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So, last time, we talked about one of the most important properties of metals namely the 

electrical conductivity, and arrived at a very interesting relationship known as the Drude 

relation which gives the electrical conductivity sigma as n e square tau by m. Where n is 

the electron concentration, e is the charge and m the mass of electron. And then tau is the 

so-called relaxation time which determines how the electron gas relaxes after scattering 

or collision event back to the equilibrium configuration. So, this tau describes the process 

of relaxation, characteristic exponential relaxation is the time constant of this exponential 

relaxation process. 

Now obviously, e and m are constants, n - the electron concentration in a metal is the 

constant more or less for a metal, because it depends on the atomic number and the 

Avogadro number and the not the atomic number, but the atomic weight and the 

Avogadro number and the density. So, this is the practically a constant, so all these are 

constants. So, the conductivity is mainly determined by the temperature dependence of 

the electrical conductivity, mainly depends on the temperature dependence of this 

relaxation time. 



So we all know for example, if you consider a material like platinum, platinum is a very 

well known as, a resistance thermometer and we know that it is preferred as a resistance 

thermometer, because it can be available in a very pure form, and also its resistance is 

strictly proportional to the absolute temperature. So, it is a linear function of the 

temperature. So, that is the more or less very high degree of accuracy, it is a linear 

function of the temperature. So, its calibration from the resistance, conversion of the 

resistance to a temperature is all fairly straight forward and universal. And this is the 

reason why platinum thermometer; this is preferred by all over the world as a resistance 

thermometer. 

Now this characteristic linear temperature dependence of the electrical conductivity or 

the electrical resistance, this is got by the temperature dependence of sigma and which is 

entirely determined by the temperature dependence of the relaxation time. And we 

already saw that the collision processes or the scattering events for conduction electrons 

are arise mainly from two principal mechanisms. 
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This scattering is from impurities, impurities of various kinds that is impurities 

interstitial, vacancies, dislocations all sorts of standard defects in crystalline solids, so 

that is one mechanism. The other mechanism is scattering by thermal vibrations which 

we wrote as the quantized excitations of thermal vibrations where written as in by the 

name phonons. We will see it talk about them in a little later. Now these are the two 



principal mechanism, and the defect scattering is not very strongly dependent on the 

temperature in comparison to the temperature-dependents of the thermal vibrations. So, 

the phonon scattering is very strongly influenced and the linear temperature-dependent of 

the electrical resistance of a pure metal arises principally from the temperature-

dependent of the relaxation time for this scattering by phonons, scattering of electron gas 

by phonons. 

We will see about the details of this after we have discussed the nature of phonons and so 

on. So, we will postpone the discussion we will be satisfy at this stage with the 

description of the Drude relation. We will written this a little later to the specific 

application of electron-phonon scattering process, and how it determines the 

temperature-dependent of the electrical conductivity of a metal. We will take up this 

topic a little later. Now we will pass on to another important and interesting 

characteristic of a metal, namely thermal conductivity. We all know that a good metal is 

not only a very good conductor of electricity, but also a very good conductor of heat, so 

that is why we are unable to hold a metallic rod which is being heated at one end, even if 

the rod is a very long one because the heat is conducted down the metal and it heats of 

power. 

Hence so we know at the same time, we also know this depends to a great extent on the 

type of metal, for example, stainless steel is does not conduct heat as much as a copper 

rod for example or a brass rod. So, there is a strong variation of the thermal conductivity. 

So, we would like to see understand this also in the framework of the free electron theory 

of metals. So, we all know the standard question for the thermal conduction, it is got by 

the standard Fourier equation for steady state heat conduction as minus k A dT by dx. 

Where dT by dx is the temperature gradient, and A is the cross-section, and k is the 

thermal conductivity, k - this is the thermal conductivity. So this is the temperature 

gradient. 

