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Lecture - 15 

Anharmonicity and Thermal Expansion 
 

We have discussed how the thermal conductivity of an insulator arises from phonon  

scattering and we have considered in the last lecture the temperature dependence of the 

thermal conductivity of such an insulator and compared it with that of a metal. I would 

just like to mention at this point an important point regarding a nature of phonon 

scattering in contributing to the thermal conductivity of an insulator. If you have a 

perfectly harmonic crystal, the phonon states are stationary states. If a phonon 

distribution carries a thermal current then that distribution will remain unaltered in the 

course of time and the thermal current will remain un degraded forever. In other words, a 

perfect click harmonic crystal will have infinite thermal conductivity. 

(Refer Slide Time: 01:39) 

 

However the thermal conductivity of a real insulator will be a finite for the following 

reasons. One - the inevitable lattice imperfection which act as a scattering centers for the 

phonon’s thus causing the thermal current to decay in time two this scattering at the 

surface of the solid and three the approximate nature of the harmonic potential and this 

stationary states of phonons. If the full anharmonic hamiltonian is considered a definite 

set of phonon occupation numbers will change in course of time this again will mean that 



the thermal conductivity becomes finite. So, anharmonicity is the key to understanding 

the behavior of thermal conductivity of solids. 

(Refer Slide Time: 02:46) 

 

This is an important point, because we now pass on to consider a another interesting 

property of solids and liquids this is thermal expansion we all know that when a material 

is heated it expands usually. In other words, it is dimensions increase thermal expansion 

is a measure of the increase in the length of the material due to rise in the temperature. 

This expansion is measured by the coefficient of linear thermal expansion which is 

defined as the increase in length per-unit rise in temperature with respect to the unit 

length of the material per unit length of the material. Well again the expansion of the 

solids on heating is a direct consequence of anharmonicity in the vibration of lattice 

atoms. For example, let us consider a one-dimensional solid for simplicity if the 

vibrations of the atoms a perfectly harmonic the potential energy will be will have the 

form.  
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V of x equals half f x square where f is the force constant since this potential energy is 

proportional to square of x the curve v of x if it is plotted it’ll be a parabola. 
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So, x naught is the equilibrium position the harmonic vibrations around this will create a 

perfectly parabolic shaped potential function in such a harmonic potential. 
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The mean position of the oscillator does not shift with increasing temperature this can be 

proved readily by calculating the mean displacement x bar. 
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Which is given by x bar equals integral x exponential half f x square by k b t d x by and 

this will turn out to be if it is evaluated shown to be vanishing, so there is no change. 
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Now you can also see this by looking at the graph here which portrays figures, which 

portray the interatomic potential as a function of interatomic distance and you see that 

you have this various states here. And this when there is an increase in temperature 

vibration amplitude changes, but as long as this remains harmonic the centre of this will 

be the same the equilibrium position does not change in other words, there is no shift and 

there is there cannot be a thermal expansion its only when there is…  
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There is a an harmonicity or a departure from harmonic behavior it is than that this curve 

will start looking like somewhat like this a deviation from parabolic behavior and then 

the mean position will start shifting like this. So, there is a net shift of the mean position 

x bar and with an increase in temperature. So, this corresponds to the states of different 

temperatures and the mean position shifts like this. So, this gives rise to a thermal 

expansion. 
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So, these are the pictorial explanation the atomic oscillators then there are not perfectly 

harmonic can be written by a potential function which is not a just half f x square. So, 

these are the anharmonic terms. So, when you include them and calculate this integral we 

can perform this calculation. So, let us take this. 
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So, we can show that x bar is three g by f square k b t we can I show the calculation in 

the transparency. 

(Refer Slide Time: 08:45) 

 

So, you can see that x bar is written like this x exponential here anharmonic potential 

divided by k B T negative of that d x and denominator you have the same integral 

exponential again the anharmonic potential fine negative of that by k b t d x. 
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If you calculate that first of all we notice that for small anharmonicity. The terms 

exponential g x cube plus h x t to the power four can be approximated by one plus g x 

cube plus h x to the power four. So, by have k b t this will be, so that we can use this and 

calculate the rest of the integral. 

(Refer Slide Time: 10:04) 

 

And this leads to a expression of the form integral g x cube g x to the power four like k b 

t exponential minus f x square by two k b t d x divided by this will by suitable 

substitution. This can be shown to be equal to four k b t by f square times gamma five by 



two psi gamma half these are the gamma functions that would give you the result three k 

b t. So, you can see that there is a net exchange and non-zero mean displacement in the 

presence of the an harmonicity and that is what contributes to thermal expansion. So, you 

can see that the energy there is a shift and mean displacement is directly proportional to 

the temperature and it is also directly proportional to the coefficient G an harmonicity 

coefficient, but its inversely proportional to the square of the force constant, if you have 

a solid which is strongly bonded. For example, covalently bonded solid or very strongly 

bounded diamond is an example the force constant will then be very high. So, the mean 

displacement and hence the expansion coefficient will be very small whereas, in weekly 

bonded solid the force constant will be small, but the coefficient g will be higher 

therefore, the mean displacement is large and hence the thermal expansion coefficient 

will be higher. 

