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So we saw yesterday that in the simple large bow mo∇ for diffusion of particles in a fluid the

equation is.
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MV  dot   + m  γ  V = n (t)  if  this  is  a  Gaussian  white  noise a  random process with the δ

correlation a Markov process which  is stationary and has aδ  correlation then the velocity V also

turns  out  to be a  Markov process  and its   conditional  density  turns  out  to be the  Ornstein

uhlenbeck distribution so we  saw that this implied and you can show  that this ⇒ and is implied

by the  fact that the conditional density

The  velocity is V at time T given that it was V 0 at some instant of time t  =0 this quantity this

was given  the normalized distribution was given by  2 π k Boltzmann t 1 - e to the  - 2  γ t this is

a time dependent normalization factor multiplied by a Gaussian function which is(v – v0ert )2-  by

the variance which is 2 k  t 1 - e to the - to  guarantee this was the distribution which starts as a δ

function at v =V 0 at  T =0 and as in Tata CLE  approaches the maxwellian distribution  the usual

Gaussian distribution  corresponding to thermal equilibrium as  T tends to ∞.

Now of course once  you are given this and the fact that we  is a Markov process which we have

not  proved but I am asserting that it is so  then all probability distributions  connected with v

unknown n time  distributions are completely known  because everything could be written for  a

Markov process in terms of this conditional density alone but the  interesting thing is this density

also  obeys a differential equation which  looks like the diffusion equation but  how  another

extra term and we will discuss that little bit.

Today and that equation and this stochastic differential equation are equivalent to each other  the

equation obeyed by this P is δ P  /r δ T and it is called the master  equation for the probability



conditional  density of a Markov process in this case  this master equation is a second order

partial differential equation and it  happens to read = γ δ  over δ v, v p  +  γ kb t /  mb2 p so this

equation together with the  initial condition so the which is a  function of V and T so P of V and

T with the initial condition p of V 0 = 0 V - V 0 and a certain set of  boundary conditions.

Because  its  second order  in  space  envy we need boundary conditions  and natural  boundary

conditions namely p (V T) 0 as  we tends to  + or - ∞  specifies a unique solution and that is  this

distribution so the unique solution  of this second order partial  differential equation with this

initial  condition and this set of natural  boundary conditions happens to be the  honestly no land

by distribution one can  prove this rigorously you can solve this  equation explicitly by a variety

of  methods but we are not interested in  that at the moment

 But this is where the  answer in the distribution  appears from this particular equation  the

master equation for the conditional  density this equation is the first  example of what is called a

fokker-planck equation  this is a class of equations for a  specific kind of Markov process which

I'll mention in a minute and it is perhaps the first example or one of the  first examples of a

Fokker  Planck   equation  this  equation  for  the  velocity  was  actually  written  down by  Lord

Rayleigh and  it is sometimes called the Rayleigh equation.

But  it is common parlance  it is become known as the  fokker-planck equation because it is an

example of a class of equations to be  Jackal labeled as the fokker-planck  equations now we

found  also  from this   that  the  velocity  was  correlated   exponentially  so  we  found  that  the

velocity.
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V ( 0 )V (t)  average V(  t 1) V (t2 )was a function only of mod  t1 - t2 I can shift the origin

called zero one of the arguments here in  equilibrium this turned out to be KBT  over m e to the -

γ mod t -  T try this is the way you define for a  Markova process a correlation time what  you do

is to take this process if you  have a stationary Markova process and let me denote for general

stationary  Markova process you take this quantity is  I of 0 is I (t) take its average value  that is

the correlation function  provided the mean is 0 at all times.

The mean is not 0 you should subtract the mean at every instant of time so let us  even do that let

us write the most  general formula down the actual  correlation function C (t) we define as  z of 0

- average side which is time  independent if it is a stationary  process the average of back x this

deviation from the average this quantity  here would actually be the correlation  function but you

can easily see  it is  easy to check that  is the same as the average value of   of zeros I( t) - mod

average high  whole squared.

