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Lecture - 03 

 Symmetry in Perfect Solids Worked Examples 
 

Stated without prove to be in the lecture. They are asked to prove that fivefold rotational 

symmetry is not consistent translation symmetry in a perfectly periodic crystal. 
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In order to prove this, suppose we consider an n fold rotation axis perpendicular to a 

plane of the board. Let us for example, consider a fourfold n equal to 4. 



(Refer Slide Time: 00:58) 

 

Figure 1 a shows such a 4 fold rotation. A 4 fold symmetry axis in a translational 

invariant crystal lattice. So, one has atoms in this various lattice positions and this angle 

here, the angle is 90 degrees for n equal to 4. So, this is the also the case here and this is 

the lattice translation vector. 

So, this rotation axis takes to this position and their 4 fold rotation axis takes to this 

position and now the final position of these two atoms should also be consistent with the 

translational symmetry of the lattice. Similarly, the next figure 1 b also shows the same 

thing for n equal to 6 for 120 degree rotation. Now, in general, we can show this in one 

to see the general situation is shown. 
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From which it is clear that we have the condition t minus 2 t plus alpha should be some 

integer times the translation vector, t is the translation in the translational periodic city of 

the lattice and alpha is the angle threw the rotation axis. 
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So, that would be the condition that has to be satisfied, which becomes therefore, which 

gives cos alpha equals 1 minus m by 2, where m is an integer. This it is an integer we can 

also write it as some other integer by 2. 
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And so, the table shows the various values since case alpha cannot exceed minus 1 or 

plus 1. So, that imposes a restriction on the allowed values of M and hence the small n 

therefore, that the rotational the alpha values which corresponds to an integer M in this 

condition are given in table tabular form. So, from that it is clear that n equal to either 1 

or 2, 3 or 4 or 6 and a 5 fold rotation therefore, not consistent with the translation 

periods. 
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The next problem talks about a two dimensional matrix representation of 2 fold, 3 fold, 4 

fold and 6-fold axis of rotation in the groups C 2, C 3, C 4,and C 6. 
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So, if you have a rotation corresponding to this axis. How do you represent them matrix 

in matrix form? This is important for a group theoretical understanding of the characters 

and represents basis of these fine groups. Suppose we consider C 2 is shown like symbol 

is C 2 and the international symbol is 2. And the matrix element since the angle of the 

rotation is high. So, we have general cos alpha, minus sin alpha, sin alpha, cos alpha in 

three dimensional. 

This is the matrix rotate representation of rotational axis is about, which coincides along 

the z axis. Now, the basis for this is the coordinates x y z in three dimensional space. 

Now, we are all is to provide two dimensional representations. So, that will be for the 2 

fold axis it will be cos pi, minus sin pi, sin pi, cos pi, which is cos pi is minus 1, this is 

zero, this is zero, this also minus 1. Provided we deal with this, which means these is the 

basis; the basis is for this x y that is one, two dimensional representation. Of course, one 

can choose y z or x z as the basis. 
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Suppose I choose x z as the basis, basis x z then the corresponding matrix elements are 

cos alpha 1 0 0 for alpha equal to pi. So the matrix representation is minus 1 0 0 1 this 

also an equally valid representational of the two axis for if we basis adopted is x z. 

alternatively we can also have basis y z is, that is the case then we have cos alpha 0 0 1. 

So, that is again same matrix for both these. 

So, we have the possibility of two different representations depending on whether we 

choose x y as the basis or x z or y z or the basis. Depending on that these provide the two 

different representations for the C 2 rotation. Now, since it is of this farm we can of 

course, factor it further partition the matrix further and the corresponding basis can be 

one dimensional so, x or y.  

So, this is a completely reducible basis, the reducible representation can be the two 

dimensional representation can be reduced into two, one dimensional representation. 

