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In the last lecture, we saw briefly the mechanism or the interaction which is basically 

responsible for ferromagnetic ordering. In a magnetic solid, we said that this interaction 

is known as the exchange interaction and also indicated that to understand the how this 

exchange interaction works. It is necessary to consider the so called Heitler-London 

model of a homonuclear diatomic molecule such as hydrogen. 
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So, in this lecture, we will consider this in greater detail. So, we will be discussing 

exchange interaction using the Heitler-London model for covalent bonding of a 

homoneuclar diatomic molecule such as hydrogen example. So, we already started and 

this for today we will talk a little bit in greater detail on this. 
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So, the figure shows the hydrogen molecule and you have the two nuclei a and b are the 

atomic nuclei of the hydrogen atom which are represented by well. These are the nuclei 

and then you have the electrons 1 and two the hydrogen has 2 atomic nuclei and two 

electrons. So, nuclei are shown by the letters a and b and the electrons are indicated by 

the numbers 1 and two. So, the various distances are this is r a 1, this is r b 2 this is r a 2 

this is this is r a 2 this is r b 1 we also have r 1 2 and we have r a b, these are the various 

distances. 
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So, in terms of these distances, we can drive the Hamiltonian operator, the Hamiltonian 

operator will involve the individual kinetic energies of the two atoms e 1 square by 2 m 

plus p 2 square by 2 m where m is the mass of the electron. And you can say, 2 m 2, but 

this m 1 equal to m 2 equal to m e mass of electron. The electrons are identical and have 

the same mass then you have these square by 4 pi epsilon nought into 1 by r 1 2 plus 1 by 

r a b this is the repulsive energy potential energy of the two electrons and this is the 

repulsive potential energy of the two atomic nuclei. So, this a total repulsive potential 

energy term then you have binding or attractive terms potential energy terms due to the 

various interactions re 1 r p 2 1 by re 2 plus 1 by r b 1 these are the 4 interactions terms 

which constitute attractive potential energy terms. So, that is the total Hamiltonian of the 

two electron hydrogen molecule. 

So, this is the Hamiltonian and we have to use the corresponding two electron wave 

functions which are at the form psi 1 2 equals 1 over root 2 which is a normalization 

constant time psi a 1 psi b 2 plus or minus psi a 2 psi b 1. So, that is the two electron 

wave function which involves the product wave functions. So, the single electron wave 

functions of the form psi a 1 and psi b 2 which means electron one is with the nucleus of 

the atom a and the electron two is with the nucleus b and, but it is also equally probable 

that the electron two spends time with the nucleus a while the electron one spends time 

with the nucleus b. So, both are equally probable and therefore, we put a linear 

combination of these two product wave functions this linear combination can be 

symmetric or anti symmetric with respect to a change of the electrons. 

And therefore, the plus sign corresponds to the symmetric linear combination and the 

minus sign corresponds to an anti- symmetric linear combination both will give rise to 

the same modular square of the wave function and therefore, are equally probable. So, 

we had to consider both possibilities and this is the wave function which has to be 

combined with this in the solution of the Schrodinger equation of the form xi equal to psi 

where e is the energy Eigen value. So, we have to determine the energy Eigen values of 

the homonuclear diatomic molecule which has a Hamiltonian of this form and a wave 

function of this form. So, if we solve this problem and find the energy Eigen values we 

will have a clue to see which are the ground state energy what is the ground state energy 

which are the energetically favoured states of the molecule. So, this is the key to the 

entire question. So, when this is done. 
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We see that if I have only the first part that is the we already know p one square by 2 m 1 

minus e square by 4 pi epsilon naught r a 1. This is the potential energy term and this is 

the kinetic energy term of the hydrogen atom one. Similarly p 2 square by 2 m two with 

a minus e square by 4 pi epsilon nought one by r b 2 gives you the kinetic and potential 

energy terms of the Hamiltonian of the individual hydrogen atom two. So, these gives 

you the total energy this these two plus this 2 give you the energy Hamiltonian 

unperturbed terms of the Hamiltonian which corresponds to the total of which gives you 

the total energy of two unperturbed hydrogen atoms. So, the remaining terms or 

perturbations. So, this 1 is a perturbation and similarly these two terms are perturbation. 
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These are extra terms. So, the perturbing Hamiltonian is of the form minus e square by 

by 4 pi epsilon nought times 1 by r a 2 plus 1 by r b 1 plus e square by 4 pi epsilon 

nought into 1 by r 1 2 is inter electron repulsion plus 1 by r a b which is the inter nuclear 

repulsion. So, these are the terms so the original unperturbed Hamiltonian has gives you 

the total energy the sum of the individual energies of the two isolated hydrogen atoms in 

their ground states, and but these extra terms in the un perturbing Hamiltonian modify 

this energy of the two electron Eigen function. 

