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I recall that we were looking at the case of one dimensional motion in a non linear oscillator

situation.
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Where the Hamiltonian the function of q and p was something of the form P 2 / 2 + q to the 2 r / 2

r where r is a positive integer and the case r = 1 correspond to the simple harmonic oscillator we

had computed what the action was for motion in this potential and we discovered that the action

which was an ∫ or pdq for bounded motion oscillatory motion in this potential was ∝ a certain

power of the energy of the oscillator itself which is Er+1 /r this is the result we obtained of course

if you translate this back to action angle variables.
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The way we had defined it earlier this ⇒ that K the Hamiltonian as a function of the action is ∝

the action to the power 2 r / r + one which immediately ⇒ that the frequency ω of motion which

is defined as �K/�I is ∝ I r-1/ r+1 if you therefore define a degree of non-linearity α say and that is

defined as � log I / � log ω then this is = r - 1 / r + 1 and notice that r = 1 which is the simple

harmonic oscillator α is 0 no non-linearity and as r becomes larger and larger the non-linearity

tends as r tends to infinity to the value unity.

So it is a very useful indicator of the degree of non-linearity if you like of an oscillator of this

kind not a universal measure of any by any means not a universal measure or anything like that

but a very useful one in many contexts we also saw that the semi-classical.
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Quantization of this system is immediate it follows at once because if you recall in semi-classical

quantum mechanics semi-classical quantization corresponds to writing I which is ∫ pdq = n times

Planck's constant where this is an integer and if you take that along with this at once ⇒ that n is

∝ the energy level En r+1 / 2 r or En is ∝ n 2r/ r+1 so tells you something about the level spacing for

quantized motion in this potential is it the other way about but oh yes of course this is log ω / log

I and that is this degree of non-linearity okay the way the frequency changes as a function of the

action thank you.

So  semi  classically  we  find  that  the  energy  level  the  nth  energy  level  is  dependent  on  the

quantum number n in this one-dimensional problem-- according to this relation here valid for n

much bigger than unity which is where the semi classical rule is valid and again you notice that

when r is = 1 so here r = 1 which is simple harmonic oscillations we know that En is ∝ n itself.
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That is a level spacing which is equally spaced equally spaced energy levels and this is exactly

what the harmonic oscillator does in quantum mechanics of course the exact relation for En is n

+ 1/2 times H cross ω and the half  arises from so-called zero point motion it  is the ground

represents  the ground state  energy of the oscillator  but we're not going to  get  into quantum

mechanics here just to point out that this semi classical argument is immediately leads to this

result that En is ∝ this power of n for this whole family of potentials notice also that as r tends to

infinity we end up with E and going like n2 
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And  that  is  precisely  the  level  spacing  for  a  potential  which  rises  more  and  more  steeply

infinitely steeply namely a particle in a box so this is exactly the same as the level spacing for a

particle in a box in a one dimensional box so that limit too is correctly obtained from this semi-

classical formula one can go further and actually try to find the correction to this end Corrections

to other this quantity here etcetera.

But we are not going to get into that right now so much for a little digression on semi-classical

quantization which follows from the arguments we have been giving here. Now let us go back a

few steps and ask what is the reason for having integrability in a Hamiltonian system.

(Refer Slide Time: 06:51)

So we go back to n degrees of freedom and freedom integrable Hamiltonian and ask what is the

underlying  physical  reason for  the existence  of  n  constants  of the motion  f1 through FN in

involution with each other yes the way we have talked about it so far is a Hamiltonian system the

phase  space  variables  come  in  pairs  so  we  identify  n  degrees  of  freedom and  independent



degrees of freedom which means that you must specify n numbers q1 through q and for me to tell

me completely the configuration of the system in real space.

If you like and in addition you need n conjugate momentum to complete the description of the

system in phase space in other words to describe the dynamics of the system so I call number of

degrees of freedom the same as the number of generalized coordinates that I have number of

independent degrees of freedom in the case of more general dynamical systems first of all the

phase space does not have to be even dimensional this pair wise structure the Poisson bracket

structure is not necessary at all.

And I do not distinguish between different kinds of variables I just call the whole set dynamical

variables 1 to n or as many as there are yes absolutely yes absolutely it is the same it is the same

as the degrees of freedom if I give you for instance in statistical mechanics when you discuss

monatomic gases diatomic gases and so on for a diatomic gas you ask how many degrees of

freedom does a diatomic molecule have yes ah the question is whether in chaotic motion the

concept of degrees of freedom appears or not of course it does it has absolutely nothing to do

with the kind of motion identification of the number of degrees of freedom yes.

