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Lecture - 20 

Paramagnetism of Transition Metal and Rare Earth Ions 
 

In the last lecture, we saw how the energy of an electron in an applied magnetic field 

consists of magnetic comes of different kinds one is a paramagnetic term. 
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And the other it is a diamagnetic paramagnetic term correspondence to positive magnetic 

susceptibility in the sense that the magnetic dipoles are alien along the applied magnetic 

field. 
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Whereas the diamagnetic term arises from a negative magnetic susceptibility and this is 

due to the extra centrifugal term centrifugal force due to the magnetic field on the 

electron in anatomic are molecular orbital. So, this causes the magnetic flux associate in 

the field the change changes and this induces inducing an e m f according to Lenz law in 

electromagnet. So, this is since this e m f is a bacterium which is opposing the influencer 

field in therefore, it as a negative sign that gives you the negative diamagnetic 

susceptibility. This effect is universal the diamagnetism occurs in all substances, whereas 

paramagnetism occurs only in cases where there is an unpaired electron giving rise to a 

net magnetic dipole moment which has to orient along the field. 

So, this does not occur in all situations where as diamagnetism always occurs the total 

diamagnetic susceptibility is obtained by summing up the contributions from all the 

electrons total is some of contributions from all electrons and then in all atoms are 

molecules in a given quantity of the material. So, the magnetization is then xi 

diamagnetic types h are the where b is the in magnetic induction. So, if you have n atoms 

each with z electrons because the atom with an atomic numbers z will have z electrons 

then the a m is n z times the contribution which is minus e squared b by 6 m times as we 

saw last time. So, where r square is a average value of square of the atomic radius orbital 

radius. 
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So, thus we get x i dia s minus n z e square like 6 m times of r square. So, n is of course, 

the allocator number. 
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If we are taking about the molar diamagnetic susceptibility and this is of the order of ten 

to 4 minus eight in more substance therefore, is an extremely small value per mole. So, 

this is a even though it is present a very wherein all the materials this is extremely small 

in comparison to the contribution from paramagnetism or ferromagnetism. Therefore, we 

usually do not feel it we do not talk about, but in general for accurate work you have to 



take to the diamagnetism before determining calculating the paramagnetic are 

ferromagnetic contributions. 

Next, we consider paramagnetism, as we said it is necessary to have an unpaired electron 

in the atom or molecule. In order to give rise to a net orbital angular momentum non-zero 

orbital or of spin angular momentum only when there is an non-zero net orbital and or 

spin angular momentum, then only you will have a net dipole magnetic dipole moment 

which gives rise to a paramagnetic effect. So, what kinds of systems are there which 

have such a possibility which are the systems in the there is a non-zero, orbital or spin 

angular momentum given rise given by unpaired electron spins. So, this is the question. 
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So, why you look at the periodic table a Fairlyman's, we find so-called transition metal 

ions corresponding to the feeling of 3 d shells’ are even 4 d shells and so on or rare an 

ions corresponding to if 4 f shells. 
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So, these are the ions this 3 d ions or also known as the iron group ions because the iron 

F e 2 plus or F e 3 plus is an important member of this group. So, are the other magnetic 

ferromagnetic ions such as cobalt nickel and so on. So nickel two plus nickel three-plus 

nickel plus also. So, these are the various ions and the fact rare the ions are known as the 

lanthanides. So, they correspond to the progressive filly on the 4 f ship and they are the 

most prominent examples of paramagnetic here. 
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So, the next table summarizes this the giving the magnetic moment in bore magnetrons 

both experimental and calculated values. 
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For the different typical members the ion ions group 3 the transition ion as well as the 

lanthanides are the ions. 
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In order to understand this paramagnetic behavior it is necessary for as to consider this 

spectroscopic notation of the ground state of an ion. 
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How do you determine the ground state and that is what will determine the 

corresponding paramagnetic moment. For example, let us consider a particularly simple 

example of manganese to plus and similarly for the lanthanide group let us take get a 

gadolinium 3 plus. 
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So, if you consider the manganese ion from the atomic number of manganese, we can 

easily find that this corresponds to a configuration. The electron configuration with an 

outer more shall in which there are 5 unpaired electrons in the outermost 3 d shell a 



typical example of this is manganese oxide m no they manganese occurs in the two plus 

stage. So, there are 5 electrons in the un feel the 3 d shell the outer to 4 s 2 are ionized m 

n 2 plus. So, these go out leaving these in the unfilled outermost shell it is the behavior 

of the 5 electrons that determines the magnetic behavior of manganese ion in general the 

3 d shell can have ten electrons. So, these a half filled shell. 