So this thing here is in  fact as I of 0 is 0 i of t - average  size 0 2 so it is a generalization  of the

variance of the process that is  all that the correlation does let us for  the time being for the case

of V this  was 0 so let  us simply drop it  and then  you can define a correlation time in the

following way so you take this quantity  is I (0) I (t) you normalize it by  is I squared that is the

value of T  =0 this function is  guaranteed to start at one at T = 0 and then in general it would

drop  off to 0 as T tends to ∞ could  drop off very slowly but here it drops  off exponentially fast

not always  guarantee but in this problem.



It drops off exponentially fast so if you took  this quantity and you integrated over  all T you get

a quantity of dimensions  time so 0 to ∞ of this  if this integral  converges you get a certain

characteristic time in the problem and  this is what you would call the  correlation time of the

process so that is the way  pardon me so if this is a random process  if there is a stationary

random process  then this is a way of acquiring of  extracting a time scale in the problem  the

time scale on which the system loses memory some observable.

Yes that is a  good question this question is if I look  at this problem and I look at the  velocity

correlation time is that the  same as a correlation time for say the  position or anything else will

see it is  an interesting question we will see what  happens to the position in a minute for  the

velocity  it is so this is certainly  going to give you a correlation time  pardon me is this quantity

this is I squared average so that this is normalized to unity otherwise.

 It this quantity has a physical dimension of the square of whatever it be I want to extract time

from it so I remove this quantity gets rid of the physical dimensions of and it is something which

would typically look like this function here would start at one and die off and I am saying this

quantity here this area under the curve is actually got the physical dimensions of a characteristic

time scale is no easy it is not hard to prove.

That if you took this in the present instance this  would imply at how correlation time  = γ

inverse trivially follows  that you simply get one over  γ is  the correlation time of the velocity

now  the next question is very nice we have  something for the velocity what about  the position

what happens to the  position something very complicated  happens to the position the fact is it

turns out that I was really look at the  motion and phase space as we know in  dynamics you must

look at things in  phase space.

So since I am looking at one  component of the velocity the x  component say I should really

look at  the pair X ,V and then I should not  even be talking about p of VT  I should be talking

about the joint  density in phase space of xvt given say  some initial position we not at T equal  to

zero so it is this quantity that I  should look at and I should ask how does  that evolved as a

function of time it turns out you can write a Fokker Planck  equation for that quantity.

That would  correspond to writing an equation for  the probability density corresponding to  the

pair of variables here so I write x  dot =V and V dot =this  look like a dynamical system except



that  it is got random components here and  then I could write a probability density  of that kind

and then ask what is the  equation of it  by it also satisfies  the fokker-planck equation it  is

somewhat more complicated but we could  actually write it down quite simply but  me yeah the

statement is dynamics  happens in phase space as we know from  our experience with dynamical

systems.

So we are talking now about a random velocity of an individual particle the X  component of the

velocity say I should  really talk about the position and the  velocity together because that is what

constitutes a point in phase space right  so I should really write down a couple  set of equations

and here is the couple  set of equations X dot is V and V dot  satisfies this equation which is

random  this  ETA is random corresponding to  this  stochastic  differential  equation I  have  a

probability density in phase space  which is given by ϱ of X VT.

This is the probability density or when x DX DV  this gives you the probability that if a  particle

starts at X 0 with  velocity V 0 at time 0 it is found  in the range V to V + DV in velocity and  X

2 X  + DX in position at time T this  quantity satisfies the fokker-planck  equation also which is

more complicated  than this equation in fact we could  write this equation down let me do so  that

is the fokker-planck equation in  phase space and it is actually not much  more complicated than

this yeah I should  write it down really I should write down  not this but I should write down our

I  should write down v and I should write  down our not v not.
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So let us do this in several steps I should really finally aim at writing row of our V T given are

not  find  me  the  motion  occurs.  I  look  at  particles  in  this  room they  are  moving  in  three-

dimensional space but the move each of them is moving in a six dimensional phase space one

particle phase space six-dimensional  it  is not a Hamiltonian system at all this thing is not a

Hamiltonian system is right over gone from that there is no way you can produce this friction in

a Hamiltonian system. 