I believe so I believe so unless there are other reasons to believe that external forces are present

or there is a time-dependent perturbation acting on the system or anything like that but if I give

you a  collection  of  molecules  and you assume Newtonian  mechanics  to  hold  good and the

system is isolated they act with forces acting upon each other caused by themselves then I do not

see why it is not a Hamiltonian system why do you say I cannot formulate the system I assume

let us assume put a model on it let us assume that Newton's equations are valid.

Let us assume that there is a certain potential energy between two molecules a certain distance

apart once I have a model of that kind I have a Hamiltonian system with a very large number of

degrees  of  freedom no  doubt  the  motion  is  in  general  chaotic  it  is  very  irregular  it  is  not

integrable yes it is assumed to be Hamiltonian yes indeed of course in real gases you have many

other complications.

For instance you might have to bring in quantum mechanics you might have to solve the entire

problem quantum mechanically that is a separate subject in itself you are not going to get into

that here but otherwise yes it  is a Hamiltonian system the kind of motion that a system has



whether  it  is  regular  or  integrable  or  regarded  chaotic  this  has  nothing  to  do  with  the

identification of the number of degrees of freedom.

You have absolutely nothing to do with it so let us look at an N freedom Hamiltonian system for

which the Louisville Arnold criterion tells us that the system is integrable if you have n constants

of the motion F1 to Fn in involution and then we saw that a transformation to action angle

variables  is  possible  and  once  you  make  this  transformation  the  Hamiltonian  becomes

independent of the angle variables it is a function of the action variables alone and then you can

integrate the entire two and set of equations that you have.

All to n equations for prescribed initial conditions at least in principle you can do this now you

could  ask what  is  the  physical  reason why this  system is  integrable  why these  systems are

integrable what is the physical significance of these F1 through Fn of course the action variables

which we talked about which lead to the natural frequencies of the system the ωi are certain

combinations of these EPS so in that sense there is already some physical interpretation for these

EPS but can we think of this in a slightly more physical fashion is there something much more

immediate and the answer is yes the existence of these constants of the motion is related to some

hidden symmetry in the problem a certain dynamical symmetry in the problem.

For instance if I look at two harmonic oscillators and the spring constants are the same in the two

perpendicular directions then you would immediately tell me that the Hamiltonian is rotationally

invariant you make any rotation in the xy plane and the Hamiltonian does not change at all so

there  is  a  certain  symmetry  in  the  problem  and  the  existence  of  symmetry  is  linked  to

integrability so whenever a system is integrable whenever you have these constants of the motion

there exists a certain dynamical symmetry in the problem.
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Now let us try to understand what this dynamical symmetry is at least go a little bit into this it is

a vast subject by itself but let me at least give the rudiments of this subject let us go back and ask

what does a canonical transformation actually do to a system so we start with the system with

variables QP and you make a canonical transformation to a new set of variables Q and P what

does this do what kind of transformation is it or if you like if these q's and PS are combined into

a phase space variable x 2n dimensional vector.

Then  these  could  similarly  be  combined  into  a  -  n  dimensional  vector  these  quantities  are

functions of these quantities which preserve the Poisson bracket structure.
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In other words we know that qi qj = pi pj is = 0 and we know that qi pj is =  �ij now what is

meant by a statement like this what is meant for example by this statement here what I mean by

this is this  ⇒ if I write out this Poisson bracket explicitly it  ⇒ that a  Σ  from k = 1 to n / all

degrees of freedom � Qi /  � QK � Pi Pj /  � Pk -  �Q i / PK � PJ /  �qk this quantity is = the �

function that is the definition of the Poisson bracket in the original coordinates and if the Poisson

bracket structure is preserved it means you have a relation of this kind for every value of i and j

similarly we could write these down as well.
Now is it possible to use this matrix J which we had introduced and write this in simpler form

well yes indeed because you already know that I can write any Poisson bracket I could write any

Poisson bracket in more compact form if I use the J matrix and what would that be it would say

take this quantity Qi and take its derivatives take the T of this constructed into a row vector put

the J in between and then the column vector from the derivatives of this and that would be = � ij.

