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Lecture - 13 

Debye Theory of Specific Heat, Lattice Vibration 
  

In the previous lecture, we saw how the thermal vibrations of the crystal lattice gave 

raise to lattice waves, lattice vibrations which set into motion, the acoustic or elastic 

waves whose quantized excitations are known as phonons. 
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And we saw how the classical theory of specific heat by Dulong and Petit, which did not 

taken into account anything except the bad idea of the equiv partition theorem due to 

Boltzmann, which determined the kinetic the internal energy of the solid. Considered as 

an assembly of three an atoms and how this lead to specific heat which is 3 R per mole, a 

constant specific heat which does not change with temperature and this is not in 

accordance with experimental observations. Because, the experimentally this specific 

heat of typical solid goes as from 3 R from the value 3 R at high temperatures, it designs 

down like this. 

So, while the Dulong-Petit theory, correctly predicts and accounts for the molar specific 

heat reaching this constant value of 3 R, it did not give was not able to explain why there 

is a decrease at lower temperatures, and this was the experimental fact namely here 



reduction of the specific heat at lower temperatures till the specific heat vanishes at 

absolute zero. This is the experimental observation which was successfully explained by 

Einstein by assuming making the rather artificial assumption that all the three n atoms, 

we are mind you we are talking about something like 10 to power 24 atoms, trillions and 

quadrillions of atoms. 

All vibrating in unison at one characteristic frequency that is something like an artificial 

assumption which is not likely to be born out cannot be substantiated by theory also. But 

still as a first step he made this assumption that all these three an atoms all these vibrate 

harmonically, simply harmonically at one given frequency. And assuming this frequency 

was taken by him to be given or given the corresponding energy associated with this 

mode of this the frequency was taken by him to be given by the quantum theory as n plus 

half h nu for a harmonic oscillator. Where n is an integer, and nu is the frequency of the 

oscillator which is assumed to be the same for all the oscillator and h is the Planck’s 

constant. 

We saw that based on this assumption, calculating the average energy of an assembly of 

such oscillators he could arrive at the total internal energy as some to infinity of a 

progression. And this give raise to a specific heat which goes at high temperatures the 

Dulong-Petit value of 3 R at sufficiently high temperatures and which is also predicts 

qualitatively not quantitatively. A qualitatively decrease has at low temperatures till it 

reaches zero at absolute zero. 
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The qualitative variation was accounted for in terms of a theoretical dependent an 

exponential decrease at low temperatures. This was low temperature, but such an 

exponential variation was not observed by experiment, there was considerable deviation 

from this exponential curve predicted by the Einstein theory. So, this is we have already 

pointed out one shot coming of the Einstein theory namely that all the oscillators vibrate 

at the same frequency which is a rather drastic simplification. 
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So, this is the point, which are addressed by the Debye theory specific heat. So, we are 

going to discuss the Debye theory of specific heat today, it is an improvement over the 

Einstein theory, and in this we assume a range of frequency of the phonons. 
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And how in this range determinate, we assume that within a given frequency range, we 

have the phonons which are described by the number of phonons in this range are 

describe again by a density of states function d nu this is the density of states of phonons. 

This is very similar to what discussed in the case of the electrons in this solid - the 

conduction electrons. So, this is the density of states in the frequency range nu to nu plus 

d nu in a very small interval. The Debye assumed that the actual solid is a continuum is a 

continuous medium. In other words, he assumed the solid to be a continuum which 

means that heat grow with a discrete structure due to the atoms in the lattice this discrete 

structure is ignored. So, this is again in turn a short coming on the Debye theory we will 

come to latter. So, this solids is regarded as one continuous medium ignoring, the 

discrete structure of the crystal lattice; ignoring this we can consider stationary waves 

elastic waves which has set up in a cubic solid of volume v equal to the l cube; 

considering a cubic solid; volume v is l cube that means, that the cube as a ideal. 