I put this mo∇ in  phenomenological and I put in a random  component here so we move to a

stochastic dynamical system now which is  in fact dissipative but now I am not  saying anything

like that I am saying  that every particle has the particle  motion occurs in phase space that is all

I am saying ,I need to have equations of  motion which are right down should be  for all the

dynamical variables and the  position and the velocity of the  position and the momentum they

determine  the state of the particle at any time so  it is not Hamiltonian does not have to be

Hamiltonian at all not writing any  Hamiltonian down at all.

But the idea of  phase space is more general than that of  Hamiltonians as you know if this

particle had other internal degrees of  freedom then the dimensionality of the  corresponding

phase space would change  but it is a point particle so its  position and momentum  you mean

why do not I have what else  could I have here what is the K let us  call it is got to be a physical

observable pertaining to the point  particle what are the physical observables pertaining to a point

particle at any instant of time.



They be  its position and momentum that is about  it is true that if i have this  particle in if it turns

out that there  are velocity dependent forces it turns  out there are other degrees of freedom

interacting with it turns out for  example that its basic equation of  motion is six dimensional or

seven  dimensional. I would have to include those extra pounds but as long as I have forces

conventional kinds of forces we know that the position and momentum are sufficient or in this

case the position and velocity so this is the sort of quantity.

I would look at but let us  first do this for one dimension and then  I write it down immediately in

arbitrary  in three dimensions the equation turns  out to be δ  ϱ over δ T  + V δ Ρ over δ X

=whatever  we wrote on the right hand side  γ δ over δ V V (Ρ) this time   +  γ k but over mt2 ϱ

over  TV to  this  is  the fokker-planck equation   in  phase space  nothing much has  happened

nothing much has happened you have added  this term here in fact you can  intuitively guess

where this term comes  from what does this remind you of yes in  fluid dynamics yeah V dot ∇ it

reminds you exactly of that it is a  convective derivative.

So the left-hand  side is really the total time derivative  of row in that sense so that is all that

happens and this is a very complicated  solution if I write this down with  initial conditions p of x

v0 is δ V  - V 0 δ of X - X 0  and I use natural boundary condition  saying that row vanishes as X

tends to   + - ∞ V tends to  +  - ∞ then the solution turns  out to be a fairly  complicated

distribution turns out to be a Gaussian  jointly in X and V so it  is a  multivariate  Gaussian

distribution I am  NOT going to write that down right.

Now  hopefully generalize this to  of  R, V ,T that is also obvious  almost obvious let us say soϱ

what would  the general equation be in six  dimensional phase space how would it  change this

remains the same and not  surprisingly this becomes  + V dot the  gradient of Ρ gradient with

respect to  R  of ϱ and on the right hand side out  here you actually have  γ times the  gradient

with respect to V dotted with v   is the divergence of this  required this means the componentsϱ

of  this are the partial derivatives with  respect to the three velocity components.

And this term here becomes ∇ with  respect to V 2 ϱ that is the  full 4k Planck equation for free

particles in the absence of an external  force in phase space and the solution is  a generalized

Gaussian in all these  variables you can use a matrix method to  solve this equation but it is a

little  intricate and we would not do that here so  you cannot generalize these two actual  motion



in a number of dimensions but our  purpose now is not to do that we go back  we go back to this

set of equations.

The  lingerie equation and ask what can we  say about the position of the particle  we know all

we need to know about the  velocity because it sets conditional  density is given by the honesty

Nolan by  distribution what can we say about the  position of the particle how far does it  move

in a given time so let us see what  happens so we could start with the  particle moving from the

origin at T  =0 or at any point X 0  and then let us find out what it does.
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So  I know that x (t) - x (0) = an integral from 0 to t dt 1 v of t 1  this is a definition of the

displacement  let us call this δ X (t) now I  would like to find out what is the mean  square

displacement so all I have to do  is to take the square of this and take  the average in equilibrium

so what is  that give us that gives us 0 to t dt 1 0  to t dt to  and then you have a V (t1) V (t2) in

equilibrium no external force but we already know what this is this is the exponential that I wrote

down there for  you can compute this number right.