So can we combine all  these three relations  into a single relation and the answer is yes not

surprisingly it turns out that all these relations can be combined let me do that here.
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This whole set of relations is equivalent to saying that the Jacobian matrix of the transformation

which let me denote symbolically as �ξ / this � X by the way this stands for the matrix the cube P

/  � P this matrixT  J times  � Z /  � X this quantity is = J itself it is easy to check that all these

relations are summarized in the single line by this equation this matrix equation it is not very

difficult to verify that this is so I have used this symbolically it just to tell us immediately that it

is just the Jacobian matrix corresponding to the canonical transformation.

Now what does this tell us this quantity is a 2n / 2n matrix its  T  with a J in between times the

matrix must be = J itself the same matrix J and recall that this J was = 0 the unit n / n matrix -

that and 0 it was a 2n / 2n matrix of this kind what would you call a matrix such that its T times

the matrix itself is = the unit matrix what do you call a matrix which obeys this condition.
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Matrix T times the matrix square matrix = I itself well if it is real then it is an orthogonal matrix

this is the definition of an orthogonal matrix the -1 of the matrix is = its  T  that is an orthogonal

matrix if the matrix is restricted to real entries then of course the unitary matrix is an orthogonal

matrix  because  there  is  nothing to  complex  conjugate  but  in  general  the  matrix  could  have

complex elements in all cases here all these are real variables therefore we do not have any

complex elements.

So a matrix of this kind is an orthogonal matrix can you give me an example of a transformation

of coordinates a which is represented by an orthogonal matrix every rotation absolutely right

every rotation in physical space is an order represented by an orthogonal matrix in 3-dimensional

Euclidean space any 3x3 orthogonal matrix of unit determinant represents a physical rotation of

the coordinate system the simplest of these of course as you are well aware is if you took the xy

axes and you went off to x`  and y`  at an angle α then this rotation in the xy plane about the

origin is represented by a two-by-two orthogonal matrix.

Whose structure is what is the matrix representing this rotation absolutely it is just cos α sin α -

sin α and so on in three dimensions you can generalize this to higher dimensions so our problem

matrices with unit determinant with determinant + 1 represent physical rotations that matrix there

which  represents  a  canonical  transformation  in  the  2n  dimensional  phase  space  is  not  our

problem  because there is a J sitting here and a J sitting there but by now we have got used to this



J appearing everywhere in Hamiltonian dynamics this is pseudo orthogonal in a certain sense

such a matrix is called a symplectic matrix.

(Refer Slide Time: 19:42)

Let me write that down a matrix M T  J M = J so this is some where m is a 2n / 2n matrix it is

called the symplectic matrix so what is the lesson we learned from that equation there canonical

transformations  are  represented  by  symplectic  matrices  just  as  rotations  are  represented  by

orthogonal matrices of unit determinant canonical transformations are represented by symplectic

matrices  therefore  in  exactly  the  same  way  that  the  study  of  orthogonal  matrices  tells  you

everything you need to know about rotations in exactly the same way the study of symplectic

matrices tells you everything you need to know about canonical transformation.

So this  is  an algebraic  approach to  the study of canonical  transformations  now this  kind of

equation has remarkable properties we will see in a second the first of which is the following if I

took the determinant on both sides what is the determinant of J j was defined by that matrix the

determinant of J is + 1 we check this out.
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So determinant J + 1 it turns out from this equation it follows if I took the determinant of the left-

hand side the determinant of a product of matrices is just the product of determinants and the

determinant of M  T  is the same as the determinant of M so this tells you at once that this  ⇒

determinant M is = + or - 1 because the square is = 1 it turns out that you can show without too

much difficulty although it is a non-trivial exercise that the determinant of a symplectic matrix is

in fact +1 this is why I mentioned earlier that canonical transformations also preserve orientation.

They  do  not  just  preserve  they  preserve  a  number  of  things  among  other  things  preserve

orientation but this is reflected in the fact that the determinant of a MIT symplectic matrix is +1

just  as  orthogonal  matrices  form a group the product  of  two orthogonal  matrices  is  also an

orthogonal matrix every orthogonal matrix has an -1 and they form a group in exactly the same

way the symplectic matrices of a given order from a group of matrices this is a subgroup of the

set of all 2n / 2n matrices which are non singular.
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So let me write that down the group of all 2n / 2n real matrices so we are restricting ourselves to

matrices which are real with real entries 2n / 2 and non singular what is a non singular matrix the

determinant is not = 0 in other words there is an -1 for the matrix so the group of all 2n / 2 and

non singular real matrices is denoted by GL the general linear group of order 2n / the real’s.