We all know that the heat flows against a temperature gradient. So, from a hot end to a 

cold end, whereas the gradient is the directed from the cold end to the hot end, the 

negative sign is an indication of that, this the heat current or heat quantity of flowing per 

second, and this is the area of cross-section, A is the area of cross-section. So, this is the 

standard heat conduction equation, we would now like to know how this thermal 



conductivity is determined by the transport of heat by the electron gas. In order to 

understand this, we go back to the kinetic theory of gasses. 
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We are talking about an electron gas, but we will still try to keep the classical picture and 

go to the kinetic theory, which describes how heat is transported in an ideal gas. This is 

done by if there are if you have a heat gradient, a temperature gradient from say the 

gradient is like this, so that there is a hot end that is this is z direction. This is the cold 

end and so there will be a temperature gradient dT by dz. Suppose, we consider a section 

here, and look at unit area and in this unit area, if there are n gas molecules or atoms per 

unit volume, then on a average end by three of this will be directed along the z direction. 

Because x, y and z, the three standard directions in three-dimensional space and if there 

are n molecule by perfect randomness of the kinetic theory allows us to assume that on 

an average one-third of these molecules will be flowing along this z direction. 

So, all of which half of them will be traveling down, and half of them will be traveling 

up. So on an average one six n will be the concentration and they will be can find to a if 

you consider unit area and v is the speed one six n v will be the number of gas molecules 

which are incident from top to bottom crossing unit area. So, this number and if we 

considered a temperature thermal transport that transport of heat across this unit area 

then the transport of heat is determined by the molecule which suffered a coalition before 

the instant we are talking about. So, from these unit area if l is the mean free path l is the 



mean free path. So, just before one coalition before they cross the instance that the 

molecules cross this unit area at the in the central section of this z axis if we consider that 

duos molecules would have to travel a distance l in order to reach only those molecule 

will transport heat from the hot n to this unit area. So, we will have, if I take the 

temperature in this section as T temperature is the absolute temperature. So this means a 

Taylor expansion say T minus dT by dz in to l will be the actual temperature of the 

molecule which starts from the previous coalition and the three which reaches in unit 

time to this by traveling this. So, so this times this gives you the energy transported. 
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So, energy transported across unit area per second off course this is heat energy from 

above n and which contributes to this heat at the point at a given instant of time that will 

be given by 1 6 n v times T minus d t by d z times l. So, that would be the this is the this 

energy will be proportional to this and corresponding there will be also molecules 

traveling from below and that section which will come will correspond to Q. We start 

from this expression for the kinetic theory expression for the thermal conductivity the 

next important question is that since we are talking about finite temperature not at 

absolute 0. We are talking about heat transport T a finite temperature well about the 

absolute temperature. So, we would like to have an expression for the electronic heat 

capacity at a finite temperature where as we talked about it only close to the absolute 0. 
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So, let us to spend a little time calculating these extra the electronic heat capacity 

exactly. 
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So, the electronic specific heat c electronic how do you calculate it at a finite 

temperature. In order to do that we start from the internal energy which is a function of 

temperature and that is by according to the standard that this think this is the standard 

definition this an integral the average of d f e f of e times e divided by d e d f e f of e 

from 0 10. So, that would be the statistical average of the internal energy and we also 



know that we have the end times e f that would be e f times the electron concentration 

which is just a d f e f of e d e so this is the concentration of the electrons. So, now we 

take this to we know that the electronic heat capacitance we are specific heat is just got 

by differentiating the average internal energy this respect to temperature. So, this by 

looking at these this is going to be integral and that differentiating this we get since this 

is a constant number. So, this is going to give me this is e fin to d n by d t and that would 

be extra e f integral b e you d f by d e. 
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So, taking this two together we can write on an expression for the electronic it capacity c 

electronics an ass integral d of e E minus E f times d f e d f by d e. Now, since we know 

that this will be a very only slowly in the neighborhood of the Fermi energy, we can 

regard the density of state d f e is the density of states which may be regarded as a slowly 

varying function in the neighborhood slowly varying in the neighborhood of E f. 
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Therefore because of that we can take for out of the integral and replace it by its fact by 

its value at the Fermi energy D of e f. So that we can write C electronics as D of e f and 

this integral zero to infinity e minus e f d f naught by d e times d e where f naught is 

equilibrium Fermi Dirac distribution function. And we know it is a form is f naught 1 by 