You  can actually calculate this number  fairly straightforwardly because all you  have to do is to

put in that exponential  there and compute it so let us do that a  little trick involved here because

remember that this quantity was k t / m e to the -  γ  times modulus t1 - t2 is a modulus  there in

other words in the t1 t2 plane  you have to integrate 0 to t 42 and a t1  here this is the line t 1 =p2



and you have to integrate over this  whole square here but the function here  is symmetric with

respect to the  function layer.

Because it is a function  of the modulus the value at any point  here is =the value reflected on

this line so we could as well write this  as =2 the value in one of  the triangles so I could write

this as  2 the value from 0 to t dt 1 and  this goes from 0 to t 1 dt 2 k Boltzmann  t / m e to the -  γ

since t1 is bigger than t2 i could just write this  as the t1 - t2 without the modulus  and which

triangle. I am integrating / t1 from 0 to T and each time t2 is restricted it goes from 0 up to this

quantity so it just goes up till there that is the integral .I am doing as a trivial integral to do is

very simple and the result is the following so you end up with.
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(δ X )2 =it turns out to k  Boltzmann t / m  γ and  γ 2  because ,I am going to do two integrals

here and the k Boltzmann t / m comes  from here and then it is an integral  which gives you  γ t -

1  + e  to the -  γ that is the result  what can we say about the displacement  now right away from



this result this  quantity is the mean square displacement  and it is a function of the time what

sort of process is the displacement now if the mean square value depends on time  what can you

say about this process is  it stationary or it is non-stationary  exactly.

So that is the first problem it  is not even a stationary process unlike  the velocity who statistical

properties  were independent of time and therefore  the mean the mean square and so on were  all

independent of time this process is  not even a stationary random process so   it is correlation

function  is  going to   depend on both  time arguments  and is  not   a  function  of  this  of  the

difference of  the two alone so if I compute δ X of  T 1δ X (t2) it is a function of  both t1 and t2

and how does this  function look as a function of T if I  plot δ X (t) 2  exactly so it is clear that

asymptotically this term and this term  are going to dominate over this and this  is a straight line

which intersects at t  =1/  γ.

So it is clear  there is a straight line of this kind  with some slope and this function look  at what

happens 40 very small  γ T  < 1 this goes like 1 -   γ T which cancels both these things  and then

you got a  γ 2 t  2so it starts off like a parabola and then it hasn't Article II  it is this  value here

eventually so it is clear  that this function looks like this and  this line here it is ordinate is to d2

to whatever it is to k Boltzmann t / m   γ t - 1 /  γ straight line  and that is the asymptotes so it

behaves  linearly for sufficiently long times.

But  at short times its quadratic and then in  between it has both the exponential as  well as the

linear term and  it is not a  stationary process X (t) is not a  stationary  turns out it is not even

mark off but  there is one case where things simplify  where have we come across the statement

that the mean square displacement of a  diffusing particle increases linearly  with the time this is

the famous  diffusion equation prediction so if you  write the diffusion equation down for  the

positional probability density function.

Then we can prove directly from  that that the mean square displacement  increases linearly with

time but this is  saying something else saying it is not  linear it is only linear for  sufficiently long

times this thing here  is  γ inverse and if T is much bigger  than  γ inverse which is the velocity

correlation time then the mean square  displacement increases linearly with  time so it is giving

us a very important  input it says the diffusion equation  which I would normally naively right

down from fixed laws of diffusion a valid only at sufficiently long times.