So this stands for the general linear group among such matrices the symplectic matrices form a

subgroup of such matrices in other words the product of two symplectic  matrices is again a

sympathic matrix all 2n / 2n for a given order so it is a subgroup of this thing here and this group

is called the symplectic group and it is denoted by SP 2 n and it is a subgroup of GL.

Therefore for a given dynamical system with a given number of degrees of freedom n the study

of its canonical transformations amounts to the study of the symplectic group of the same order

of order to it now a great deal is known about the properties of such matrices so great deal is

known about the symplectic group and what it  ⇒ and what is generators are and so on and so

forth therefore we have a fairly good idea of what the symmetry possessed by a system should be

a Hamiltonian system should be under a canonical transformation a Hamiltonian flow goes to a

Hamiltonian flow.

Measure is preserved what you need for a symmetry of the system though what do I mean by the

dynamical symmetry of a system what would you say is given a dynamical system what would

you say is a dynamical symmetry of the system one possibility is to look at its Hamiltonian if it

is a Hamiltonian system and ask what kind of transformations leaves the Hamiltonian unchanged



that is one possibility but of course in the case of a Hamiltonian system you read more than that

you actually  must  make sure that  the transformations  of coordinates  of the variables  is  also

canonical.

So that the structure of Hamilton's equations is unchanged the most general way of defining what

the dynamical symmetry group of a dynamical system is to say a set of transformation which

leaves the solutions unchanged maybe takes one solution to another and it mixes up different

solutions but the solution space the set of solutions of the dynamical equations should remain

unchanged that is what I would call a dynamical symmetry of a system the full set of solutions

must remain of the dynamical equations must remain unchanged.

(Refer Slide Time: 27:21)

If  I  accept  that  then  it  is  easy to  see  what  I  mean by the  dynamical  symmetry  group of  a

Hamiltonian system and let us write that down like this I mean the dynamical symmetry group of



a system is a set of transformations of its phase space variables set of transformations that leave

the solution space but me that is sorry I did not get the question what is F no not necessarily not

necessarily there is nothing true with the Hamiltonian system right.

Now we are talking about a very general statement I am simply saying when I have a dynamical

system described by a set of differential equations and I ask what is meant by a symmetry group

of the system the most obvious statement is that it is a set of change of variables of the system

such that the solutions do not get changed the set of solutions does not get changed that is what I

would mean by dynamical symmetry group now let us come to a Hamiltonian system and ask

what is the dynamical symmetry group of a Hamiltonian system what can it possibly be well

what do you need for a Hamiltonian systems solutions to remain unchanged first of all I certainly

need the following.
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 I  certainly need the Hamiltonian system the Hamiltonian flow to go to a Hamiltonian flow

certainly need that this is done by the set of canonical transformations but I need more than that I

would like to leave the solution space unchanged in other words the Hamiltonian itself should

not change so that the equations of motion are exactly the same in the new coordinates as they

were in the old coordinates right so not only do I need the set of canonical transformations but I



need a subset  of  this  group of  canonical  transformations  which leave  the  Hamiltonian  itself

unchanged.

In other words I should not change from H to KH must remain unchanged that does not always

happen  with  all  canonical  transformations  therefore  the  dynamical  symmetry  group  of  a

Hamiltonian system for a Hamiltonian system the dynamical symmetry group is the subgroup of

canonical  transformations  that  leave  H itself  unchanged so  that  not  only  do you go from a

Hamiltonian flow to a Hamiltonian flow but more over it is the same Hamiltonian and then you

are guaranteed that the dynamical equations do not change and therefore the space of solutions

does not change either.

In  general  therefore  this  dynamical  symmetry  group  of  a  Hamiltonian  system  is  a  certain

subgroup of SP 2 and r whatever be the number of degrees of freedom that also could be a group

it may not exist you may not have much symmetry in the problem at all and that is in fact what

happens in general but then in those cases where the Hamiltonian is integrable it turns out that

you have a  dynamical  symmetry  group and in fact  that  group is  generated  the infinitesimal

generators of these transformations that belong to the dynamical symmetry group are related to

the constants of motion f1 through Fn ye.

Of  course  yes  in  a  group  every  element  has  an  -1 so  this  is  certainly  true  yeah  canonical

transformations have -1s that was our first premise that going from the small cues and piece to the

Q and p’s was actually invertible this was our promise that the canonical transformations we

have talked about our global canonical transformations namely they apply in all of the phase

space concerned.

