found that the susceptibility has an oscillatory component and which has 

period, which is given by delta 1 by B equal to 2… So that is the period, the period of these 

oscillation. These susceptibility oscillation are known as de Haas-van Alphen oscillations. 
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It is an effect which was discussed first by discovered by de Haas-van Alphen, so it was named 

of them. So this gives you of the effect of this oscillatory susceptibility. This has a very 

important consequence that one can determine the topology of the Fermi surface using this, 



because the exact calculation gives delta one by B as 4 pi square mod e divided by h cross A. 

This is this A effective is the effective cross sectional area of the Fermi surface. So the period of 

these oscillation is related to this cross-sectional area and therefore determining this period as the 

function of the applied magnetic field gives us the information about the topology of the Fermi 

surface. So this is an extremely interesting effect which help us in determining the exact 

topology of the Fermi surface in real metal. 
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The next figures shows the experimental recording of a such quantum oscillation in the 

susceptibility of a sample of gold as a function of magnetic field strength. So these are 

interesting experimental results associated with conduction electron magnetic in metals. This 

also leads to a similar interesting effect due to the cooperative magnetic ordering of conduction 

electron in a metal and leads to what is known as the band magnetism. We will discuss this in a 

separate lecture. 