Similarly these also can be reduced. Now, we proceed to a C 3 axis. For the C 3 axis 

cosine alpha, alpha is 2 pi by 3. So I have cos 2 pi by 3, minus sin by 2 pi by 3, 0, sin 2 pi 

by 3, cos 2 pi by 3, 0, 0, 0, 1 is the three dimensional, full three dimensional 

representation is the bases x y z. So, this can be written as minus half, minus half, minus 

root 3 by 2 and root 3 by 2, 0 0 1,0 0. 

So, we have the possibility depending on which representations we choose, we can 

partition this matrix like this. So, this can be a one two dimensional representation for C 



3 rotational z axis. So, it can be minus half, minus root 3 by 2, root 3 by 2, minus half 

that would be a two dimensional representation for the basis x y or if we choose x z as 

the basis then that would be minus half, 0, 0, 1 that would be for the basis x z or it can be 

y z can be the basis. 
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So, these are the three two dimensional representations and we can see that these is 

reducible this is also reducible since, the half diagonal matrix elements or all zeros. So, 

this both these are reducible. 
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Whereas, going on to the case of the C 4 axis. A 4 fold rotation by the z axis so, it has 

cos pi by 2, minus sin pi by 2, sin pi by 2, cos pi by 2, 0 0 1, that is the three dimensional 

representation with x y and z. And that would correspond to cos pi by 2 is 0, minus 1, 1, 

0, 0, 0, 0, 1. 
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So, the corresponding two dimensional representations for the C4 axis will be 0, minus1, 

1, 0, if we choose x y as the basis.  
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Whereas, it will be 0,0,0,1 if it is x z, y z will be also; obviously, is a reducible 

representation while this is not. Coming to the C 6 axis by the same reasoning one can 

arrive at the answers. So, we have cos 0, 0, 1 for the y z basis also. So, that answers the 

question we now pass on to problem 3 and 4. 
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Which are taken together, we are required to construct the character table for the 

following point groups. 
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The first point group to be considered is 2 by m, which is a mirror perpendicular to a 2 

fold axis. So, it goes by the nomenclature C 2 h in shown flies notation. So, C 2 h as the 

elements; these are the elements. C 2 square is high and because there is a mirror sigma h 

and that produces inversion symmetry. So, there are four elements in this group and 

therefore, there are four irreducible representations. The number of irreducible 

representation is equal to number of classes really. There are four different classes 

1,2,3,4.  
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So, since there are four elements. So, one is the totally symmetric representation and then 

you can have and that is called g because, of the inversion symmetry g is gerade. So, it is 

symmetric with respect to the inversion. And there is also another one dimensional 

representation B g and then you have and ungerade, which is hard with respect to 

inversion and B u. So this will have 1, 1, 1, 1 and this will have 1, 1, minus 1, minus 1 

and this will have 1, 1, minus 1 and minus 1. So, that would be the character table for the 

group 2 by m or C 2 h. 
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We now pass on to the next point group and proceed construct the character table. The 

next point group, which we take up is 4 2 2, which is D 4. 
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So, these are 2 C 4 and a C 2, which is C 4 square. And then you have the additional C 2 

fold axis, 2 C 2, C 2 double dash. So, there are five classes. And therefore, five 

irreducible representations which are A 1, A 2, B 1, B 2 and then E, a two dimensional 

representations. So, the characters are which is totally symmetric of course. And then 

this will be anti symmetric is equal to this axis.  



So you have B 1, which has anti symmetric with respect to this axis. And another one 

then you have two dimensional representations, which as the characters two for the 

identity it as the characters 0 as we saw already. This will be minus 2, 0, 0. So, that 

would be the character table for D 4. We next pass on to tetrahedral group, which is one 

of the cubic point groups O. 
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The group O, which is the octahedral group which is also a cubic point group. We 

considered the pure rotation axis the elements are identity and then has 6 C 4, 3 C 2 then 

