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Now, we will move on to some questions relating to electrons in solids, the free electrons 

in metals in particular. 
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The problem that we will discuss is we are asked to calculate the Fermi energy of sodium 

at 0 k, where given the density of sodium is 970 kilograms per meter cube, and the 

atomic weight is 23 as we know. We know that the basic expression for the Fermi energy 

is h square by 8 m into n by pi to the power 2 by 3, where n is the electron concentration, 

3 n by pi. 
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So, we are required to find n for which we take the density and divide by the atomic 

weight and multiplied by Avogadro number. And that the density and the atomic weight 

are given here, Avogadro number is known the result of this calculation is 2.54 into 10 to 

the power 28 electron per meter cube. We are assuming that is in sodium is monovalant 

that this is really the number of atoms per in unit value and assuming that each atoms 

donates one conduction electron, we get the number of electrons per unit volume as this. 
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And therefore, substituting this value of n, we get the Fermi energy as 3.13 electron volts 

this is a just a question of substituting this expression is. So, that is the Fermi energy of 

sodium at zero Kelvin. 
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In the next problem, we again deal with sodium we are asked to find the energy level in 

sodium at absolute zero, no, not at absolute zero. 
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But probability of occupation of this energy level at a temperature of 300 Kelvin is 0.5. 

Energy level whose probability of occupation since here from given the result of the 

previous problem that E f the Fermi energy at zero k is at 3.13 electron volts. For this we 

go back to the Fermi Dirac distribution function which finite temperatures as they form 

like this, we have discussed all these already. So, that is the shape of Fermi Dirac 

distribution function and therefore, we know that the probability of occupation at 300 k 

becomes half exactly at the Fermi level. 
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So, we can find this we can readily see that this has to be at an energy of 3.13 electron 

volts. 
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This is true in general of all metals. The value of half for the probability of half 

occupation occurs at the Fermi energy. In the same way, we can find the values energy at 

which the probability of occupation becomes for example, 0.75. 
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So, that is the second question we have to find. So, substituting 0.75 equal to 1 by 

exponential e minus 3.13 by k B into 300 plus 1 substituting in this we can readily see 

that the E happens to be something like 3.10 electron volts. 
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And that would be this is 3.13, and this will be somewhere here 3.10 electron volts in 

which we have a probability of occupation of 0.75. The next question concerns the same 

value for energy level for which the probability is 0.25. 
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And for following same procedure, we find the corresponding energy is 3.16 electron 

volts. In other words, we have the Fermi tail here and it is slightly above the Fermi level 

this is 3.16 electron volts and that is where the probability reduces further from 0.5 to 

0.25, but still it is non-zero. So, states here are occupied with a probability of one-fourth. 
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The next problem is about the chemical potential in two dimensions are at any 

temperature for the electron gas. 
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And we are required to prove this is the standard symbol, for this is mu and this is we are 

required to prove that this is equal to E f zero at this is the Fermi energy at T equal to 

zero k this is mu of t mu at any temperature. So, in order to prove this, we have to start 

from the slope called Sommerfeld expansion for the electron concentration in at any 

temperature T. 
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So, what is the Sommerfeld expansion? 
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Let us consider this before answering the question. So, let us discuss the Sommerfeld 

expansion. In order to use this the concerned integrals of the form H of E F of E d E from 

minus infinity to plus infinity, where F of E is the Fermi derived distribution function 

and the function F of E tends to zero or vanishes as E tends to minus infinity, and 

diverges no more rapidly than some power of epsilon as epsilon tends to infinity. 
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So, if it is so then let us define another function k of function epsilon define function k of 

epsilon such that k of epsilon equals integral zero to epsilon H of epsilon prime d epsilon 

prime. In other words, H of epsilon is just d k of epsilon by d epsilon. With this 

definition, now let us go back to let us call this integral I, then this integral maybe 

integrated by parts, and get we get I equal to the first term will go to zero. So, we will 

have integral minus infinity two plus infinity k of e into minus d f by d e times d e. 

