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So, last time we discussed the case of vibration of the crystal lattice in particular, and 

infinite 1 dimensional lattice of identical atom, and consider what would be the normal 

modes and the frequencies of the modes of vibrations. 
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We got the basic what are known as the dispersion relation, which has the form omega 

equals omega max sin q a by 2, where omega max is a maximum angle of frequency 

which is root of 4 f by m here we just recall q is the wave vector of the periodic wave 

wave which propagates. And then or wave number, this is the 1 dimensional infinite 1 

dimensional lattice vibrations of… So, f is the force constant between adjacent atoms 

which are identical and each of mass m identical atoms, which are vibrating and this is 

taken to be a harmonic simple harmonic vibrations, a is the repeated distance or 

periodicity along the line of atoms. 
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So, that for q in the q tending to 0, which means wavelength is long wavelength then we 

know this dispersion relation becomes because sin q a by 2 in the limit q tending to 0 is q 

a by 2. So, this is omega max into a by 2 times q. So, a constant omega q relationship is a 

linear relationship very much like the standard sound waves. 
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So, in the long wavelength limit the dispersion relationship gives you a dispersion 

relationship which is shown in the figure. So, where you have omega as a function of q. 

So, it goes like this in close to this, but beyond for larger as the wave vector this changes 

this deviates, and given by this dispersion relationship a sinusoidal relationship. So, this 

is the basic content of this 1 lattice dimensional vibrations, and these are the excitation of 

the quantize excitation of energy h cross v q, where v is the velocity of sound wave 

sound speed, speed of sound gives you the this gives you the energy of energy quantum 

of energy of this phonons which are quantize excitation of this lattice vibrations of 

discuss to lattice. Of course, we have made an approximation we have made the 

harmonic approximation, we have also taken this line to be a lattice to be infinite lattice 

and so on. 
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So, we would like to consider a real situation where this assumptions are slowly 

removed. So, that we have a finite 1 dimensional lattice of n plus 1 atoms that is the zero 

th atom and then 1 and so on, then you have n. So, counting from 0 to n you have n plus 

1 atoms in this as shown in the figure and where n is finite.  
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So, we are considering this again the model is the same we are considering the storing 

force is which are simple harmonic and the 2 atoms at the end the zero th atom and n 

atom at the end are addressed, there are held health bound. So, there are only n minus 1 



mobile atoms. And now because this is the boundary bounded chain which goes which is 

the has the boundary at the ends. So, it will be the solution is taken and not as travelling 

waves, but as a superposition of 2 travelling waves in general. So, we take for example, x 

n of T the displacement of the n atom is taken to be a e to the power I omega T plus q n a 

plus b e to the power i omega T minus q n a where n is the n’th atom. 
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Now, that is a progressive wave which is going from left to right this is the wave like 

solution moves from right to left. So, the general solution is taken to be super position of 

these 2. So, that you get kind of standing waves in the system, because the n is fixed. So, 

the boundary conditions or x of T for an equal to 0 and n equal to n is 0 there are no there 

is no net displacement for any 1 of them. So, x 0 T and is 0 and x n of T is also 0 the 

atoms at the end are here fixed. So, if you consider such a situation then in general this 

superposition with this boundary condition we get a is equal to minus b as you can 

readily verify therefore, this becomes, and that is nothing but 2 i A e to the power minus 

I omega T sin qna, because at this boundary condition. 



(Refer Slide Time: 10:35) 

 

So, that sense e to the power I omega T is nothing, but cos omega T minus sin omega T 

therefore, the real part of the solution really is just, if you take this this will become I 

times this. So, this will be 2 a sin omega T sin n q a that will be the real part now using 

this as the solution the equations of the motions. Of course, are the same therefore, 

applying this equation motion we get the same dispersion relationship as for the infinity 

chain. So, now that is the same. 

So, we arrive at the identical I do not want to prove this it is just it can readily verify 

solution and with the equation motion which we consider already in the last lecture. Now 

we apply the second boundary condition namely x n of T also is zero. So, the n’th atom 

is also at rest. So, when I substitute this this becomes 2 a sin omega T sin n q a and that 

is equal to 0 giving immediately q n q a equal to m phi where m is an integer. So, the 

allowed modes corresponding to different q value are restricted by this condition, that is 

the second boundary condition. 
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So, we have finally, we have q equal to m I by n a, which we can write n a is the total 

length of the chain there are n atoms which a apart. So, this is nothing but m i by l, where 

l is the length of the chain chain of the atom. So, we have this and the modes of the 

vibration the density of states can all be found using the same conditions as for as we did 

earlier. 
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And we get the density of modes d of q d q which will be l by phi times d q l by phi is 

number of modes per unit unit q value length in q square. So, if you take an interval d q 

around the q value it is l by phi d q.  
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So, this is the density of states phonon density of states using this we can again calculate 

because we know the internal energy. For example, the specific heat how does this get 

modified, because via have done that what have done here. We have departed from the d 

by assumption of a continuous medium they continue and replace it by a discrete finite 1 

dimensional lattice of atoms taking into account’s periodicity and the discreteness of 

such a lattice. 