And these energy Eigen values in the presence of the perturbation are formed by solving 

the secular determinant according to perturbation theory which has the form H 1 1 prime 

minus E H 1 2 prime H 2 1 prime H 2 2 prime minus E equal to 0 that is known as the 

secular determinant. Here H 1 1 prime is the so called matrix element matrix element of 

the perturbing Hamiltonian H prime with between the states I one and psi 1. So, we have 

similarly H 1 2 prime is the matrix element between the states psi 1 and psi 2 and so on. 
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So, solving this leads to a quadratic equation. Expanding the determinant and 

recognising that H 2 one prime and H 2 2 prime are the same. Similarly H 1 2 prime 

equal to H 2 1 prime knowing this. We have a quadratic of the form which will give you 

have a quadratic by expanding that determinant and the roots of this quadratic are give 

you the energy eigenvalues. 
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So, this is going to be H 1 1 prime plus or minus H 1 2 prime now this is based on the 

assumption that the overlap integral of the form integral psi 1 star psi 2 the tau one if this 



is S equal to is taken as 1 under that assumption these are the energy eigenvalues. So, 

having solved the secular determinant we have got the matrix elements and what is the 

meaning of this H 1 1 prime is the usual integral. So, you have two possibilities this is 

usually known as the coulomb integral. So, this is a reform psi one H prime psi 1. So, 

that is the usual form of the coulomb integral, where H prime has these electrostatic 

terms and this is the so called exchange integral, which is of the form psi one H prime si 

two. This has this term has no classical analogue this means that you have this is the 

matrix element of the perturbing Hamiltonian, which is of a purely electrostatic character 

between  a quantum mechanical state and this wave function corresponding to the state 

in which this wave function the electrons are interchanged. 

So, this is therefore, it is known as the exchange integral this is a purely quantum 

mechanical the effect which has low classical analogue and this exchange force is of 

purely electrostatic origin because the perturbing Hamiltonian H prime i consist of only 

electrostatic attractive and repulsive terms. So, the this gives you the sum total therefore, 

the net energy again value there are two possibilities corresponding to the coulomb 

integral plus the exchange integral and the coulomb integral minus the exchange integral. 

So, you have the two possibilities. 
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So, more often these are referred to as C plus or minus J where J is the exchange integral 

and C is the coulomb integral. So, now, there as a result of this they originally degenerate 



energy eigen states  of the unperturbed hydrogen atoms this degeneracy is lifted and you 

have now two states 1 with the energy C plus J and C minus J according to this the state 

C minus J lies lower than this touched with C plus J if J is positive if J is negative then C 

plus J will lie lower than this C minus J term. So, which is the state which lies lower 

depends on the sign of the exchange integral. The exchange integral can be positive or 

negative and the C minus J state correspond to an anti-symmetric linear combination of 

the two electron special wave functions. Now this is a very interesting situation what 

does it means, it is this corresponds to and let us write. 
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So, let us consider the situation corresponding to a positive exchange integral in greater 

detail if what does it mean this means that the state C minus J with energy C minus J lies 

lower than the state C plus J this corresponds to an anti-symmetric linear combination of 

this spatial part of the wave function. Now what does this mean, now the total wave 

function; however, consist of not only the spatial part, but also the total wave function of 

the system is a product of the spatial and the spin part of the wave function and 

according to Pauli exclusion principal. This total wave function should be anti- 

symmetric with respect to exchange in order to satisfy the Pauli exclusion principal, and 

now we know that this is a the spatial part is anti-symmetric. So, in order that the product 

of these two spatial and spin parts should be anti-symmetric, this means that it should be 

symmetric with respect to exchange of spin. 
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So, let us see under what conditions the spin part of the wave function will be symmetric. 