Of course you could have a local canonical transformation which is not applicable in all of phase

space we have not looked at that possibility at all we are all only talking about global canonical

transformations and they are certainly invertible in fact since you raised the point the canonical

transformation is a point a symplectic transformation.
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So it satisfies this relation here and of course what does this imply at once let us take this M

across to the other side by applying the -1 operator so it immediately says MT J is = JM-1 -1 and let

us bring the J to this side by applying the -1 of J and therefore I get J -1 M T J is = M -1 but I know

that J-1 is - J J-1 is = J  T  is = - J so in fact I know that M -1 is = - J  T  G for a symplectic matrix

therefore the -1 exists no reason.

Why it should not it is determinant we already saw was + 1 so these transformations indeed form

a group the point I am making is that the dynamical symmetry group could be much smaller than

this group than the group of canonical transformations could be much smaller in general because

I also pointed out that in cases where the system is not integrable you do not have any symmetry

at all but when you do have some special symmetry the system could become integrable this is

the idea let me for example go back to the 2-dimensional harmonic oscillator and ask what the

symmetry  group could  be  this  is  not  easy  to  identify  it  is  not  a  trivial  task  to  identify  the

dynamical symmetry group of a system which we know to be integrable in general one has to do

a little bit of work to do this.
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So let us look at the two dimensional oscillator which is H(q1, P1, q2 and P2 and this was P12 +

q12 / 2 + P2 2 + q2 2 / 20 if I took an oscillator which has exactly the same frequency in the 1 and

2 directions this is the isotropic oscillator this Hamiltonian has a great deal of symmetry the

symmetric group the group of canonical transformations is the symplectic group in two degrees

of  freedom so this  is  sp 4 /  the real’s what  is  the group of  transformations  that  leaves  this

Hamiltonian unchanged.

What would you say is a group of transformations that leaves this Hamiltonian itself unchanged

notice that I can just take out the factor ½ and write this in this fashion so I should write here 2D

isotropic to mean that it is got exactly the same properties in all directions as you can see the

potential energy is q1  2  + q2  2  which is invariant under rotations in the q1 q2 plane so it has

circular  symmetry  in  this  case  what  would  you  say  is  the  symmetry  or  the  group  of

transformations of these 4 variables each of which runs from - ∞ to ∞.

That leaves H unchanged we can switch variables but there is a big huge continuous group of

transformations what would leave this unchanged this combination unchanged if I have x 2 + y 2 +

z2  in three real variables x y z what group of transformations leaves is unchanged all rotations

about the origin leave it unchanged in the three dimensions x y and z what leaves this unchanged



all rotations in phase space in this four dimensional phase space all possible rotations about the

origin would leave this unchanged what would that group be the symmetry group of it of H itself.

What  would  this  group be  it  is  the  group of  rotations  in  four  dimensions  for  you plead  in

dimensions what would that group be it is a group of 4x4 matrices but what sort of matrices

would be is B they have to be orthogonal what should the determinant of the matrix B + 1 so

volumes  are  left  unchanged  and  that  group  is  a  group  of  orthogonal  transformations  in  4

variables called So4 but because the determinant is 1 you write an S here to write special or

unimodular determinant + 1.

On  the  other  hand  this  stands  for  orthogonal  so  on  the  one  hand  the  group  of  canonical

transformations  in two degrees  of freedom is SP 4 are the set  of all  4x4 matrices  with real

elements which are symplectic  which satisfy that condition on the other  hand this  particular

Hamiltonian  is  left  unchanged by the group of  all  4x4 matrices  with real  entries  which  are

orthogonal and which have unit determinant it is clear that for the dynamical symmetry group of

this problem.

The set of transformations in phase space that leaves this Hamiltonian unchanged and takes the

Hamiltonian floor to a Hamiltonian flow does not change the Poisson bracket structure is that set

of transformations which belongs to both this group as well as this group in other words the

intersection of these two groups so all matrices which are both symplectic as well as belong to

this so4 that set of transformations that special subset of canonical transformations is in fact the

symmetry group of the system.

So as you can see it is not easy to identify the symmetry group of a dynamical system because

not  only  must  the  transformation  be  canonical  but  it  should  also  preserve  the  form of  the

Hamiltonian in this case since the Hamiltonian was so simple I could do this directly without too

much trouble I could just identify it by inspection this looks like the surface of a sphere in four

dimensions.