Let us to start with consider simple one-dimensional system in which we will write the 

phonons waves. The acoustic wave the spatial part as exponential i q x were q is the 



phonon wave vector. The periodicity requires that this should be equal to exponential i q 

x plus l; where l is the size of the length of one-dimensional solid say in the x-direction. 
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So, this immediately imposes a condition on the vector, the possible values of q can only 

be 0 plus minus pi plus minus 2 pi plus minus 4 pi by etcetera by l. The argument must 

become 2 pi, 4 pi etcetera. So, these are the allowed values in one-dimensional space and 

there is one allowed value for a distance 2 pi l that mean the number of vibrational 

modes per unit length in q space which is known as the density of modes is the reciprocal 

of this which is density of modes in one-dimensional. It is just reciprocal of this, 

reciprocal of 2 pi by l which is l by 2 pi, and the density of states of three dimensions in 

for a three dimensional solid will be l by 2 pi cube. This is in this is the number of modes 

per unit dimensions in a cubic solids in three dimensions. 



(Refer Slide Time: 11:39) 

 

So, the number of modes in the wave vector range q to q plus dq, this is per unit length in 

q vector space. Now we want to calculate the number of modes in the frequency interval 

nu to nu plus d nu, which corresponds to a wave vector interval from q to q plus dq. So, 

this will be given by this is what will be given by D of q dq that will be L by 2 pi whole 

cube into 4 pi q square dq. So, this will be were L cube is V - the volume, so v by 8 pi 

cube and 4 pi. So, this will be 2 pi square q square dq. Therefore, we can find the 

corresponding this density of state function in omega space or nu space in frequency 

space. 

(Refer Slide Time: 12:52) 

 



So, it turns out that the frequency space it will be just be D of omega d omega is 

correspondingly given by V by 2 pi square into v cube omega square d omega. Where v 

is the speed of sound, because these are sound waves, the phonons correspond to elastic 

waves, excitation of the elastic waves. So, this should give you the density of states. So, 

this is the phonons density of states 
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Now, we have to calculate the total number of modes in correspondingly, accordingly we 

can define D of nu d nu. So, we define Debye define a cut off frequency because the 

number of degrees of freedom is not be infinite, the number of degrees freedom is, if N is 

number of atoms in the cubic solid then the number of degrees of freedom is just 3 N. 
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And this should be equal to the integral of since D of omega d omega, the density of state 

function integrated from zero up to a cutoff frequency omega d. So, this gives me where 

omega is 2 pi nu. So, putting all this in, we get where nu d is known as the Debye cutoff 

frequency. This means that you cannot assume that the phonons have all frequency some 

zero to infinity, in state the finite number of degrees have freedom imposes that cut off in 

the frequency spectrum given by the Debye frequency. So, only frequencies up to that 

are allowed and if you integrate the phonon density of states over that frequency interval, 

we get the total number of degrees of freedom. 
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Using this, we can write the Debye frequency in nu d, so that gives an expression for this 

Debye frequency. Here this is nu D cube, so this power becomes one-third I made a 

mistake. 

Editing completed 
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Now, we also have to remember that sound waves or not just propagating in one 

dimensional alone. You have longitudinal sound waves and also transverse modes, if the 

x direction, in the direction of the vibration then the longitudinal sound waves propagate 

along the x-direction. But along the y and z directions, there will be a transverse sound 

waves and the speed of sound need not be the same in all the three directions even for a 

cubic solid because of the anisotropy. So, we have to distinguish between the speed of 

sound for longitudinal waves, and the speed of sound for transverse sound waves. There 

will be two sets of modes for transfer waves corresponding to one mode each 

longitudinal mode, because there are two directions at right angles plane. 
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So, we have to count price as many modes in the transverse waves taking that into 

account we can finally, write this expression for the Debye cutoff frequency as nu d for a 

real solid with which vibrating which has transfer as well as longitudinal frequencies. 
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This will be just 9 n as before times divided by 4 pi and we will have this whole thing 

raised to the power one-third that will be the correct expression for the Debye frequency 

and putting in the typical values of n and the speed of sound in ordinary solid. 
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We get Debye frequency as something like 10 to power typically 10 to power 12 hertz 

which is in the far infrared. So, the Debye cutoff frequency life in the for a solid for a 

typical solid, lights in the infrared frequency. Modes above these are really high 

frequency wave which are not the solid is not responding to this. Once we have this 

expression we can find the internal energy as before by calculating the average energy of 

the phonon different modes and multiply by the density of states function and then 

integrated from zero to nu d. So, borrowing the other ideas that the average energy, the 

average energy we have already seen is of the firm h nu by e to the power h nu by k B T 

minus 1. 
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So, if we take this and calculate the internal energy and differentiated with respect to 

temperature, we get the Debye expression for specific heat. 
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So, we get the average energy turns out to be r which we can write the as the internal 

energy that is nothing but 9 n k B T by h nu d times whole cube integral zero times zero 

h nu d by k d T x cube dx by e to power x minus 1. So, this is written as x d taking x 

equal to h nu by k B T, there is also another k B T value, so that is the internal energy 

and differentiating it, we get this persecute is the d u and d t. 