How long times much longer than the velocity is memory time correlation time so that is telling

you something beyond the diffusion equation so now let us back and write down the diffusion

equation and see what that ⇒ and what sort of stochastic equation that  again so let us go back⇒

to our logical the usual phenomenological description of diffusion is in terms of two conditional

densities so let me call. 
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I need to use another symbol for it so  let me use the symbol P little script  there for the position

of a particle at  time T this is the positional  probability density and what do you say  about this it

is like if I take a  diffusing species and I write the  concentration as a function of position  and

time I'd write the two laws of fake  the fixed laws for diffusion the first  one is just conservation

of matter and  the second law tells you how things move  so the equations if you recall for the

concentration of a species at time.

T the  equations fixed laws are δ C over δ T =on the right hand side  this quantity is =it is = - the

divergence of a diffusion  current that is the continuity equation  that is fixed first law it is just

the  conservation of matter continuity  equation but the second law says  something dynamic it

says under suitable  conditions the current J (RT) is  proportional to the negative gradient of  the



concentration so the current moves from the region of higher concentration to the region of lower

concentration.

So it is =- the gradient of the  concentration and the coefficient here  is called the diffusion

coefficient  D  and  when  you  put  both  these  guys   together  of  course  you  end  up  with  the

diffusion equation which says δ C  /δ T =D  ∇2 C  that is the famous diffusion equation  the

positional  probability  density  of  a   single  particle  in  one  dimension  now   moving  in  one

dimension satisfies the  same equation this is almost by  definition and therefore it  ⇒ that  we

have the diffusion equation δ P  /δ T =D d2p / DX 2.

That is the diffusion equation so we set aside the lingerie mo∇ we are not going to think about it

for the moment we come to this we look at this diffusion equation and ask can we say something

about the motion of the particle from here well I need to specify initial conditions and boundary

conditions before .I am through.
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So let  us start  with the simplest  initial  condition let  us assume that on the x axis the initial

concentration is at X =0 so the δ function at the origin so let us say that P (x0) =Δ (x). So T =0 it

starts at X = 0 I could shift the origin as I  please but let us choose the origin to be  at X =be at

the initial position  of the particle what are the boundary  conditions you would like to put but I

certainly like to have this I did  certainly like to have the total concentration to be finite and the

equivalent of that here is -  ∞ to ∞ DX p ( x , t  )=a finite quantity.



It if it  is a probability density function then I is  =1 t > -0 I certainly like to normalize this

probability so it should be some non  negative function which is whose total  area under the

curve is unity and which  starts as a δ function at T = 0  what is a necessary condition for this

integral to exist it is an integral  which runs from - ∞ to  ∞ the entire x-axis so when would  that

exist well this function must be  integral of course but it must vanish  at the endpoints otherwise

this integral  does not exist it must vanish  sufficiently randomly at the endpoints.

But certainly it must vanish so the  natural boundary conditions natural BC P  (xt)  0 as mod X

tends to 0 as  X tends to  + or - ∞ on  both ends I did like it to vanish given  this initial condition

and those  boundary conditions this equation has a  unique solution and we know the solution

the famous diffusion equation solution  is in fact p of x t is =the  exponential of - x 2 over 4 dt

and there  is  a  normalization  constant  which  is  square  root  of  this  is  the   famous  Gaussian

solution.

It simply says that as time goes on this becomes a Gaussian then it widens out and  eventually

dissipates now completely the  area under the curve remains one at all  times but this curve

broadens finally p  vanishes at every point but the total  area is one that is the fundamental

Gaussian solution to the diffusion  equation or the heat conduction equation these are all identical

equations well  for one thing we can find the value of  the mean value of x or the mean square  of

x etcetera you can in fact do that  without solving this equation.

But once  you have it you can write it down how do you find the mean value of x how do you

find X (t) average from this equation  without solving the equation.
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What would you do well I would like to compute X (t)  =an integral D X X times P (x) if this is

normalized to unity  then this is the definition of the mean  value so let us do that let us multiply

both sides of this equation by X and  integrate over T overall X so what  happens. I multiply this

by X on both  sides and integrate from - ∞  to ∞ I have integral -  ∞ to ∞ DX x times δ  / δ T P

(xt) this quantity is  =D times an integral -  ∞ to ∞ DX x times d to be  over the x2  but remember

the T dependence comes entirely from here.