And  therefore  I  could  immediately  write  down  a  so  forth  now  that  is  group  which  is  the

intersection of these two groups is a different group altogether it is smaller than either of these

groups  and  it  is  the  group  of  turns  out  to  be  the  group of  all  2  /  2  unitary  matrices  with



determinant + 1. So let me not write that down in explicit terms and get into Group theory but let

me just write the result down and say.
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 The intersection SU(2) which stands for the group of all 2/2 unitary matrices with determinant +

1 so it is a set of transformations which can be put into 1,2,1 correspondence with this set of

matrices and this requires some mathematics to prove which we would not prove but I am going

to simply assert that this is so the reason I do so is because I did like to identify the generators of

this group and show you what the physical meaning of these generators is you see what are the

constants of the motion here first  of all  we know it  is  integral  we had two constants of the

motion.

Which were in involution with each other and what were those two constants one of them was f1

which we could take to be just this the energy of the first oscillator and f2 was 1/2 - 2 2+ b2 what

else do you think is a constant of the motion here it is clear the system is integral and we know

that the frequency ratio is unity in this case the same frequency for both these oscillators so on

the surface of this torus we talked about the last time when you go around the torus in this way

once you also go around this way once exactly.

Once so the motion is periodic completely periodic there is just one period unit frequency these

two are also an involution with each other now to describe the trajectory you need one more

constant of the motion which is an isolating integral so that the trajectory doesn't wind itself



around on this torus completely but rather is a discrete curve is a curve it is isolated curve for

each set of initial conditions what else do you think is constant in this problem let us think a little

physically q1 let us say is the x-axis and q2 is the y-axis and you got a problem.

Where  you have  an  isotropic  oscillator  the  same spring  constant  in  both  directions  and the

potential is circularly symmetric if I write this down in circle up in plane polar coordinates this is

just 1/2 r 2.

So what do you think is constant in set emotional well here is this particle in the q1 q2 plane well

the actual shape of the trajectory will depend on initial conditions it will depend on what the

phases are what the initial values of q1 and q2 are that is certainly true but what do you think is a

symmetry. I mean work what else is constant what sort of force if the particles here in is attached

by a spring to the center what kind of force is exerted by the spring in what direction is this force

it is always radial therefore this is a central force problem.

It is certainly a central force problem what do you expect is constant in a central force problem

the  angular  momentum that  is  there  is  no torque  on  this  particle  the  angular  momentum is

therefore a constant of the motion we guaranteed that now what is the angular momentum in this

planar problem you just have two variables X and Y and this is Ps of X and Ps Y what is the

angular momentum well if you use this formula R cross P since you have reduced to a plane

everything is in a plane this cross product is essentially a single number.

 So what is r cross p there is only one component to it and what is that = P 1 P 2 q 1 q2 what is

think in 3 dimensions if you have a hard cross p in three dimensions what is the Z component of

r cross p what is the third component of the angular momentum which I will call L or since I

know that it is the third component if ,I am looking at a three-dimensional problem let me just

call it j-3 what is this = = yeah it = q 1 p2 -let me put 1/2 here for a reason it should become clear

in a second I am guaranteed that this quantity is a constant of the motion in other words.

The Poisson bracket of j3 with h 0 that is not hard to verify so indeed this is a constant of the

motion and now it turns out that the following quantities.
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j 1 j 2 and j 3 which we have already written as q 1 p 2 - q 2 p 1 j 1 is 1/4 (q 1 2 + p 12 - q 2 -P 2)

and this is 1/2 (q 1 q 2 + p 1 p 2) it turns out that each of these quantities is a constant of the

motion so indeed it turns out that{ J i J  k} sorry Ji with the Hamiltonian is 0 (i= 1 , 2 , 3) so we

have other constants of the motion these two together with this third one the isolating integral

actually specifies the trajectory completely the moment you put these three quantity is equal to

constant.

Then in this four dimensional space you found the trajectory completely because the intersection

the mutual intersection of surfaces on which this and this are constant specifies a curve and that

is indeed the phase trajectory for any given initial set pardon me J one is a yes I am not saying

they are independent I am going to come to the significance of the J's a little later but I am saying

f1 f1 + f2 is the Hamiltonian itself of course for inerrability you just need two constants of the

motion which are independent of each other and which are an involution they are represented for

instance by f1 and f2.