So, again we find h cross omega by e to the power h cross omega by a b T minus 1 is the 

average energy, we discussed already in connection with the d by solid and then multiply 

by l by phi d q integrated from 0 to phi by a. And that would give me this is a omega q 

their omega q is related to the dispersion by this therefore, replacing that. So, that would 

be the corresponding expression and the specific heat is got by differentiating the 

specific heat d u by d T as before. So, this is the modification to Debye theory which 

which brought about by removing the model of a continue and replacing it with a 

discrete 1-dimensional the extensional to 3-dimensional is a straightforward will not go 

through that now. 
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But let us consider while we are talking about lattice vibration which gave rise to 

phonons with the different modes. 
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We will consider extent this model that we have just discussed to the case of and infinite 

1 dimensional lattice, but of 2 different types of atoms it is called diatomic lattice not a 

monatomic lattice for why is this important. The reason for the importance comes from 

the fact that many solid are diatomic nature many stranded common solids like sodium 

chloride for example. So, you have an infinite lattice of causes 3-dimensional lattice, but 



we will consider for simplicity and infinite 1 dimensional chain consisting of sodium ion 

and negative chloride ions. So, there are different masses. 

So, they have arranged alternatively. So, you have a lattice of n a plus c l minus again n a 

plus c l minus like that. So, again we consider an infinite lattice the spacing is the same. 

So, let us consider the 2 n’th atom they this is 2 n’th atom. So, you have many such. So, 

you have its neighbor 2 n minus 1 and another neighbor next neighbor we consider only 

the next neighbor interaction. So, the displacement is taken of the 2 n’th atom is taken as 

x 2 n and the corresponding displacement of this atom is x 2 n minus 1 and this is x 2 n 

plus 1. Now, this is the atom of mass n while this is another atom these 2 atoms are of 

mass small n. So obviously, the equations of motion are going to be different from that 

for the monatomic lattice. 

So, let me right the equation of motion for example, for the atom of mass m that will be 

m d square x 2 n by T d square. This is the mass times acceleration is given by minus f 

times x v n minus x 2 n minus 1 minus f x 2 n minus x 2 n plus 1 at a similar equation 

there are 2 equations, now 1 for the mass capital m and the other for the small m. So, this 

will be minus f times x 2 n minus 1 minus x 2 minus 2 that would be the neighbor here 

on this side, and minus f and x 2 n minus 1 minus x 2 n. So, these are the equations of 

motion in the harmonic approximation these are the equations which we you have to 

solve using the identical procedure. 
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So, we have since it is an infinite lattice, we can assume travel waves solutions. 

(Refer Slide Time: 20:59) 

 

So, we assume x 2 n equals a e to the power minus I omega T plus q into 2 n a and x 2 n 

plus 1 for example, is not necessarily b it will be this it will not be the same omega T 

plus q into 2 n minus 1 A. So, a and b are the amplitude of the vibration of the atoms of 

mass capital m and small m substituting this in the equation of motion and doing the 

different situation et cetera and solving them, we arrive at a detrimental solution which is 

the solution for the resulting for simultaneous equation. So, this times a plus 2 f b 

positive a equals 0. And similarly m omega square minus 2 f b plus 2 f a equal 0, these 

are the simultaneous equation which results from this. 
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So, solution of this requires the determinant of coefficient to vanish for nontrivial 

solution. So, setting this determinant equal to 0, and solving the result in quadratic 

equation is a 2 by 2 determinant which has the form. 
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So, that would be the detrimental solution. So, solving this resulting quadratic equation 

we get omega square equals f times 1 by m plus 1 by m plus or minus f times 1 by m 

plus 1 by m square minus four sin square q a by m times m. So, that would be to power 

half is we are looking for real solution for the frequencies, we take only the less sign here 



and then write the solution, and so we will have 2 solutions corresponding to the plus and 

minus sign. So, you will have omega 1 and omega 2. So, we will have dispersion curve 

which will have 2 branches corresponding to omega 1 and omega 2 or omega plus and 

omega minus. 
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So, this can be plotted just like in the case in the monatomic solid. So, this gives me 

modes of vibration normal modes of vibration of are diatomic lattice, and infinite 1-

dimensional diatomic lattice. So, that is the essential difference between these 2 this case 

and the previous case. 
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So, you have the acoustic and acoustic branches these are allowed phonon modes, which 

must be used in calculating the characteristics of the of such a lattice. 
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For example sodium chloride and despairingly other alkali atom, so having discussed the 

properties of phonon modes the allowed phonon modes for simple models of the solid. 