So I can actually pull this out once it is integrated over  X this is just a function of T alone and  I

can pull that out and since its  function of T alone again simply write  it as d over DT but what is

this  quantity =by definition  it is the  mean value 90 so it says d over dt X of  T is =this and the

obvious thing  to do is to integrate by parts so if i  integrate this by parts this gives me d  times

Xδ P over δ X at X = - ∞  + ∞ - d  times an integral - ∞ to  ∞ DX times the derivative of this

function with respect to X.

Which is one  and the integral of this which is δ  P over δ X so it just gives me δ  P over δ X this

fashion but this is zero because we would like all moments  of this quantity of X I like the mean

value the mean square value and so on to  be finite which means that P of X T must  not only go

to zero as mod X goes to  ∞ but must go to 0 faster than a  near as negative power of X otherwise

that moment would diverge therefore  since this goes to zero faster than any  negative power of

X as X goes to  +  - ∞ this quantity goes to  zero so this is gone and what does this  do this gives

you just the surface terms  p @ + ∞ and PS mind at -  ∞ which are 0.



So that is gone and  therefore you find this is  which ⇒ that this quantity is a  constant but if I

start at the origin at  t =0 this is 0 at T = zero and since it must remain constant   it is 0 at all

times so just telling you  physically the fact that if we start  with a symmetric initial distribution

and let diffusion occur without bias the  dis a still the distribution  would remain symmetric at all

times the  average would remain 0 at all times so  this is identically 0 what happens to  the mean

square displacement that is not  0 of course this is non-trivial.

So I would like to find x 2 (t) which  is this and I start by finding x squared  on the side I multiply

by x 2 so i  have d over dt of x 2 of T on the  right hand side this is what we are  going to get I am

going to put an x  squared here and integrate over X the  first term the surface term will have an

X square DP over DX which goes to 0 and the next term will be a - D times an  integral - ∞ to ∞

the  derivative of x 2 which is 2x so  there is a 2 and then there is a DX  and then an X δ P over δ

X the derivative of x 2the integral of  dy over DX.

Which is this and now I  integrate by parts once again so that  gives me =- 2 d x times p at  - in  +

∞ that vanishes  once again and then a  + sign to D  times the derivative of this which is  unity

and the integral of this which is  P itself integrated but the integral of  P is one because it is

normalized so it  is just this it finally leaves you with  just 2 D  which ⇒ at once that x squared of

T =2 d t  + a constant but at  =0 this is 0 and so the constant drops out and you end up with this

famous result that the mean square  displacement in diffusion is linearly  proportional to time and

the coefficient  of proportionality is 2d.

 In each dimension of motion in three dimensions  by computed r squared it would be  average x

squared  + average y squared   + average that squared which will  give me six DT now how does

that tell  you with the result there this thing  here is certainly not a linear function  of T except in

the limit  γ T much  bigger than one and these two must match  therefore in the diffusion regime

so we  could call this the diffusion regime  t much better than inverse in  that regime x 2average

of t = 2 dt we got something even more  interesting if that is the case I must  then equate this

phenomenological coefficient D. 

We just got put in by hand with what we got from the microscope π c  mo∇ here and that ⇒ but

to dt here must be to dt there and that  immediately tells you it is to sitting  here and the  γ

cancels and you end  up with d = the diffusion coefficient is not  arbitrary it is related to the

dissipation in the system and it is  related in this particular fashion this  is another expression of



the fluctuation  dissipation relationship that I talked  about the last name so a diffusion  actually

tells you how things spread out of fluctuations act on the system and  γ tells

You how the dissipation in  the system ax and there is a connection  between them this is also

related to the  viscosity of the fluid so now you could  go back and ask what does this mean what

sort of stochastic equation does X  satisfy in order for this to happen and  for this we need to

know  a  little  bit   about  the  connection  between  stochastic  differential  equations  and  the

corresponding  master  equations  the  fokker-planck  equations  .I  write  that  relationship  down

without proof and  it is  as follows the relationship only yes that is what happened. 