So, let us look at the spins in some detail we know that the electron spin is half and 

therefore, you are two possibilities of the magnetic quantum number which shows the 

orientation of the electron spin with respect to an external magnetic field. So, if this 

orientation is parallel to the external feel we show it by an up arrow and if the two spins 

are both parallel. 
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Then that is going to give you a spin state corresponding to the total spin which is half 

plus half which is 1 and that is; obviously, a state which is symmetric with respect to 

exchange. So, this will also have you can also have the possibility in which both this 

spins are anti- parallel if this is. So, this is this corresponds to M s equal to minus 1, but 

this still corresponds to S equal to 1. So, corresponding to S equal to 1, you have two 

possibilities. Now M s equal to one and M s equal to minus 1, you also have the 

possibility M s equal to zero and that is a state of this kind with a normalization. So, this 

corresponds to Ms equal to zero it is a symmetric linear combination  of the states with 

an up arrow and down arrow and a down arrow and an up arrow. 

So, all these 3 states together correspond to give rise to a spin one therefore, there are 3 

states. So, this is called a triplet state. So, the one which is left out which corresponds to 

an anti symmetric linear combination of the spins this is anti-symmetric with respect to 

spin. So, this corresponds to S equal to zero Ms equal to zero and this is an anti- 

symmetric singlet state. So, it is these three states which are symmetric which go into 

this. So, this corresponds to ferromagnetic ordering. So, J greater than zero corresponds 

to a ferromagnetic ground state whereas, the anti-symmetric spin configuration 

corresponding to a singlet state with S equal to zero corresponds to a symmetric linear 

combination of the spatial part and that corresponds to an anti- ferromagnetic state. So, 

this is state C plus J is an excited state in which the two spins are anti-parallel this is in 

case J is greater than zero.  

If J is negative on the other hand then the state C plus J with anti- parallel spins lies 

energetically lower than the state C minus J. So, you will have an anti - ferromagnetic 

ground state in this case. So, this is the basic cause of the ferromagnetic or anti-

ferromagnetic ordering, and therefore, it is the sign of the exchange internal J, which 

determines whether a given material magnetic material will be ferromagnetic or anti 

ferromagnetic. This exchange integral is happens to be positive in the case of atoms like 

iron cobalt and nickel and that is the reason why iron cobalt and nickel are prototype 

ferro-magnets. Now this is the basic clue to the understanding of why the exchange 

interaction leads to ferromagnetic or anti-ferromagnetic ordering, but we would like to 

write the change Hamiltonian in a form in which the spin operators are involved. So, that 

the essential details of this energy level schemes are brought out by a spin Hamiltonian, 

involving only the spin. 
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Operators involving only the spin operators, it should be we want to replace the actual 

Hamiltonian of the electron, two electron system by a spin Hamiltonian involving only 

the spin operators such that it models. The essential details of this 2 electron problem 

that is you have a ferromagnetic ground state which is triplet lying below the anti-

ferromagnetic excited singular state by an amount equal to two J because the difference 

in energy is C minus J and C plus J is 2 J. So, you want to write a model Hamiltonian 

this was first proposed by Dirac. So, it is known as Dirac Heisenberg no it was proposed 

by Heisenberg. So, it is known as the Dirac Heisenberg Hamiltonian it has the form 

minus 2 J S 1 dot s 2. Now let us see how this leads to the same situation and how such a 

Hamiltonian will model our system we know that s square which is s 1 square plus s 2 

square plus 2 s 1 dot. 

So, we have s 1 dot s 2 is s square minus s 1 square minus s 2 square by 2 and in terms of 

the expectation values this is s into s plus 1 minus s 1 into s 1 plus 1 minus s 2 into s 2 

plus by two. So, we have the possibility s equal to one for a triplet ground state. So, s 1 is 

half and s 2 is also half. So for this s 1 dot s 2 will have the value one into 2 minus half 

into 3 by 2 minus half into 3 by 2 by 2 and that is 3 fourth 3 4. So, this is 3 by 2. So, this 

will give me one fourth whereas, in the case of the singlet with total spin S equal to 0 for 

this. 
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This is the energy of for S equal to 0 s 1 dot s 2 is going to be 0 minus 3 by 4 minus 3 by 