We can try to see what it means for the thermal properties that we discussed already we 

already talked about specific heat to some extent, but let us now go back to thermal 

conductivity. So, in the case of thermal conductivity we have already discussed the 



thermal conductivity of metallic solid, and the thermal conductivity allows mainly from 

the conduction by the electrons considered as a gas. 
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And we use the kinetic theory expression for the conductivity namely k equals 1 third c v 

l now here c is a thermal conductivity. So, v is the c is a specific heat or heat capacity v 

the speed and l is the mean free path this is the expiration that we have already used in 

connection with the electron gas. And how the thermal conductivity contribution due to 

that we have already seen that the Wiedemann Franz law. In the case of a metal we have 

already considered how you have so-called theoretical description leads to Wiedemann 

franz law m d k by sigma equals constant where k is the thermal conductivity, and sigma 

is the electrical conductivity and T is the absolute temperature. So, we have seen this part 

metals. Now we are going to consider what happens when the thermal conduction takes 

place in an insulator in an insulators, there are no electrons there are no conduction 

electrons. 
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So, if you have insulating solid like a plastic or a ceramic or any such. So, there are no 

conduction electrons. So, the thermal conduction cannot takes place through the 

electrons. So, the thermal conduction mechanism is by a phonon the. So, the carriers of 

heat in insulators are the phonons, and there exchange of energy momentum between the 

phonon namely the phonon phonon solutions that the 1 which gives rise to thermal 

conduction in insulators. So, this reason why we consider the nature of the lattice 

vibration. 
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So, you have certain equilibrium distribution of phonons at any finite temperature t, and 

when there is a temperature gradient in the material the phonon distribution will be 

disturbed phonon phonon solution will occur. And this will tend to restore the 

equilibrium distribution now this restoration will take place with a characteristics 

relaxation time. So, the rate of the restoring process is what determines thermal 

resistance of the material in a poor thermal conductor the rate at which the restoration of 

equilibrium takes place is very slow. So, in basically this is entirely due to phonon 

phonon interaction. 
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So, the interaction is described by equations which conserves energy omega 1 plus 

omega 2 equals omega 3. So, multiplied them throughout by h cross it becomes h cross 

omega 1 plus h cross omega 2 equal to h cross omega 3, this gives you energies of 2 

phonons of frequencies omega 1 and 2 resulting in a third phonon of frequency omega 3 

angular frequency. There is also the consolation of momentum which is described by 

expressed by this equation of this kind q 1 plus q 2 equal to q 3. So, the momentum and 

the energy are conserved in such a process. So, this is known as a normal or n process 

you can also have a situation where this is the same, but this becomes q 3 plus g, where g 

is what we have seen already is an reciprocal lattice vector q is a reciprocal space mind 

you.  



So, this such a where this is also allowed and this is known as umklapp process known in 

short as a u process. So, both this processes are possible in in phonon phonon interaction 

both will contribute to the conductivity. So, this tells you a phonon of energy h cross 

omega 1 interacts with another phonon in track energy h cross omega 2 resulting in a 

creation of a phonon of energy h cross omega 3. So, the total energy of the phonon 

system is conserved this tells you the corresponding conservation of the momentum of 

the corresponding q 1 and q 2 h cross q 1, and h cross q 2 or the momentum of the 

interacting phonons result in the creation of phonon with momentum h cross q 3. 
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So, if you take these equations. So, you have changing the total momentum let spend a 

little time on this umklapp umklapp is a German word which tells which means folding 

up. 
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So, let us just look at what this means. So, you have q space let me just plot it in 1-

dimension. So, this is that and I have q 1. So, this is its own boundary I have q 1 and q 2 

and now I have q 3 the result of this addition gives you same q 3 now this take it outside 

this own boundary. And there have already talked about how we considered state within 

this own boundary for all our discussion because of the periodism, but this wave vector 

takes it the combination of q 1 and q 2 takes it outside this. So, what do we do we bring it 

back into this by adding a g c’s a reciprocal lattice a reciprocal lattice vector.  