I mean  that particular microscopic  model no not  at all that is only a model as it stands  so we

have no guarantee of this at all  finally you have to test against experiment whether the model is

successful or not so the statement made  is the following and now by hindsight we  can mention

what in this particular  problem what the resolution of this  whole business is the time between

collisions the time of interaction  between two molecules is of the order of  10 to the - 15 seconds

that is the  sort of electromagnetic interaction time.

The time between collisions is of the  order of a second or less the next time scale is the velocity

correlation time which under normal circumstances  for the kind of loads we are talking  about

would be of the order of  microseconds so diffusion the diffusion  equation would be a good

approximation  to the transport phenomenon on  timescales much greater than  microseconds

that is it so there are lots  and lots of time scales in the problem  they are well separated from

each other  which is why this trick works finally  and of course in a dense fluid under  different

conditions and so on things  can get much more complicated the velocity is not given by the

simple launch of my equation the point.

I want to make here from the point of view of dynamical systems is that for a given stochastic

differential equation you can write down a Fokker Planck equation for the conditional density

and it is as follows?
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So if you have a random  variables I and  it is given by a  first-order stochastic differential

equation of the kind z dot is some  function of we do not care what some  function which gives

you the drift of  this thing  + a white noise of this  kind eight of let me call it Z of T  x perhaps a

function of once again  and this is the stochastic differential  equation. Where of t where F and G

are given functions and Z of T is a  Gaussian δ correlated stationary  Markov process with zero

mean so we will  make that assumption Z of T is a  Gaussian white noise with zero mean 00 d  0

T ‘ =Δ function of t  - T ‘I have absorbed.

Whatever constant sits here in this G if this is the stochastic differential equation obeyed by the

random variable as I then this ⇒ of T is a Markov process whose conditional density satisfies a

fucker Planck.
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Equation of the following  kind  P of Z satisfies δ P over δ T  =-δ over δ SI f of  Z P of Z T   +

one-half G 2  this is the fokker-planck equation  satisfied by P this is rigorously  provable so the

moment you have a random  variable driven in this fashion by white  now is Gaussian white

noise stationary  Gaussian δ correlated Markov process  with zero mean then you are guaranteed

That the output process P is a Markov  process whose conditional density  satisfies this equation

this is  generally given the name the  fokker-planck equation and what we had  is a special case

in that case the  equation we had for v if you recall was  v dot =-  γ V  + what a  white noise is of

P over 1 over m  times this so was essentially a  constant in that problem  so once we have this

let us go back and  ask what about the diffusion equation.

What kind of process was that well the  diffusion equation said δ P of X T  over δ T was =db2 P

of X T  over δ x2 so it corresponding to a  situation but F was 0 this term did not  appear at all

and this term here was a  constant which is given by g so it is  quite clear that the stochastic

differential equation x dot is given by  a white noise on the right-hand side and   it is just square

root of two d x 0 so if  you put G =√o 2 D  1/2 g 2 is in fact d that is  what we have so f =0 g was

just  a  constant   and this  tallies  with  what  we  already   know if  this  is  a  white  noise  its  0

correlation time is zero.

And we already  saw that the displacement behaves this  mean square displacement behaves

linearly in the diffusion regime when T  is much bigger than  γ inverse  in other words when the

time scale is  much larger than the correlation time of  the velocity or another way of saying it  is



on time scales compared to which the velocity correlation time is zero and  acts like a white

noise so really these  two things are not contradictory at all  but there is a consistency condition

which connects one to the other here in  fact that can be generalized.