So, covalently bounded solids like diamond and silicon have very low thermal expansion 

variables polymers such as rubber and prospects have much higher coefficient of thermal 

expansion in the k m metals the thermal expansion coefficient lies between the values of 

solids like diamond and silicon on the even side and rubber and prospects and the other. 

So, the thermal expansion coefficient are some of the typical material which are 

commonly used are all shown in table you can see values given for materials like 

aluminum copper silver. 

Alumina concrete Glass perspex wood you can see the thermal expansion coefficient this 

also along with this the specific heat and thermal conductivity values are given. So, 

together this give you the entire spectrum of thermal properties of so, we have 

considered all the thermal properties such as specific heat thermal conductivity and 

thermal expansion coefficient based on our understanding of phonons states phonons and 

as well as the electron. 

What is now left is one layer discussion of the temperature dependence of the electrical. 

Conductivity of metals this is a very important property. So, we would like to discuss 

this at this stage we will consult this in the detail in the next lecture, but at the moment I 

will give a brief introduction about what is happening. Now we are equipped with all 

concept about phonons and electron gases in the metal has we know it is the electron gas 

as well as the phonon gas which you rise to scattering processes which take away the 

electron carriers the charge carriers from the from their normal trajectories under the 



influence of a play directory field. So, the current density decays. So, it is this scattering 

processes scattering of electrons by phonons this is what that the bottom of the 

temperature dependence of electrical conductivity of metals. 

So, the Drude theory the simple Drude theory which we have already considered the is 

the expression for the electrical conductivity Drude expression in this n is the 

concentration of electrons. Of course, the Drude expression is a very general one not 

only valid for metals, but in general for any, but we are now applying it to the case of a 

metal. Now we know that the concentration of free electrons which are responsible for 

conductivity in a metal are constant. There are not dependent on the temperature m and e 

are also constant. 

So, the entire temperature dependence is due to the temperature dependence of the 

relaxation time tau. So, the key to understanding the temperature dependence and the 

electrical conductivity of a metal is contained in an understanding of the temperature 

dependence of the relaxation time for this is the relaxation time for electron phonon 

scattering there is also scattering by impurities any kind of impurities. So, both processes 

are scattering give rise to the relaxation behavior and hence contribute to the 

conductivity; however, if we have for example, a perfectly periodic pure solid than there 

would not be any scattering even at a finite temperature and therefore, there would not be 

a temperature dependence here. 

So, it is the scattering processes due to deviation such this perfect periodicity due to the 

presence of different kind of impurities like point effect vacancies interstitials grain 

boundaries stacking falls all this will contribute to impurities scattering, but this 

impurities scattering is not temperature dependent it is something which is constant. So, 

it gives rise to a temperature independent in terms of we will speak in term of the 

reciprocal of sigma namely the electrical resistivity. So, this gives rise to a temperature 

independent resistivity whereas, the electron phonon scattering gives you the temperature 

dependent resistivity. So, that rho is rho naught plus rho one t. 

So, this is due to impurities and this is due to phonon scattering. Total resistivity and its 

temperature dependence is determined by this. We will now discuss the temperature 

dependence of electrical resistivity of metal as we already pointed out this temperature 

dependence arises from the scattering of the electrons. These are free conduction 



electrons by phonons to discuss this. Let us write the periodic potential of a rigid ion 

lattice. Now this is given by let us write this as u periodic which is the function of 

position coordinate r of the atom in the lattice which is a summation over all the lattice 

site of the potential at any given lattice site over all the trivial lattices r this is well-

known. But this is only approximate because actually we ions are not rigid in the lattice. 

And we actually have the actual potential is really a sum of this individual atomic 

potential which are function of not only this, but also where u write this as capital u 

distinguish this from the displacement from equilibrium position. So, strictly this can be 

written as the u periodic this one minus sigma over r u of r dot the gradient of the 

potential del v of r by omega plus higher-order terms that is the expression. So, the 

difference between the actual potential and the periodic potential is a kind of perturbation 

this is the perturbation which acts on the stationary states of the periodic Hamiltonian 

now which will give Bloch levels. So, we have this perturbation causes transition among 

the Bloch levels which are the stationary states of the periodic Hamiltonian this is what 

causes degradation of the electric Currents which otherwise would be infinite. 

So, this is the mechanism for how we get a temperature dependent electrical resistivity 

due to the degradation the electrical current which arises from this perturbation which is 

due to the electron phonon interaction. So, for the phonon scattering as we already 

discussed we have a which is an elastic scattering. So, which it should satisfy the 

relation. So, this is a energy conservation q is a phonon vector. So, the real situation this 

this is the constraint an equation which constraints a two-dimensional surface. So, this 

needs to this defines a two-dimensional surface of allowed wave vectors allowed by the 

conservation condition wave vectors q in the three-dimensional phonon wave vector 

space.  