So, according to whom all the electrons will be found in such stage. So, as to have the 

maximum once ruled use you maxi- mum orbital angular momentum. So, as not to 

violate the Pauli principle consistent with the Pauli exclusion principle, here we have 

already seen in what is Pauli exclusion principle according to Pauli exclusion in principle 

here no two electrons having all quantum numbers identical can occupy the same 

quantum state. In other words, applied to the manganese to plus for which there are 

different states things there are five electrons and these additional. 

So, you have the possibility plus to plus 1 0 minus 1 and minus 2. So, this gives me these 

are various m l vales for the orbital angular momentum which are possible. So, all these 

or filled by an electron since there are five state each of these is filled. So, I have so that 

the total orbital angular momentum because if they if the another electron is put into 

these it can have only spin down. So, we must have l equal to the total some of this is 

zero. So, that you can have a maximum spin multiplicity we want to have spin 

orientation this upward arrow corresponds to m s is equal to plus r these are the m l and 

these are the m s. So, I have s equal to 5 by 2. So, I have maximum spin and consistent 

with that I have l equal to 0 which is s state l equal to 0 corresponds to an sj and the j the 

total angular momentum which is al plus s s 5 by 2. So, the ground multi plate has j equal 

to 5 by 2. So, if you look at the ground state these is be the ground state for them n 2 plus 

ions. 
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Now, in the same way we can find that gadolinium 3 plus which has a 4 f 7 configuration 

in the outer shell outermost and un filled shell. So, since there is a possibility of 14 

electrons in the f-shell therefore, the again have a half filled shell. And similarly, we can 

have m l is equal to plus 3 plus two plus 1 0 minus 1 minus two minus 3 giving l equal to 

0 and m s c is up spin up spin up spin up in up spin giving to s equal to 7 by 2. So, we 

have an a state again with a j equal to l equal to 0. So, j is 7 by 2, so that would be the 

spectroscopic state of gadolinium 3 plus ion no having determined the ground-state of 

the ion. 
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We can we have to now proceed to find the g factor up this ion it is g factor which will 

determine the magnetic moment. So, in the case of the gadolinium 3 plus this situation is 

somewhat simpler. 
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Because in order to determine these, we have to proceed by considering the Hamiltonian 

at the electron a many electron atom which has the following terms. This is the kinetic 

energy term pi square by 2 m summed over all the different electrons which are labeled 

by the denoted by this label I then you have I am leaving out the 1 by 4 by epsilon 

naught etcetera. So, that I have this is the kinetic energy term this is the potential energy 

term I have also this is the potential energy in the nuclear nuclear field coulomb field as a 

nucleus. So, this is minus and then I have plus sigma i less than j this is the inter electron 

coupling or repulsion. 

So, beyond this, we have various terms, the most important is this; spin orbit coupling 

which as the formed lambda l dot s. So, if the sped not be coupling the sufficiently strong 

I am writing it in descending order of the strength of the various interactions. So, if these 

coupling is strong this gives the coupling between l and s use you as a certain j as the 

total angular momentum. So, that it is this angular momentum which interact with an 

applied magnetic field Zeeman term due to a magnetic field. So, in order to find this, we 

have the homes rules we have applied the homes rules and now we can proceed to find 

the zee factor. 
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So, how do we go about doing this we have you according to the g J g J is the g factor 

associated with the total angular momentum J this given by g L into L cross L J plus g 

sin to s cause s J. So, this is the projection of the contribution from the orbital angular 

momentum this is the contribution from the spin angular momentum. Now g J is given 

by 1 plus are L square plus J square minus 2 s square minus s square times plus 22 into s 

square plus j square minus l square this two comes, because they landed g factor for spin 

which we write as g s is approximately two. 

So, if you take these two to together you get the net J as 3 j into J plus 1 minus L into 

plus 1 plus s into s plus 1 by 2 j into J plus 1 that is the expression for the G factor 

associated with an angular momentum J. Your for every square of the angular 

momentum operator, we have replaced it by the corresponding Eigen value, which is j 

into j plus 1 for j square l into l plus 1 into for l square s into s plus for s square. So, 

using this since we know the l s and j we can calculate the g value. 