So, this comes back into the first zone in this case the course g will be in the opposite 

direction then this will be q 3 plus g where g is in this direction therefore, this will this 

result and vector will come back into the first zone. So, that is how this is this process 

take place and this makes this reversal and bringing it back means that the scattering at 

the phonon can reverse its direction its moment. So, the thermal resistance can be 

appreciable because of this. So, these are the processes which can contribute to thermal 

resistance in addition you can also have boundaries like grain boundaries. 
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And then they can be impurities it is the unclad process which is dominant in thermal 

conduction due to phonons. So, each 1 gives a contribution and the net conductivity is 1 

by k unclothe plus 1 by k boundary plus 1 by k impurity. So, the each 1 contributes. So, 

that that gives you them f k. So, this is the total conducting conductivities add in this way 

this is the resistivity which are in series and conductivities which are reciprocals add this 

way. So, this is how we calculate over all thermal conduction just let us spend a little 

time to talk about what is the temperature dependence, now if I consider this kinetic 

expression kinetic theory. 
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Suppose consider high-temperatures thermal conductivity at a high-temperatures we 

know that the specific heat is independent of temperature at a high-temperature because 

of due long petitions law we are already consider, so the temperature dependence as the 

thermal connectivity you going to mainly depend on thermal temperature dependence of 

the mean free path. So, that is what will give you the net over all thermal temperature 

dependence of the conductivity. Now the mean free path is the average distance travelled 

by the phonons between successive collations, therefore it will be the mean free path will 

become smaller if there are more number of phonons, and there are more collations in 

other words mean free path for given phonon is inversely proportional to the density of 

all the other phonons. 

So, a given node we know that the number of phonons number of phonons is given by e 

to the power of h cross omega by k b T minus 1. So, this is the factor which will give you 

this now this will be in the high temperature limit you can check this this will go as k b T 

by h cross omega. So, the mean free path which is a inversely proportional to the number 

of phonons will go as l will go as T to the power minus 1 at high temperatures. So that 

means that the unit clock process the mean free path will go also as unclothe goes as T to 

the power minus 1 for temperatures T very large compare to theta d at a high 

temperature. If you have a pure solid, which is well and Neal, then impurity scattering 

can be neglected there are not any impurities, we are considering a pure specimen. And if 

the crystal size is fairly large then boundary effect can be neglected. So, we can forget 

about these the first approximation a when we have a pure large crystal. So, the thermal 

conductivity will essentially go by this. So, the conductivity will be proportional to the 

universe of the absolute temperature that is in the high temperature.  
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Now, let us go to the low temperature region at low temperatures the unclothe process 

will occur only for q of the order of half g you should be half a reciprocal lattice vector. 

We interacting phonon wave vector because the result an should be outside the first 

bellowing zone that foe that to happen? This is the condition and this wave vector 

corresponds to phonon energy of half k b T theta v. So, if we take such an energy. So, 

what happens the number of phonons which have this is going to go as exponential 

minus theta d by 2 T this is going to be the number of because of the Boltzmann factor.  

So, the temperature depends upon the phonon mean free path l due to the unclothe 

process must be proportional to exponential theta d by t, because the mean free path goes 

as the inverse of the number density. So, the correspondingly the thermal conductivity 

also for the u process will go as exponential theta d by 2 T for T very small 

comparatively this means as T tens to 0 this tends to infinity, but the total thermal 

conductivity will not go to infinity, because it is limited by contribution for the 

boundary. And impurities scattering at low temperature the boundaries scattering will 

dominate for a pure crystal the mean free path of phonon is nearly equal to the 

dimensional the crystal. Because the mean free path becomes, if a if the crystal is pure 

the phonons have no impurities or defects are therefore the mean free path is nearly equal 

to the entire dimensional the crystal it becomes very large.  



So, it will become practically independent of the temperature. So, the temperature 

dependence of k will be mainly due to the temperature dependence of the specific heat 

because this becomes temperature independent. And this goes at low temperature as T 

cube for T less than 3 thirty this is the d by specific heat the area. So, we have at these 

temperatures the k will go as T cube. So, therefore, if you consider everything together 

the thermal conductivity of an insulator increases with increasing temperature starting 

from very low temperature being proportional to the cube as the absolute temperature 

and later unclothe process take over. And then the thermal conductivity decrease 

exponentially. If you change the temperature further if you increase the temperature if 

you increase further it vary as the 3 four minus 1. 
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So, the overall temperature dependence is shown in a figure five. So, it goes some bottle 

like this you have a peak. 
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So, this is the temperature dependence as the thermal conductivity of an insulator. So, 

such a wave an explain.  