4 5 2 which is minus 3 by 4. So, coming to the Heisenberg Hamiltonian, it is minus 2 J 

into one fourth it is minus J by 2 for triplet. And this equal to minus 2 J into minus 3 by 4 

which is 3 J by 2 for this singlet, so 1 C is that the energy difference delta e between the 

two is 3 J by 2. So, it is plus 2 J. So, you have model the system as we wish. So, the 

direct Heisenberg exchange interaction Hamiltonian models our real ferromagnetic 

ground state. So, we use this instead of the original coulomb and exchange actual 

Hamiltonian terms it is this spin Hamiltonian which will be used in order to model the 

ground state of a real ferromagnetic material a real ferromagnetic material actually 

contains a large number capital n of spins. So, it is a long ranged magnetic ordering of all 

this n spins which gives rise to the ferro-magnet. 
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So, in a system of such N spins I have N a total of n spins where N is very large then we 

can write the total Hamiltonian as minus 2 J S 1 S 5 dot sigma S j where the summation 

is over j over all the N spins. So, that is the total Hamiltonian of the system. So, this can 

also be written as minus 2 J Z N Si dot average S J where this is the number of spins and 

Z is the number of near (( )). So, if we assume that the exchange coupling is non- zero 

only between adjacent spins. So, the summation extends over these neighbours. 

So, Z is the coronation number which gives you the number of spins surrounding a given 

spin near neighbours and the spin is S J is the average. So, N is the total number of spins. 

So, this can be thought of as a mean field  BM F acting on the spin and this the strength 

of this mean field the average is called mean field, because it is a statistical average. So, 

it is just two Z J N S j by g J mu B. So, if we define the magnetic field of strength given 

by this then this is the mean magnetic field acting on this spin. So, you have this is equal 

to lambda M in our original vice molecular field picture. So, this magnetization is 

lambda g J mu B S j. 
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Therefore we compare these two and so in terms of the exchange interaction constant J 

and the number of atoms or spins and the number of spin the coordination number we get 

an expression for the vice molecular field. So, we are in a position to relate the direct 

Heisenberg exchange spin Hamiltonian formalism and the mean field hypothesis enable 

us to obtain an expression for the relation between the vice molecular field constant 

lambda and the exchange integral J. 
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So, we now have a microscopic understanding of the cost of the ferromagnetic or anti-

ferromagnetic ordering in terms of the so called exchange interaction which is a purely 

quantum mechanical interaction based on the electrostatic interactions of the electrons. 

Now this is a direct exchange we can also have exchange interaction between ions which 

are far away which are not next to each other as in a homonuclear diatomic molecule, but 

which are very far away. But then the exchange interaction is mediated by things which 

are between these two far away spins what are these things these can be condition 

electrons this is the case in the case of rare earth metals the conduction electrons can 

mediate. 

In other word the spin of one ion can interact with an electron with a conduction electron 

which is free to wander around and that conduction electron in turn interacts with the 

other ion. So, there is effect in effect in extreme coupling between the two ion mediated 

by the conduction electrons. This is what happens in the case of the rare earth metal in 

the case of transition metals you have metal compounds containing say oxygen atoms 

transition metal oxides like manganese oxide. For example, you have the mediation 

between the two ions the exchange interaction is caused by intervening oxygen ions. So, 

one ion the spin interacts with the neighbouring oxygen ions oxygen spin and this 

oxygen spin in turn interacts with the other ion. So, you have an exchange interaction 

between the two transition metal ions mediated by the intervening oxygen spins of the 

oxygen ions. 
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So, this is known as the super exchange the conduction electron mediated exchange 

interaction was first proposed by these people Rudermann, Kiltel, Kasuya and Yosida. 

So, this is known as RKKY interaction. So, the conduction electron mediated exchange 

interaction is known as the RKKY interaction and that is responsible for the ordering of 

rare earth metals. Whereas, the exchange mediated by oxygen ions in transition metal 

oxide is known as the super exchange. So, we have direct exchange super exchange and 

then RKKY interaction. So, these are the different kinds of exchange interactions. 
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There is an another interesting family known as the rare earth manganites in which there 

is a special form of exchange interaction known as double exchange in the manganites 

there are manganese ions. So, you have a manganese two plus and a manganese 3 plus 

ions separated by an oxygen ion. So, the exchange involves the simultaneous hoping of 

an electron from adjacent manganese and oxygen ions into neighbouring sides in the 

crystal lattice. So, that an Mn 2 plus becomes an Mn 3 plus and the MN 3 plus becomes 