 It does not have to be and this is not the final thing I want to mention it does not have to be the

launch of our model at all you could in fact start from very general considerations and ask what

is the diffusion equation what does the diffusion constant do and that is not hard to see there is a

final thing I am going to talk about.
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So all we have to do  is to start with this statement that the  displacement in a time T is in fact the

integral of the velocity over that time  and then if I compute the square of this  and I have rich

this gives me this  quantity 0 to t TT 2 and then I have V  (t 1)  from you t to average and if the

velocity is stationary in equilibrium  that is all I want in other words the  energy does not change

at all everything  is in thermal equilibrium then  independent of what the form of this  quantity is

I could in fact simplify  this whole thing

So the first step is to  write this as this is a symmetric  function so it is a function of mod t1  - t2

so the first step is to write  it as 2 the integral from 0 to this  of this guy and write it as f of t1  - t2

now what have we done well here  is t1 here is t2 and this is 0 to t 0 to  t and I am integrating in

this fashion  but I could equally well integrate by  interchanging orders of integration in  this



fashion so if you interchange  orders of integration here this becomes  0 to t dt to on this side and

this  integral T 1 is always bigger than t2.

So  it runs from t to up to p 1 up to t2  sorry up to t that is right dt 1 and  then this function of t1

and now I change variables to t1 -  t2 inside to t1 - t2  what happens to the lower limit  of

integration this becomes a zero and then  this integral is trivial to do one of  the integrations is

trivial to do and to  end up with a result which is 2 an  integral 0 to t dt to if you like or let  me

call it dt ‘ t - T ‘in  this fashion and then inside is v of 0 V  of T’ this quantity is expected to  start

at one and decrease to 0 and the  integral runs up to t what is the  asymptotic t go into ∞ behavior

of this well this term is going to  dominate and this limit will go up to  ∞ the parts where t prime

becomes  comparable to tea would be damped.

Because they go down here so it is clear  that the T going to ∞ limit of  this the asymptotic

behavior of that is  in fact this quantity for sufficiently  long x goes to 2 t times.
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And  integral from 0 to ∞ dt’ v  of 0 V of T ‘ but if you insist that this should be  =2 DT by

definition it gives you  a basic formula for the diffusion  coefficient so it ⇒ that  eventually the

diffusion coefficient is  intimately connected to the velocity  correlation and independent of the



mo∇  d is integral 0 to t dt ‘0 to  ∞ I might as well drop the prime  here v of 0 d in equilibrium so

it  says  the transport  is  determined by  equilibrium fluctuations and thermal  equilibrium the

fluctuations of the  velocity.

This has a name it is an  example of what is called a Kubo- green  formula  in the launch of a

model this was k/ m e to the -  γ t and of  course that give you d is Katie over m   γ but that was

specific to the model but this is much more general all you  need is that in this integral converges

actually does not even have to converge  you can show that the D if the process  is diffusive and

not super diffusive or  anything like that then this D is  actually the analytic continuation of  the

Laplace transform of this to s =0.

So you can put in an e to the  - st then it is the Laplace  transform of the velocity correlation  and

if you after doing the integral go  to s =0 that is the diffusion  constant so this is in fact the

beginning of the subject of  non-equilibrium statistical mechanics  but our interest here was from

the point  of view of dynamical systems and what I  wanted to show you was that even if you

include noise then the formalism changes a little bit it is more convenient to  talk about phase

space densities or  densities now like the invariant measures.

We  talked  about  earlier  to  talk   about  time-dependent  probability  density  functions  right

equations for them and  solve them and you get all the averages  that you need and of course you

could   ask  more  complicated  questions  like  what  happens  if  you  have  a  combination  of

deterministic and random components to  the dynamics things get harder and  harder but the

formalism is well laid  out so the model of the story is eventually you have to use statistical

methods you have to write down equations  for from either from or from other.

Inputs either from the dynamical equations or otherwise you have to write down equations for

distribution  functions  the  probability  densities  are  the  measures  and  then  after  that  finds

statistical averages of the quantities that you want and then there may be internal consistency

conditions like the one we found 4d here which you have to impose general they are not if the

things of the random is the noise is totally different.

It is an external source they may not be such consistency conditions so very few general lessons

but there are some pointers as to what one should do in such cases with that maybe I should stop

here today you. 
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