But I am actually finding a whole lot of other constants of the motion for describing the motion

you actually need three isolating integrals in this problem and they are represented for example

by f1 f2 and f3 and j-3 but in addition these combinations are also constants of the motion sure

this is just f1 - f2 apart from some constant factor this is something else altogether and this

quantity here is the angular momentum about the origin but now you cannot have more than two

constants of the motion in involution with each other that is for sure.



So in fact that is the maximum number that could be independent and in involution you can

choose them as you please with various linear combinations I did like to choose this because this

completely separates degree of freedom one from two altogether the others mix it up in some

fashion or the other of significance of this j1 j2 j-3 is that they obey very interesting Poisson

bracket relations and they obey the following relation among themselves.
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You have {J i Jj} = ε, ijk this is the totally anti-symmetric symbol in three dimensions it is =+1 if

i  jk on a natural permutation of even permutation of 1 2 3 - 1 if it is an odd permutation and 0 in

all other cases this is the Levite root R symbol in 3 dimensions so this stands for a set of 3

relations J1 , J2, J3, J2, J3 is J1 and so on and cyclic permutation what does this remind you of

this is exactly relations obeyed by angular momentum components if you write R cross P in 3



dimensions and ask what is the Poisson bracket of LX with ly or ly with lz or lz with lx you get

exactly this set of relations so in some funny fashion angular momentum.

Algebra  in  3  dimensions  is  related  to  the  dynamical  symmetry  group of  the  2  dimensional

isotropic oscillator and the reason is group theoretical it is purely algebraic it turns out that this

group is generated by three combinations of Q's and Ps which are precisely these three quantities

where if you like the generators of this group SU 2 so you see what is happening is to summarize

things here is a system which is completely integral it has two degrees of freedom.

So we have two constants of the motion in involution with each other which are functionally

independent of each other and those are f1 and f2 since the motion is periodic rather than quasi

periodic we need a third isolating integral another algebraic function of the Q's and Ps that is

provided by this quantity J 3 for instance which has the significance now of being the angular

momentum about the origin.  So we have the energy of the first  oscillator  the energy of the

second oscillator and then the angular momentum about the origin in addition there are these

combinations J 1 and J 2 such that J 1 J 2 and J 3 are all constants of the motion

 But they are not an involution with each other they cannot be too many of them instead they

obey a  certain  algebra  the  Poisson bracket  of  any two is  a  linear  combination  of  the  same

quantities  in  this  case  just  the  third  one  with  the  appropriate  sign  that  algebra  represents

something much deeper this algebra the existence of this set of relations implies that there is a

certain dynamical symmetry group in the problem which happens to be the intersection of the

simplistic group SP for R of canonical transformations.

 In this problem with the symmetry group of the Hamiltonian itself which happens to be a so

forth and that group can be put into one-to-one correspondence the set of transformations with

the group of 2/2 unitary matrices which is this group here and this group has three generators

which happen to be the same as that of angular momentum in three dimensions and that's the

reason why you have these combinations J 1 J 2 J 3 so as you can see dynamics and the algebraic

structure underlying integral equations they are very closely linked with each other.

And this two dimensional oscillator gives us a simple model in which to understand the origin of

these symmetries in this case of course if you go to three dimensions and write the oscillator

down three dimensions that is a much bigger group the symmetry group is much bigger the



canonical transformations would be SP 6,r and then you would have to look at the intersection of

that or the subgroup of that which also leaves the Hamiltonian unchanged and that is a much

more complicated group turns out that happens to be SU3 in that case.

And so on in fact the N dimensional isotropic oscillator has a symmetry group which is the same

as a set of transformations the set of transformations it is a symmetry group is the same as the

group  of  n/  n  unitary  matrices  with  determinant  +  1  a  very  useful  relationship  in  many

applications but I do not want to get into that right now. I did like to go back and give you

another problem.

Which also you are familiar with where there is an extra symmetry we will see where this comes

from yes if the generators is three it is exactly the angular momentum algebra this thing here no

it will not be for example the 3D isotropic oscillator the dynamical symmetry group is SU(n) SU

(3  )  in  fact  the  general  statement  is  the  n-dimensional  isotropic  oscillator  in  dimensional

isotropic.