8 C 3, 2 3 C to dash. 
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So, you have one plus six seven plus three ten 18 6 18 plus 624 because, of this you will 

have five irreducible representations. So, these will be A 1 one dimensional, A 2, E, T 1 

two dimensional and three dimensional. So, this will have the character 1, 1, 1 then you 

will have 1, minus 1, 1, 1, minus 1 then you will have 2, 0, 2 to satisfy orthogonality. In 

the three dimensional rotation representations will have 3, 1, minus 1 and then 0, minus 

1, in the other irreducible representation will have minus 1 here. So, these are the various 

irreducible representations of the and the next problem concern before the flies notation, 

which are also given here. 
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We now pass on to the next problem which concerns the space group notations. 
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So, problem is on space groups. We are given the symbols for the difference space 

groups, you have P 2 1 by C. As we already explained during the lecture the P stands for 

a primitive crystal lattice, if one atom in the unit cell. And the ice organelle point group 

is 2 by m is the point group symmetry of the space group, which means that it is a 

monoclinic crystal lattice the brave lattice is a monoclinic primitive.  

And you have two one screw instead of a pure two four axis, which means that there is a 

twofold axis followed by a translation component which is b by 2 of the translation along 

the b axis. And the symbols c means that, instead of the pure mirror symmetry we have a 

glide plane, in the plane perpendicular to this b axis. So, with a translation components c 

by 2 or along the c axis. So, you have a mirror plane which is a c plane and it is a mirror 

plane translation of the in front of c by 2 along the c axis so, that is the explanation. 
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The next space to be considered is R 3 bar m. 
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So, the symbol R stands for a rhombohedral crystal lattice, which belongs to a trignal 

point group. Trignal crystal system with a point group symmetry of 3 bar m. So, this is 

what is called D 3 d in shone flies notation. So, the 3 bar m means that, there is roto 

inversion axis, 3 bar is roto inversion along the z, along the c axis. 



And then you have vertical mirror planes, pure mirror planes is no translation 

components coinciding is the roto inversion axis. So, that is the symmetry. The next 

space group to be considered is F d d 2. 
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So, the symbol F means, it is face centered lattice, brave a lattice is a face centered 

lattice. Then since d d corresponds to mirror symmetry so, it is m m 2 is the point group, 

which is also known as the C 2 v this is the point group. So that means, this is an 

orthorhombic, since you have mirrors along the a and b so, planes perpendicular to the a 

and b axis under twofold axis in the along the z. 

And the symbol d means, these are not pure mirror symmetries, but diamond glides with 

a translation component. So, this is first one is a perpendicular to the a axis. So, the b c 

plane and this one is perpendicular to the b axis through a c plane so, the conference of a 

plus c by 4. In this plane, in these two planes and you have a pure twofold axis. 
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Next we move on to this space group symbol 4 1 for a c d with an I in front.  
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So, the symbol I stands for body centre lattice and the symbol 4 1 means the ice 

organelle point groups is 4 by there all mirrors. So, this is the point groups 4 by m m. 

The four fold axis with vertical. So, this is D 4 h. So, it is a tetragonal system because, 

you have a unique to fourfold axis. The interesting thing is that, we have not just a 

fourfold axis, but a 4 1 screw with a translation component of these along c axis. 
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So, the translation component is c by 4 that is the translation component. And we have a 

glide and then c glide in the plane perpendicular to the b axis which is the a c plane. So, 

these again c by 2 and we have also a diamond glides in the b c. So, there are three glide 

planes in all the principal crystallographic plane. The translation components are a by 2, 

c by 2 and a plus b by 4 respectively. 
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Lastly we take in the case F d 3 c, the symbol F; obviously, refers to a face centre lattice 

and d 3 c means it is m point group is m 3 m and that is nothing, but T h tetrahedral cubic 



point group. So, it is a cubic crystal body centered cubic brave a lattice with an ice 

organelle point group m 3 m of p h in the behave a diamond glide. 