exponential E minus E F by k B T plus 1. So, we can differentiate this and get the 

electronic heat capacity. 
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So, we arrive at C electronic at D of e f times, if you replace this integral 0 to infinity E 

minus E F times, I differentiate this I get exponential E minus E F by k B T plus 1 square 

with a negative sign. And then I have exponential E minus E f by k B T upstairs in the 

numerator and then minus 1 by k B T square to do the differentiation to 1 by k B T. So, 

that would give you electronic heat capacity co-efficient and plugging all this and let us 

make a substitution E minus E F by k B T equal to x. So, that we finally, arrive at the 

expression C electronic at k square D of E F. 
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This states that are completely occupied, do not contribute anything to the integral. So, 

are we may change this to just to zero, and then this is a standard integral which has the 

value pi square by three. So, this will be a definite integral whose value is known to be pi 

square by 3. So, we get we arrive at a that the final expression for the electronic heat 

capacity so that is exact expression for the electronic heat capacity co-efficient at any 

temperature. And so this is the value of the linear heat capacity co-efficient gamma 

which we wrote about which we wrote last time. So, this is the expression for the 

electronic heat capacity which we should import into the expression kinetic theory 

expression for the thermal conductivity and that is how you finally, arrive at the thermal 

conductivity of the electron gas. 
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So, doing this so we have see electronic is gamma T; where gamma we have seen now 

and pi square k B square by 3 in to D of E f. 
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So, using this expression, we can go back to the thermal conductivity expression and we 

can see in particular what happens to the ratio of the thermal to the electrical 

conductivity, and we will write k by sigma t is a very interesting constant, which turns 

out have this value. This is because we know the Drude expression sigma equal to n e 

square tau by m and therefore, we have the kinetic theory expression for the conductivity 



in which the mean free path can be written as v tau. So that is how simplifying this we 

arrive at this very interesting expression which is valid for the electron gas free-electron 

gas in metals in general which is a very interesting relationship which is known as 

Wiedemann-Franz law. Which gives you a very interesting fact that if you take the ratio 

of the thermal conductivity to the electrical conductivity for any material and derived by 

also the absolute temperature you arrive at a universal constant because this involves 

only the Boltzmann constant the factor pi then the electron a charge. So, this constant is a 

universal constant known as the Lorentz number. So, this quantity k by sigma T turns out 

to be a universal constant whose value is the standard Lorentz number. 
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So, this has been actually experimentally observed in many metals at low temperatures, 

of course there are interesting deviation which arrives from the limitation or the 

relaxation time approximation. We will talk about it later. Now all I want to say is this 

point by that will one can say that one started from the kinetic theory expression for the 

thermal conductivity which is a classical description whereas, we have the usual 

objection that the electron gases is a quantum assembly. And therefore, subject to 

quantum or Fermi Dirac statistics subject to poorly expression principle if this is. So, one 

can arrive at the same thing why are the Boltzmann transport equation instead of starting 

from the kinetic theory. We can go back as we did in the case of the conduction electrons 

the electrical conductivity problem, we can go onto the Boltzmann transport equation in 



which we will now write instead of a electric field which drives the electrons, we now 

have a temperature gradient. 
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So, we will write d f by d t as field as the left dot v and this del as can be written as. So, 

this is v dot d f by d t times dt by dx say along a standard direction or del T E. So, we can 

relate this will be a minus sign to show that the drift of the electrons is against the 

temperature gradient. And this will give you this is balanced by the d f by d t due to 

collisions at scattering which is which had the standard form f minus f naught by tau. 