 I should not call it n because this number n has been used for degrees of freedom okay it is the

same number actually in dimensional is SU (n) no it does not obey this algebra it obeys a more

complicated  algebra  but  the  question  you could  ask is  how many of  these  are  there  that  is

something we can directly answer how many to admit how many generators do you think there

are in n SU n well let us start from we could start from one by one matrices then we would go on

to 2/ 2 / 3 etcetera. The least trivial case is the simplest non-trivial case is SU (2) so let us look at

that we want to look at all.
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Unitary matrices 2/2 matrices which have unit determinants .I am going to look at the set of all

these matrices and I permit complex entries ok we will come back to what a generator is a group

since .I have to tell you how these groups are generated what I mean by it is let us come back let

us come back and tell  you what  a generator  is  I  do not  want to have a digression within a

digression so what is the number of parameters that you need to specify a 2 / 2 matrix it is not

with the 2 / 2 matrix with possibly complex entries.

We count the number of real parameters always eight parameters because if the matrix is ( a b c

d) and a and b are all (a b c d) are complex numbers there is a real part and an imaginary part of

these so in general eight real parameters are needed now. I  start  putting conditions on these

matrices what is the unitary matrix a unitary matrix is 1 u  +u =I so this is unitary the dagger

stands for the complex conjugate transpose the hermitian conjugate of this matrix

So I take the transpose and then do a complex conjugate of this matrix and I insist that this be

true so what, I am insisting upon is that (a b c d) multiplied by the complex conjugate transpose

so this becomes c *b * a * and b *B = 1 0 0 1 I insist upon this how many parameters are left

now how many conditions does this give me gives you four conditions.

So how many conditions are left how many parameters are left four parameters are left. I now

insist that the determinant of the matrix be = +1 that's what makes it s how many parameters are

left 3 and therefore the number of generators is 3 in other words any element of this group is

found by taking certain special  matrices  multiplying them by parameters  and exponentiation



these matrices and that gives me a finite element that is called a generator the group so there are

three generators and that is exactly the number.

 We found I will illustrate what is meant by generator in a minute but now what do you think it is

for SU (n) what do you think it is going to be for n 2 n 2 - 1 therefore in 3 dimensions its 9 - 1

which is 8 generators and therefore there are 8 constants of the motion which obey a certain

algebra among themselves more complicated than this considerably more complicated than this

but that provides you with a symmetric group now let us come to the question of what I mean by

a generator and let us go back and do a little bit of elementary algebra here.

So I start with the simplest example of a rotation in two dimensions in a plane and let us write

the equations down directly.
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So I start with the XY plane and I make a rotation about an angle α right new coordinates x’ and

y ‘ and of course I have x’ y ‘ = ( ) acting on (x y) this matrix here depends on the parameter α

and it tells me x’ is a certain linear combination of x and y and y ‘ is a certain linear combination

of X and Y and it is well known of course that we have its let us call this matrix which represents

rotation by an angle α let us call it  R (α) now what are the properties of R (α) what does a

rotation do it keeps the origin



 Unchanged  it  is  linear  it  is  homogeneous  in  other  words  0  remains  0  the  origin  remains

unchanged and distances do not change nor does this coordinate system become a left-handed

coordinate system what is right-handed remains right-handed so this means that this matrix R

satisfies RT R = π it is orthogonal which keeps distances unchanged and the determinant of R =+

1 therefore this R of α is an element of a group of matrices which are orthogonal two by two

matrices with real entries in this case and with determinant + how many parameters are needed to

specify a rotation one.

So this is a one parameter group and there is one generator in three dimensions you have three

Euler angles in general therefore you have three generators for so 3 in n dimensions Euclidean

space how many generators do you need for specifying rotations why in our there are n axis or n

angles and this is precisely the point where I want to stop and we will take this up that answer is

not right because that tells you something about the nature of rotations itself.

Let me redefine a rotation a rotation is a linear homogeneous transformation which keeps the

origin unchanged for instance which is orthogonal distances are not changed and the determinant

is +1 so right-handed system remains a right-handed system the reason you say n is because you

assume that every rotation is a transformation about some axis and there are in axis but this is not

true because if I think of 4 dimensions then of course I could have a rotation which changes in

the xy plane but leaves both the other two coordinates unchanged or if I look at two dimensions

there is no third axis it is about a point.

So an axis need not be identified with the rotation that is an accident of three dimensions it is an

accident of odd dimensionality we will come to that so the number of generators is the number of

independent orthogonal planes you can find how many planes can you find in n dimensional

space orthogonal planes like the xy, yz etcetera n c2 which is n times n - 1 / 2 and that is the

number of generators.

So I  will  explain  this  is  a  good example  to  explain  what  is  meant  by  generators  for  some

elementary group theory and then we will take it from this point so let me write that down SO(n)

we will explain what is meant by generator next time using this example okay.
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