So, that is the mechanism and figure shows the electron phonon scattering event which 

can be described in the Fermi surface this become Fermi c and they have a state with k 

wave vector k being scattered onto a state of wave vector k prime such that keep which is 

k plus q . So, that describes the conservation situation energy conservation. So, that is the 

event and space angle theta if this scattering angle. So, that is the overall picture of how a 

temperature dependent electrical arise a resistivity arises from electron phonon scattering 

let us look at this situation at different temperatures because we want to discuss 

temperature dependence first let us consider high-temperatures. So, temperature which 



are high in comparison d by temperatures that is the first limiting situation in this for any 

normal mode the number of phonons n of q is given by one by e to the power h cross 

omega q by k b t minus one. 

Since the phonons or boson and then the temperature is high compared to the t d by 

temperature this can be written as. So, the number of phonons increases linearly with t 

for any normal mode q. So, if the number of phonons increases linearly with 

temperature. So, does the electrical resistivity at such temperature this scattering. So, the 

electrical resistivity also increases linearly with temperature at temperatures large at high 

temperatures compared to the theta d lecture now what happens at the low-temperature 

when the temperature is small in comparison to the theta d, this is high temperatures. 

 So, at low temperatures we do not have enough phonons to scatter the electrons only 

phonons with energy h cross omega q comparable to or less than k b t they will be 

emitted are observed by the electrons. So, when this is the condition then in this domain 

we know that the dispersion relationship is of this form of omega equal to v q where v is 

the speed of sound in the medium. So, that q is of order of k b t by h cross v, so that the 

condition for the phonon wave vector. So, only within the surface of phonon with energy 

conservation law permits only a subsurface of a linear dimension is proportional to T. 

And therefore, surface area T square linear dimensional is proportional to t therefore, 

surface area is proportional to the t square can actually participate this is shown in the 

next figure. There you have wave vectors of those phonons allowed by the conservation 

law to participate in one phonon scattering event with electron whose wave vector is k, 

and this is shown in this figure and therefore, the number of phonons decreases as t 

square because of this. Now the electron scattering rate actually declines faster than this 

this is because we have the electron phonon coupling constant whose square is given by l 

and stating this without proof. These are the standard result into half h cross omega q k k 

prime well that is why I gave k minus k prime here k naught is the so-called Thomas 

Fermi wave vector which is defined by k naught equals four phi e square d n naught by d 

mu. 

Because of this the consequence is that this matrix element coupling constant g k k prime 

is such that when k minus k prime is small at low time low temperatures then the 

coupling constant the square of the coupling constant is proportional to k minus k prime. 



And therefore, this is at the order of k b t by h cross omega. And therefore, this decreases 

with the temperature linearly. Therefore, for till very small compared to theta d the 

electron phonon scattering scattering rate decreases as the cube of the temperature. 

However, we also have to consider an extra factor in this situation that this one phonon 

process which is due to an elastic scattering only favor the forward scattering in the 

forward direction elastic scattering with a only a very small change in the wave vector 

favors scattering in the forward direction. So, this can be shown to be taken into account 

the preferential concentration of the scattered of the phonons in the forward direction can 

be taken into account by considering and effective scattering rate which is an angular 

average over all scattering angles theta weighted with a factor p of theta equals one 

minus cos theta. And now this factor p of theta is one minus is really two signs by r theta 

by two and it can see the situation here.  

So, this is really half of q by k f square where k f is Fermi wave vector. So, this again 

gives you a t square. So, this gives you an other t-square dependence. So, the combined 

with this t cube dependence the net t to the power five dependence there is a t to the 

power five dependence of the scattering rate and therefore, the resistivity at low 

temperatures the situation can be rigorously discussed it has been done by Bloch and 

Gruneisen, they discuss this situation theoretically for all temperature. 

Now this leads to a vigorous expression which gives a electrical resistivity has integral 

zero to x e to the power z minus one z to the power five d z one minus e to the power z. 

Now this leads to a lattice resistivity role l which goes as four point two two five 

evaluating this integral t by theta d cube five into j five of theta d by t times the 

resistivity at the b by temperature were j five of x is this a . So, this gives you the actual 

Bloch Gruneisen law for the phonon resistivity rho l which is depicted in figure as the 

relation between the reduced resistivity a rho of t by rho of theta t as a function of t by 

theta d. So, this goes is a linear relationship for large values of t by theta d and then it 

becomes non-linear goes like this. 

So, this is a behavior which have been experimentally observed for wide variety of 

metals like gold sodium copper aluminum and nickel and by fitting the actual measured 

temperature with theoretical expression like this. You can actually obtain a value for the 

d by temperature and comparative with values reduced from the specific heat 



measurements. However, this discussion as not taken into account unclip processes 

consider only a normal process, but his we know from the thermal conductivity 

discussion unclip processes are quite important and also a possible non spherical Fermi 

surface may have considered only a isotropic spherical Fermi surface. So, these are the 

two factors which have not been taken into account, but these effects are not dominant in 

the alkali metals for which the Bloch Gruneisen law has been verified by the 

experimental results. Now this I given some references for this discussion by ashcroft 

and mermen and the book by j s dug dale which I already discussed electrical resistivity 

metals and dallies and also feng contents matter physics is the world scientific book. So, 

these are discussing some other salient feathers of this Bloch Gruneisen theory.  