(Refer Slide Time: 24:31) 

 

If you substitute these values we get a g value of 7.94 for the gadolinium not g j g j into j 

into j plus-one which is the angular momentum which 7.94 bore magnetrons. So, this 

how we calculate the magnetic moment of a given paramagnetic ion know how do we 

experimentally determine it we experimentally determine it by measuring the 

magnetization in an applied magnetic field. So, that dm by db use you xi m the 

paramagnetic susceptibility is given by d m by d p, where the magnetization these n u the 

mu is the average magnetic moment individual magnetic moment, and n is the number of 

ions. If it is a mole of the substance, this number is alligator number. 
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The average magnetic moment has now to be calculated in order to make a theoretical 

calculation of the magnetic susceptibility and then we can compare the experimentally 

determined values. In order to do this, we have to compare this by a recalling our 

discussion of the orientational polarization. In the case of a dialectic material, a para-

dielectric material, where you have a number of electric dipoles distributed in different 

orientations in an applied electric field this was classically treated by a using Boltzmann 

statistics the various orientation. So, if the electric dipole with respect to the applied 

electric field ranges from 0 to pi, the angle theta goes from 0 to pi. All these orientations 

where allowed the main difference our argument in this case proceed. In the same way, 

we will calculate the statistical average of the dipole moment of the paramagnetic ion by 

a fight averaging 8 over all that all the allowed orientations in the case of paramagnetic 

dipole. 
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The only thing is in the magnetic case, you have spatial quantization which means that 

all orientations are not allowed corresponding to theta equal to 0 to pi are not allowed 

only certain discrete orientation are allowed. For example, in the case of have a spin off 

you have m s equals to plus minus half, these are usually denoted by an up and down 

arrow; that means, the dipole is either aligned parallel to the applied magnetic field or it 

is aligned anti parallel to the applied. 



So, you have one only two such orientations possible for us spin half. This spin can only 

be half-integral in general or integral corresponding to a given s value m s has two s plus 

1 value possible values. And these two s plus 1 orientations will have different energies 

is applied magnetic field. And we make a statistical average of a magnetic moment over 

these two s plus or ion one orientations from for example, plus for example, if you have 

m j then this goes from minus j to plus j which is 2 j plus 1. So, this is what we have to 

do in order to the calculate the average. So, let us calculate this. 
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So, the average moment mu these some statistical some over g j mu b b e exponential 

well this can be written as m j because you have mu b b dot j. So, that gives you n j 

exponential g j mu b m j b write by k be t by sigma over m j equal to minus j two-plus j 

divide by. So, that gives you the net average magnetic moment for short hand let us write 

g j mu b m j by k b t b as x just for short hand. So, that we can write this and doing the 

calculation it turns out that we arrive at g j mu b b j of x times j. So, this is the average 

where this b j of x is known as the brown function the explicit farm of this bro in 

function is as follows. 
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What do the below in function associated with a given j value b j f x e 2 j plus 1 by 2 j s 

quartet of 2 j plus x by 2 minus plus 1 by plus j quartet of x by 2, so this is minus 1. So, 

this is for Brillouin function, it is rather easy to make this substitution and arrived this 

form. 
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So, this is the form of the Brillouin function which enters the expression of the magnetic 

moment. So, for a given j value and again d value and so on, m can be written which is n 

mu can be written as m naught b j of x where m naught is a saturation value the 



maximum value maximum possible value when all the n spins are aligned parallel to the 

applied nagnetic field. So, we can show the experiment graphically show the variation of 

the m j associated with a given j value for different choices of different magnetic 

moments. 
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So, the overall variation as a formed like this m verses b goes like this. So, that is the n 

naught. So, this is the b j of x b j of x where x is g j mu bb by k b t. So, we can see 

several features all the v a given magnetization always approaches a saturation. So, this 

the phenomenon of paramagnetic saturation it approaches a constant value at high 

enough a field. So, once you have the field which is sufficiently strong that all the 

dipoles get lined up along the field then you cannot increase the magnetic moment 

beyond that value. So, that is why you reach maximum value and close to the origin. 

This is linear and then it is slowly becomes non-linear and ends to this saturation value 

which is determined by this over all behavior is determined by this argument brillouin 

function which basically involves the applied strengths and the applied field and the 

temperature. 