Now using this, we can express the equal distribution function in terms of the 

equilibrium distribution function, and the other parameters involving the temperature 

gradient and they doing the standard behavior of Kenady Fermi Dirac distribution, we 

can arrive at the same expression for the thermal conductivity. 
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And in turn to that, we can come back to the Wiedemann - Franz law. Before concluding 

the this lecture, I would like to spend a little time on another interesting effect which is 

very well known in metals namely the phenomenon of thermo electricity. Thermo 

electricity means we all know we have all our heard thermo coupled, which are formed 

by a junction formed by two dissimilar metals. And then at this junction is kept if a have 

a pair of identical junction and if they are kept that different temperatures and there is a 

temperature gradient then there will be an e m f generated. So, this is the phenomenon 

which includes both thermal transport in the presence of an electrical field or vice versa 

an electric e m f induce by a temperature gradient. 
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So, in order to describe a the absolute thermo power is defined by pi equal to t gas and s 

is the absolute thermo power thermo electric power is also known as the c big co –

efficient and pi is the so-called Peltier co-efficient. So, this is and t is the absolute 

temperature of course, this is the standard expression which links the Peltier effect and 

the thermo electric power in the Peltier effect we are interested in the heat given out are 

taken in at a junction between. The conductor of a interest and a reference materials such 

as a superconductor which makes no contribution to the thermo electric power if you 

take this if the i tell the electron carry is a thermal energy h i; h i is the thermal energy. 

Now what does that mean, so if the h i with the thermal energy as the i th electron then h 

i times v i effects sigma over i is the x component v i x is the velocity of the x 

component. So, this is the heat current. 
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So, if you take this and if we have also an electric current and jx then the electric current 

due to electrons flowing is simply given by sigma i e b i a j x. So, that is the Dirac 

current j x flowing in the same direction. The Peltier co-efficient pi is just the ratio of the 

heat current to the electric current. And therefore, we can write this as sigma h i v i of x 

by sigma e where and here h i is the energy which we can write as e minus e f e i minus e 

f i e i is the energy of the i th electron. So, putting all this together we get the thermo 

power. 
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So, we have the thermo power as one by e t sigma you e i minus e f times v i x this can 

also be re written using the definition of j - the current density; and in this way, we can 

replace there summation by an integration over all the energies. Now we already have 

discuss how to obtain the electrical current due to the transport of electrons. So, we just 

borrow the expression from that and we can write t s therefore, as one by E t borrowing 

all these expressions we get integral E minus E F. 
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And then the sigma of e in to tau v x square divided by a sigma xt x by dS. Now again 

we have converted into, and then a integration or the energy if and we know that the this 

has makes an appreciable contribution only over arrange of energies of the order of k B 

T in the neighborhood of e f. Therefore, we can again use a tailor expansion in the 

neighborhood of the Fermi energy and calculate this and the final result turns out to be a 

very compact expression. 
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So, the Fermi, the final result for the thermo power of a metal going to the algebra we get 

a very particularly compact expression pi square by 3 k B square by e d sigma of e by d 

e. 
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And this can be rewritten as the thermo power of a metal is again proportionate to the 

linear function of the absolute temperature and then it mainly depends on the logarithmic 

derivative of the thermal electrical conductivity. Now the electrical conductivity as we 

know is the given by the Drude expression n e square power by m, and therefore, the 



energy-dependence of this factors is not very a strong, the strongest energy dependence 

comes from this which is the energy-dependent of the d f e. The electronic density of 

states at the Fermi level saw this he the main factor determining the value of the thermo 

electric power in a metal. 

So, we have now seen how we can combine in all the three transport properties namely 

the electrical conductivity the thermal conductivity and the thermo electric power can be 

all explain in the framework of the semi-classical so-called semi-classical theory due to 

the electron free-electron gas. Later on, we will also discuss effects of an applied 

magnetic field. So, and this will give rise to interesting effects like the only paramagnetic 

susceptibility, and the entire theory a free-electrons in metal is we indicated by the 

organization of phenomenon such as fermion emission, photoelectric emission field 

emission etcetera. 

And so, we can we can talk about the topology of the Fermi surface from experiments 

such as cyclotron resonant ((Refer Time: 36:59)) like that. So, we will discuss all these at 

a later stage to go into the details of this interesting physical behavior. For the moment it 

is in fact, this is also the Fermi surface, the electron, the Fermi energy of an electron 

moving close to the surface of a metal gives you an image potential which also provides 

the basis for the so-called field the ion make a scope. So, these are interesting 

developments in experimental solid state research. We will just I am mentioning it in 

passing and now move on to the discussion of other classes of solids. 
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