So, if we take again, we consider the high temperature limit and the low temperature 

limit. Since the low temperature limit as great interest, let us take that first. So, 

corresponding this I can define also a temperature k B theta d equal to h nu d; where 

theta d is the known as the Debye temperature. So, if the Debye, the temperature is very 

small compare to the Debye temperature then that is the low temperature limit and in this 

we get U as a constant, which is got easily from the this. 
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But the important thing is the temperature dependence is T to the power four behaviors 

for the internal energy, and this specific heat goes as T cube. So, the Debye theory 

predicts at T cube dependence on this specific heat of the specific heat from the 

temperature. And this is what is experimentally observed at sufficiently low temperature 

for all solids, which specific heat at constant volume goes as the T cube, the cube as the 

absolute temperature. So, this is elevated to a law and is usually know as the Debye T 

cube law. 
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The second case of course, is the high temperature case, this is one then we have the 

second case of high-temperature where T is very large compared to theta d. 
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And it is found that the specific heat goes to 3 R as at sufficiently high temperature you 

get back the Dulong petit values. Intermediate temperature, you have to numerically 

integrate and obtain this specific heat values. 
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The next figure gives you the Debye variation of the specific heat it temperature. In fact, 

many solids you find a very good corresponds between the experimental data and the 

theoretical calculations. 
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However, there are deviation and we know and these are because the Debye theory needs 

other improvement as it is assumed the solid to be continuous medium and it ignores the 

discrete atomic structure the solid, also it assume a common cutoff frequency nu d for 

the entire solid of both the longitudinal and transverse vibration. So, this is when is this 



good theory was because when the assumption that the solid is continuum is the correct 

one, this will be correct only when the discrete structure of the lattice can be ignored that 

mean if the wave length is very long only for long wave length or low-frequency modes 

of phonons. For high-frequency modes the wave length becomes smaller and smaller and 

then the discrete structure of the lattice can no longer be ignored. So, because of that 

there will be a deviation this problem has to be rectified. 
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List typical Debye temperatures given by this calculated because they had the expression 

for nu d which can be calculated, once you know the number of atoms per unit volume 

and then the speed of sound in a cubic solid. So, you can calculate this theoretically and 

the Debye temperature calculated in this way for different materials is given in table, for 

example, in copper it is close to room temperature 315; whereas in diamond, it is very 

high 1860 Kelvin. So, you can see there is considerable variation. As we already 

discussed in connection with the conduction electron theory in metals, we have in 

addition to the phonon contribution to the specific heat, there is also an electronic 

contribution due to the free-electron. 
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And we have as we already discussed this specific heat in metal and good metal is goes 

as A T plus B T cube the electronic contribution is proportional to T and the phonon 

contribution, this is the electron contribution - free electrons, and this is due to the lattice 

vibration or phonons. So, there are contribution of specific heat from both and observed 

the measured specific heat is a combination of these two. So, if you take the 

experimental value, and then divided by T is gives you A plus B T square. So, if you plot 

C by T as a function of T square, it should be a linear curve like this. 
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So, this is actually observed and if you can shows how this is. So, this slope of this the 

slope gives you constant b which is occurs in the phonon contribution and the intercept is 

equal to a which gives you the electronic heat capacity equation. So, both electronic heat 

capacity equation and the phonon contribution which involves the db frequency can also 

be calculate the from the observed experimental data on specific heats by making a plot 

of C by T versus T square for metals. 
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So, from the slope B, can be determined and hence the Debye frequency are the Debye 

temperature can determine. Actually the values in the table which we discussed already 

are obtain in this way. 
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But in order to take into account, the discrete nature of the lattice structure, we have to 