So, either you can have a very high magnetic field are you can go to a very low 

temperature in both cases the value of x is very high. So, that will give you the 

saturation. So, that is the overall behavior you have. So, all the graphs can be shown to 

be linear close to the origin this is the region corresponding to small applied magnetic 



field and high temperatures this is where the susceptibility can be defined as the ratio the 

magnetization to the string the applied magnetic field. So, in the limit when x tends to 0 

very close to the origin we can show that b j effects tends to the value j into j plus 1 by 3 

j plus 1 into x by 3. 
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So, this slope up this is just j plus 1 by 3. So, the xi n the magnetic susceptibility, which 

is defined as the ratio the magnetization to the applied field becomes in the liner region. 
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So, this gives me a susceptibility paramagnetic susceptibility which is inversely 

proportional to the absolute temperature. So, them effective magnetic moment s given by 

n mu effective square by 3 k b t. So, this is g j square j into j plus 1 mu b square and that 

is mu effective is therefore, g j root j into j plus 1 bold magnetism. So, we can calculate 

the effective magnetic moment once you know the g j the g factor and the j value. So, 

this can be calculated as we have already seen the case of the gadolinium 3 plus ion. So, 

this is the in this for this orientation this susceptibility the paramagnetic susceptibility 

there is some there is the dialectic orientational susceptibility in the case of the polar 

molecules for sufficiently i fields and or low temperature. 
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When this spin alignment in the field is complete we can easily see that limit extending 

to infinity b j of x is one. So, that m will become m naught the saturation value. So, the x 

i at low temperatures goes as c e by t there c is a constant known as curly constant it as 

the value n mu effective square by 3 k b. So, if you substitute all these values the zero-

point one two 4 one into p effective square the p effective is the effective are a bold 

magnetrons number which we calculated a 7.94 in the case of gather in 3 plus. So, we 

have in general a diamagnetic and paramagnetic susceptibility. 
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So, the next figure shows both these contributions the magnetic susceptibility which 

always includes a diamagnetic contribution and in the case of system with unpaired 

magnetic ions unpaired electrons. It also has a paramagnetic contribution and the 

paramagnetic contribution is positive and goes as susceptibility, this is zero. 
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So, the paramagnetic contribution goes like this corresponding to this C by T variation, 

this is paramagnetic and there is a small negative diamagnetic. The total susceptibility is 

the some of these too of the function temperature these are the inverse 1 by t which gives 



you a hyperbolic defenders. For example, if you take x i inverse it is t by c. So, if you 

plot inverse susceptibility one by x i as a functionally the absolute temperature you will 

get a straight line who will slope is one by c from which you can determine the effective 

magnetron number. 

So, this is how we compare calculate the theoretical value and compare it with 

experimentally measured susceptibility, whereas so this comparison the show in in a 

table yeah yeah this is able you can see that most of the rare the ions the comparison 

between the experimental and calculated values is quite satisfactory. Whereas this is not 

the greatest it is in iron –grouped ions, there is a fundamental reason for that, but before 

going to that let us consider the rare. 
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The ion in the case of europium 3 plus and samarium 3 plus, the agreement is poor as 

you can see from the table. This is because this was accounted for value then black. The 

reason for this departure, this disagreement between the experimental and calculated 

value at you in the case of europium and samarium is because these two ions have not 

only ground multiplied, but an excited multiplied close to the ground multiplied. So, you 

have a ground multiplied with an excited multiplied. And our assumption has been that at 

sufficiently no temperature, all day on are practically in the ground state and there is the 

excited-state is sufficiently for a way that there is no admixture of the excited and the 

state in to the ground state. Otherwise, the excite as a state will have a different magnetic 



moment if there is an ad mixed this will also makes with is ground state magnetic 

moment. And this is precisely what happens in the cases of europium and samarium and 

because of this admixture of the excited state if looking to the ground state because of 

the relatively small separation between the ground state and excited state. 

So, this can mix with this that is what changes the magnetic moment value that 

contributes to what is known as Van-Vleck paramagnetism, which is temperature 

independent unlike the curie para magnetism which is dependent inversely on the 

temperature, it depends what on 1 by T. Well, we have to consider the iron -grouped ions 

where you know that the agreement between the experimental and calculated values in 

the following this procedure is rather poor. And there is a very deep fundamental reason, 

for this which has do with the nature of the 3 d ion in comparison to the 4 f ion, we will 

see this in the next lecture. 
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