So, instead of the pure mirror plane is the diamond glide is a pure threefold axis and a c 

glide corresponding to this. So, the diamond glide means it is a plus b by 4 and the c 

glide is the translation component the c by 2. And this is in the b c plane and this is the 

diamond glide in the a b plane. So, that explains the space groups symbols of, this space 

group F d 3 c is the cubic space group. 
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The next problem is to determine the direction normal to the h k l plane in a cubic 

crystal. 
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Figure 2 shows the plane A B C, which have the intercepts OA, OB and OC on the 

crystallographic axis, a axis, b axis, and c axis respectively. So, OA OB and OC are the 

intercepts the miller indices of this plane A B C or chosen to be h k l. So, that by the 

definition of the miller indices OA is a by h, OB is b by h, b by k well it is a cubic 

crystal. 
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So, it is all a by k, OC is a by l. Now, in the figure let ON is the normal to the h k l plane. 
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So, this length ON let it be chosen as p. If that is so, the normal form of the equation to a 

plane at a distance p from the origin is given by it is well known. That is given by x 

cosine alpha plus y cosine beta plus z cosine gamma equals p where, alpha beta gamma 

or the direction cosines of the normal. So, these the standard resulting coordinate 

geometry. So, we will use this. So, now, therefore, we can write the coordinates in the 

point N, what are the coordinates of point N? 
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They are p cos alpha because, the length ON is p. So, it is p cos alpha, p cos beta and p 

cos gamma, these are the coordinates of the what? The point N so, now, going an 

referring to the figure they ONA the triangle. ONA is right angled triangle and with cos 

alpha which is ON by OA.  
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And ON is p and therefore, OA is a by h therefore, this is p h by a. Similarly, cos beta is 

p k by a, in cos gamma is p l by a. So, that the coordinates, these coordinates become 

fastening for cos alpha, cos beta and cos gamma, we get p square h by a, p square k by a, 

p square l by a. Therefore, reducing this to the smallest integers taking the common 

factors of away they arrive at h k l as direction normal to the plane, h k l plane. So, that is 

the direction h k l. 



(Refer Slide Time: 35:47) 

 

The next problem is to find the miller indices of a plane which intercepts the 

crystallographic a and b axis intercepts are 0.25 a and 0.5 b. 
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And it is also parallel to c axis. This is the plane therefore, there has to find the miller 

indices, for miller indices we go from the intercepts by taking the reciprocals to the 

intercepts. The reciprocals are this is 1 by 4. So, it is 4 of course, by a and 2 by b. Then 

since it is parallel to c axis the reciprocal is 0 because, this is parallel. So, the intercept is 



infinity. Therefore, the reciprocal of infinities is 0 therefore, this becomes 4 2 0. And 

therefore, no we need not write a and b since they are measured in units of a and b. 

So, this is 4, 2 and 0, which reduced to smallest integer is 2, 1, 0. Those are the miller 

indices of the plane. Proceedings of the same way, we are also as to find the miller 

indices of face diagonal in an f c c lattice. So, in an f c c lattice the face diagonal look 

like this. So, the face diagonal for example, is like this, one of the face diagonal. 

So, the plane containing the face diagonal is makes intercepts it is miller indices are 

given by its makes intercepts one and one on these axis and it is parallel to z axis 

therefore, in miller indices is; obviously, 1, 1, 0. Now, not only 1, 1, 0, but also there are 

12 face diagonal is and the different planes which contain this face diagonals are all the 

entire setup family of planes 1 1 0, 1 0 1, 0 1 1, also 1 bar 1 0 and so on. All of them they 

are twelve of them all of them belong to the same family of planes. 
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The next problem is in the form of a table, in which we are given difference structures. 