reconsiders among these issues and consider lattice vibrations in a discrete crystal lattice 

of atoms, so to start with the considered the one-dimensional lattice. 
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So, we plan to consider the lattice vibration in some detail in order to see how the Debye 

theory can be further improved. So, in this again we start with the simply case of a one 

dimensional crystal lattice of an atoms. So, we have now an atom a large line of atoms 



on a microscopic scale and we consider an infinite two start with we consider an infinite 

one-dimensional lattice as shown in figure. 
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So, this lattice we take to be extending along the x-direction. So, we have the various 

atom situated at regular intervals at regular spacing on this one-dimensional lattice of 

identical atoms. 
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Let us consider the n th atom and consider its vibration; considered as a simple harmonic 

oscillator have to connected with its neighbors on either side the n minus one th atom. So 



I have an atom here and atom here, and an atom here. This is n, this is n plus one, this is 

n minus one. So, there are this is a simple harmonic oscillator which means that we can 

think of springs of the same spring constant. So, let the force constant be f in which case 

if equation of motion of this n th atom can be written as m d square x n by dt square 

where x n is the displacement from equilibrium position of the n th atom, and that is 

given by minus f and this force constant then the net displacement is x n minus x n minus 

1. And similarly, for the other atom x n minus x n plus one, so force constant time the 

displacement, the net extension are contractions. So, that gives the equation of motion 

and so we now assume, that these or these displacements are given by the running waves. 

So, a periodic solid in simple harmonic vibration, so you get the propagation of elastic 

waves of the form A e to the power minus i omega t plus q n x that will be the X n, 

where A is the amplitude. 
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I should write the repeat distance. So, this is the repeat distance, the regular spacing in 

the lattice. We have similar expressions for x and minus 1, and x n plus 1, wherever n 

occurs you replace it with n minus 1 or n plus 1 respectively. 
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Once you have this and substitute this and substitute this in this equation of motion that 

we have written here, so d square extended simply give minus m omega square x n. 
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So, that will gives the so we will simplifying this, we have arrive at the so-called 

dispersion relation which relates the omega to the wave vector the angular frequency to 

wave vector and that is given by omega as root 4 f by m sign q a by two. This is a kind of 

we can call this omega maximum, so that gives the relation between omega and q the 

angular frequency and the wave vector. So, this is called the dispersion relation of the 



elastic wave propagating in a discrete medium. So, we have something like this and we 

can see that for a long waves, long wavelength limit which mean the phonon wave vector 

wave number is to pi by lambda. 

So, if the wavelength is long the q becomes smaller and smaller. So, we can take the 

limit q tends into zero in that case we can write replace sign q a by two as omega goes as 

omega m into q a by 2 are equal to omega m a by 2 into q. So, you see a omega and q 

these are all constant; omega m means root four f by m; where m is the mass of the atom 

and f is the force constant, so a is lattice periodicity. So, all these are constant of the 

given lattice. So, you can see that omega is a linear function of the wave vector as indeed 

be known for sound waves. So, this is what we have assumed for the continuum model 

of the Debye model. 

(Refer Slide Time: 35:57) 

 

Whereas for high frequencies, when q is no longer 0, and q become sufficiently large, we 

have to consider the actual dispersion relationship of this kind. 



(Refer Slide Time: 36:17) 

 

So, the figure gives you the actual variation figure nine eight gives the frequency versus 

wave vector for a one-dimensional lattice. In this you can see, it is a periodic repeating 

pattern the function is periodic therefore, it is enough if we consider the range of q values 

from minus pi by a to plus by a minus pi by a to plus pi by a that will you have 

something like this. 
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So, this is omega m at very small values of q this is a linear function; beyond that at 

higher q values it deviate from the linearity and become a sinusoidal function which is a 



periodic function. So, we can consider it is enough if we can consider the behavior 

within this range of q values from minus pi by a to plus pi by a, this zone this range of 

values defines this is. So, called first brilloum zone. So, the phonon density of state can 

be considered within this. We next go on to the case of finite one-dimensional lattice of 

identical atoms, because we know that any crystal lattice is not infinite, even though it is 

periodically convenient assume that it is infinite, but it is not infinite. And so we must 

relief this assumption and considered the finite nature of this lattice. We will do this in 

the next lecture. 
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