an Mn 2 plus. So, there is a double exchange mechanism there is a simultaneous hoping 

of an electron. So, this is known as the double exchange mechanism. So, these are the 

various forms of exchange interactions. 
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Now, the molecular field model can also be used to describe the behaviour of anti 

ferromagnets for which as we have already seen the ground state is that of a anti parallel 

spins which are aligned anti parallel to each other. So, the entire structure can be thought 

of as consisting of two inter penetrating sub lattices in which the spins are oppositely 

aligned. So, you can have a picture in which there are inter penetrating sub lattices. So, 

you have a two sub lattice model for example, of an anti- ferromagnetic solid. So, the 

molecular field hypothesis enables us to write the interactions in the presence of an 

applied magnetic field as follows. 
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So, you have the possibility to write the magnetization in the first sub lattice is given by 

the curie constant times B minus lambda M right lambda M 2 this is the applied field. So, 

this is the total this is the C 1 B by 2 T the factor two comes because you have an half the 

lattice is divided into two. There are two interpenetrating sub lattices, the curie constant 

therefore, gets to the form C one by 2 number. This will be the local field similarly we 

can write a similar equation for the other sub lattice where T is the temperature. So, 

solving these two equation simultaneously we will get the total curie constant and the 

magnetization of the two sub lattices solving these two together. 

We find that for an anti ferromagnet which is in the paramagnetic phase that is above the 

curie temperature the magnetic susceptibility follows a curie vice behaviour, but with the 

magnetic the total magnetization is of the form a curie vice behaviour, but with a positive 

sign for it is C by T plus theta we may recall that for a ferromagnet. It was the form C 

minus theta this is the we can write the susceptibility in the paramagnetic state. So, this is 

the ferromagnet this is the behaviour of the susceptibility for an anti ferromagnet. 
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So, if we plot the susceptibility temperature dependence of the inverse susceptibility as 

before then we get we saw that already that (( )) verses T is something like this for a 

ferromagnet with this as the paramagnetic curie temperature whereas, for an anti 

ferromagnet. So, this zero. So, we have a negative intercept this is theta. So, this is the 

behaviour of an anti ferromagnet above the ordering or curie temperature or the curie 



wise temperature theta. So, we can easily distinguish between the behaviour of a 

ferromagnetic material and an anti-ferromagnetic material even by measuring the 

paramagnetic susceptibility above the curie wise temperature. So, you will have a 

negative intercept in the case of an anti ferromagnet whereas, it will have a positive 

intercept for a ferromagnet. 
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The temperature determined from an extrapolation of the high temperature susceptibility 

that is this theta need not coincide with the temperature at which a spontaneous 

magnetization appears in the two sub lattices. See, we must understand that there is this 

is the curie wise temperature which is measured by measuring the inverse susceptibility 

and plotting. It as a function of temperature in the paramagnetic state, but the actual 

ordering temperature the critical temperature the magnetic ordering temperature is the 

one in which a spontaneous magnetization appears in the two sub lattices if there is a 

spontaneous magnetization and since in an anti ferromagnet the spins are aligned anti 

parallel to each other the two sub lattices have equal, but opposite signs for this 

spontaneous magnetization.  

Therefore, the total magnetization is zero even though the individual sub lattice 

magnetization are non- zero because these two sub lattice magnetization are equal in 

magnitude, but opposite in direction. So, the temperature at which such a thing happens 

the temperature at which spontaneous sub lattice magnetization appears is known as the 



Neel temperature TN in general TN is not equal to theta even in magnitude. So, the Neel 

temperature is the actual temperature of the ordering, but then how do you detect anti 

ferromagnetic ordering if you measure the total magnetization it is zero as in the 

paramagnetic state. So, you have to really look at the sub lattice ordering there is no way 

in which you can measure the magnetization in the sub lattice. 
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So, in order to determine the Neel temperature and actually observe the magnetic 

ordering in the two sub lattices in an anti- ferromagnet the best way is to employ neutron 

diffraction neutrons have a magnetic moment. So, they can interact with the spins and be 

diffracted. So, the diffraction intensities are determined by the ordering of the spins 

which can be different from the atomic or molecular ordering. So, this is what we will 

see for example, in an magnetically anti ferromagnetically ordered solid like manganese 

oxide. We will look at this in detail in the next lecture. 