And we are asked to fill in the blanks for a table, which gives the structure the ratio 

between a, b and c. The value of alpha, beta and gamma and the number of atoms for 

unit cell there are several blanks. 
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And the next table gives the answers with the missing entries, which are fill in the 

blanks, which are fill. So, the answers are obvious. 
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So, I do not provide any explanation for it, the table has self explanatory. The next 

problem we are asked to determine the ratio the lattice constants c and a. 
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So, in other word, we are asked to determine c by a ratio for a H C P hexagonal close 

axis structure. 
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The next figure shows the positions of four atoms in the H C P structure. Now, you have 

p, which is the position of the atom at the center of the top in the unit cell, the topmost 

point in the unit cell. Which corresponds to one point in the unit cell and the next layer 

there are three corresponding positions of the atoms, in the middle layer they are written 

as Q R and S. Now, by geometry you can see that, the sides P R and R S are the sides of 



the unit cell and that is given by a and therefore, since the angle is so, equilateral triangle 

in Q R S. Therefore, the side R N is root 3 by 2 a and the O R is two thirds of that 

because, O is the centroid of that, so, r n is divided in the ratio 1 is to 2. 
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Therefore, we have R O in the figure as two thirds of root 3 by 2 a, which is a by root 3. 

So, that is the perpendicular distance R O from that is the distance R O. And we are 

required to find P O, the distance P O, which in the right angled triangle. 
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We are one side is a, another what we found just now as a by root 3. So, the distance P O 

is square root of a square minus a square 3, which is root 2 by 3 a. 
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That is the distance from the top layer for atom P to the centroid in the next lower layer. 

So, the actual c axis ratio is twice c is two times P O and therefore, it is 2 root 2 by 3. 

And therefore, the c by a ratio is 2 root 2 by root 3 that is, it can also be written as root of 

8 by 3. That works out to 1.633. So, that is the ratio of the c to the a axis, lattice para 

meters in the h c p structure. 
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Next problem talks about atoms, which are treated a rigid sphere and then we are asked 

to calculate the fraction space field by atoms in different structures. The fraction is 

usually known as packing fraction, in short we can return as P F. 
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For this simply cubic structure, for the face centered cubic structure, for the hexagonal 

close packed structure and for the diamond structure, you proceed as follows let us, 

considered the a simply cubic. The simplest, in the simple cubic lattice we know there is 

one atom for unit cell. So, for R is the atomic radius, than the volume of occupied by the 

atoms in the unit cell is simply the atom volume 4 pi R cube by 3, since there is only one 

atom. 

Whereas the volume of the unit cell itself depends on the side of the unit cell that will be 

the side of the cell has the distance 2 R, where R is the atomic radius. So, the volume 

will be 2 R cube, this cube of side 2 R. So, the packing fraction is the ratio of the two, so 

it will be on calculation this will be pi by 6. 
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Next we consider b c c structure. For the b c c there are two atom, one at the body center 

and one at the corner, two atoms per unit cell. 
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Therefore, the volume occupied by atoms equals 2 into 4 pi R cube by 3. Whereas, unit 

cell volume, we already saw the unit cell is 4 R by root 3. So, that is the side. So, the 

packing fraction which is the ratio of the two is just root 3 pi by 8. 



(Refer Slide Time: 49:04) 

 

Next we consider the f c c structure, face centered cubic structure, where the number of 

atoms per unit cell is 4. 
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So, the volume occupied by atoms in the unit cell is 4 times 4 pi R cube by 3. In the 

volume of units cell is 2 root 2 R is the side cube of this. So, the packing fraction is pi 

into root 2 by 6. 
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We will talk about the diamond lattice, which is a special lattice. The diamond cell as 

carbon atoms at the vertex and at the along the body diagonal at one quarter the one 

fourth, one fourth, one fourth of the coordinates of the carbon atoms and so on, all the 

equivalent of these. 
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So, there are in total number of atoms in unit cell is 8 as one can readily verify. So, the 

volume occupied by atoms in unit cell is 8 times 4 pi R cube by 3. Whereas, the volume 

of the unit cell itself is 8 R by root 3 cube as one can readily see. So, the packing fraction 



in this case works out to be pi root 3 by 16 is rather small number. So, this is not a very 

close packing fraction structure. The diamond is the rather open structure that is because, 

of the essential nature of the covalent bond between the carbon atoms. 