Therefore, the d f by d e is large only around e equal to mu. 
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Therefore what do we do, we expand therefore, expand k of e as in a Taylor series at 

epsilon equal to mu in this integral I. 
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So if we do this, we get things like K of e equals K of mu plus d K by d epsilon e equal 

to mu times epsilon minus mu plus 1 by 2 factorial d square k like d epsilon square at 

epsilon equal to mu times epsilon minus mu hole square plus terms like this. So, in 

general, we can write this as k of mu plus the sum from over n equal to one to infinity of 



epsilon mu minus mu to the power l by n factorial into d n k by d epsilon n evaluated at 

epsilon equal to mu. 
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So, this is what we are going to substitute here. 
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In integral has we also take into account, in fact, this is the delta function with a value 

one from minus infinity to plus infinity, this is an even function. 
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So it is look like this, so that would be d f by strictly it becomes in the related becomes 

delta function. So, we use this property therefore, it is a even function of epsilon. 

Therefore, in this integration over E, we have only left with terms, which are even n. So, 

taking only those terms we can write the integral required integral as we have the 

definition that k of E is integral using that. So, the first term will be k of mu. So, this will 

be a minus infinity to mu that will be the first term plus sigma n equal to 1 to infinity of 

the integral minus infinity to plus infinity epsilon minus mu, we considered only even 

terms. So, with the power 2 n and 2 n factorial here into minus d f by d E into d 2 n 

minus 1 by d epsilon 2 n minus 1 of k evaluated at epsilon equal to mu, times and this is 

H because I have written 2 n minus one here. So, this is the final result which we can 

now integrate. 
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So, we finally, make the substitution epsilon minus mu by k b t as x because that is what 

is occurring in the derivative of the Fermi Dirac function. 
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Therefore, we get the integral finally as integral minus infinity H of e F of e d e equals 

plus sigma n equal to 1 to infinity of a n times k B T to the power 2 n into d to the power 

2 n minus 1 by d x to the power 2 n minus 1 of H of e epsilon evaluated at epsilon equal 

to mu. Where a n as the integral of the form x to the power 2 n by 2 n factorial into d by 

d x of 1 by e to the power x plus 1 d x . So, one can show that this this integral can be 



evaluated and we arrive at 2 into 1 minus 1 by 2 to the power n 2 n plus 1 by 3 to the 

power 2 n minus 1 by 4 to the power 2 plus 1 by 5 to the power 2 n and so on. This is a 

standard result, which we will assume here. 
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So, this is written usually in terms Riemann zeta function. 
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Zeta of n, so we write a n as 2 minus 1 by 2 to power 2 n minus 1 into zeta of 2 n. Where 

zeta n is 1 plus 1 by 2 to the power n plus 1 by 3 to the power n plus etcetera. 
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So, this can be evaluated, so zeta 2 n in general as the form 2 to the power 2 n minus 2 

times pi to the power 2 n by 2 n factorial into B n, where B n is known as the Bernoulli 

number. 
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So, this Bernoulli number as the following values B 1 for n equal to 1 is just 1 6; B 2 is 1 

by 30 and so on. So, these are known standard results. So, in most practical calculations 

in metal physics, we need to know rarely more than zeta two zeta 2 the Riemann’s zeta 

function is just pi square by 6. 
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So, using this result we get the chemical potential mu at any temperature T as E F 0, the  

chemical potential or the Fermi energy and absolute zero minus using the expansion 

Sommerfeld expansion and truncating it in the first term pi square by 6 k B T whole 

square into D of E F where D of E F is the density of states D dash by D E F. Where D 

dash D E F is derivative with respect to the energy. 
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So, we arrive at this result for the chemical potential in two dimensions, the question was 

about chemical potential in two dimensions, for D equal to 2, we know that the density 



of states d of e is constant this is the reason which we have considered already. 

Therefore, D dash E F is zero. Therefore, mu of t the chemical potential at any 

temperature T above zero k is just the Fermi energy at T equal to zero k, because this 

term vanishes, so that is the result that we are required to prove. 
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The next question is given in the form of a fill in the blanks, fill in the blanks are 

straightforward. 
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The density of states d of e for free electrons in the space of dimension d in space of 

dimension d is proportional to the energy to the power n where n is the answer; 

obviously, we have considered this already the answer is; obviously, d minus 2 by 2. 

And the next question is about Fermi Dirac distribution function, if the f of e is the Fermi 

Dirac distribution function integral d f by d e time d e over minus infinity to plus infinity 

is the answer obviously, minus 1. 


